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Abstract—This paper investigates error-entropy-minimization
in adaptive systems training. We prove the equivalence between
minimization of error’s Renyi entropy of order and minimiza-
tion of a Csiszar distance measure between the densities of desired
and system outputs. A nonparametric estimator for Renyi’s
entropy is presented, and it is shown that the global minimum of
this estimator is the same as the actual entropy. The performance
of the error-entropy-minimization criterion is compared with
mean-square-error-minimization in the short-term prediction of
a chaotic time series and in nonlinear system identification.

Index Terms—Minimum error entropy, Renyi’s entropy.

I. INTRODUCTION

STARTING with the early work of Wiener [1] on optimal
filtering, the mean square error (MSE) has been a popular

criterion in the training of all adaptive systems including
artificial neural networks [2]. The two main reasons behind
this choice are analytical tractability and the assumption that
real-life random phenomena may be sufficiently described
by second-order statistics. The Gaussian probability density
function (pdf) is determined only by its first- and second-order
statistics, and the effect of linear systems on low order statistics
is well known [3]. Under these linearity and Gaussianity
assumptions, further supported by the central limit theorem,
MSE, which solely constrains second-order statistics, would
be able to extract all possible information from a signal whose
statistics are solely defined by its mean and variance.

Although Gaussianity and linear modeling provide successful
engineering solutions to most practical problems, it has become
evident that when dealing with nonlinear systems, this approach
needs to be refined [12]. Therefore, criteria that not only con-
sider the second-order statistics, but that also take into account
the higher order statistical behavior of the systems and signals,
are much desired. Recent papers have addressed this issue both
in the control literature [4] and in the signal processing/machine
learning literature [5]–[7].

Entropy, which is introduced by Shannon [8], is a scalar quan-
tity that provides a measure for the average information con-
tained in a given probability distribution function. By definition,
information is a function of the pdf; hence, entropy as an opti-
mality criterion extends MSE. When entropy is minimized, all
moments of the error pdf (not only the second moments) are
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Fig. 1. TDNN prediction scheme; an example of supervised learning.

constrained. The entropy criterion can generally be utilized as
an alternative for MSE in supervised adaptation, but it is partic-
ularly appealing in dynamic modeling [9].

The goal in dynamic modeling is to identify the nonlinear
dynamical system that produced the given input–output map-
ping. This is traditionally achieved in a predictive framework
(see Fig. 1) using a nonlinear adaptive system, whose parame-
ters are adapted with the MSE between the desired output and
the system output. Minimization of MSE is, however, simply
constraining the square difference between the original trajec-
tory and the trajectory created by the adaptive system, which
does not guarantee the capture of all the details of the under-
lying dynamics. Hence, we propose minimization of error en-
tropy (MEE) as a more robust criterion for dynamic modeling
and an alternative to MSE in other supervised learning applica-
tions using nonlinear systems such as nonlinear system identi-
fication with neural networks.

Application of the entropy criterion to supervised learning
is conceptually straightforward. Given samples from an
input–output mapping, the entropy of the output error over the
training data set must be minimized. In the following, we show
that minimizing the error entropy is equivalent to minimizing
the distance between the probability distributions of the de-
sired and system outputs. These distance measures, from the
information-geometry point of view, are directly related to the
divergence of the statistical models in probability spaces [10].

Nonparametric estimation of the probability density function
(pdf)ofarandomvariable,whichisnecessaryfortheevaluationof
its entropy, is required since an analytical expression is not avail-
able in most cases. Parzen windowing is an efficient way to ap-
proximate the pdf of a given sample distribution, particularly in
low-dimensional spaces [11]. InParzenwindowing, thepdf isap-
proximated by a sum of kernels whose centers are translated to
the sample points. A suitable and commonly used kernel func-
tion is the Gaussian, but others can also be utilized, e.g., Lapla-
cian. The Gaussian function is a preferred choice for adaptation
purposes because it is continuously differentiable, i.e., the esti-
mated pdf is continuously differentiable on the space of real vec-
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tors. The Gaussian kernel, in addition to these nice features, pro-
videsacomputationalsimplification in thealgorithmdesign[12].

The organization of the paper is as follows. First, the equiva-
lence of entropy minimization and pdf matching is established.
Second, an analytical proof shows that the global minimum of
the entropy is still a minimum of the Parzen window estimated
entropy when Gaussian kernels are employed. Then, the back-
propagation algorithm for both Shannon’s and Renyi’s entropy
of order 2 are given for the one-dimensional (1-D) case. Finally,
two case studies where the entropy criterion is applied to the
short-term prediction of a chaotic time series and to the identi-
fication of a nonlinear system are presented. The performances
of MSE-trained and entropy-trained time delay neural networks
(TDNN) built from multiplayer perceptrons (MLPs) are com-
pared in terms of their accuracy in approximating the pdf of the
desired output.

II. ERROR ENTROPY MINIMIZATION AND PROBABILITY

DENSITY MATCHING

Consider the error between the desired and the actual outputs
of the adaptive system (Fig. 1) . From this, we can
deduce the pdf of the error as

(1)

where the subscript expresses dependence on the weights of
the adaptive system. Minimizing Renyi’s order-error entropy
[13] thus becomes

(2)

after the variable change of . Since we will be con-
cerned with Renyi’s quadratic entropy in this paper ,
consider the case where entropy order-is greater than one.
Since multiplying the cost function with a factor independent
of the weights of the adaptive system will not affect the solution
of the problem, we introduce the integral of the power-of the
pdf of the input signal in (2) to obtain the equivalent minimiza-
tion problem in (3).

(3)

We recognize this last expression in (3) as the Csiszar dis-
tance [14] with the convex function chosen to be . In gen-
eral, the Csiszar distance between two densities and
is given by

(4)

where is convex [14]. Kullback–Leibler divergence [15] is
a special case of this divergence corresponding to the choice

. Consequently, we infer that minimizing Renyi’s error
entropy results in the minimization of the divergence between
the joint pdfs of input-desired and input–output signal pairs.
This readily guarantees the matching of the marginal pdfs of
the desired and the output signals.

It is interesting to note that for Shannon’s entropy, the dis-
tance measure in (3) also reduces to the Kullback-Leibler di-
vergence. To see this, we start by modifying the minimization
problem by taking the and dividing by

(5)
Now, taking the limit of this expression as using L’Ho-
pital’s rule, we obtain the Kullback–Leibler divergence

(6)

Since Shannon’s entropy is the limiting case of Renyi’s en-
tropy when (this fact can also be observed using L’Ho-
pital’s rule as Renyi’s entropy has a singularity at this value of

), we conclude that specifically, minimizing Shannon’s error
entropy minimizes the Kullback–Leibler divergence between
the joint densities of the input-desired and input–output pairs.

III. N ONPARAMETRIC ENTROPY ESTIMATOR PRESERVES THE

GLOBAL MINIMUM OF ACTUAL ENTROPY

Now, we proceed with proving that the global minimum of
the entropy is still a minimum of the nonparametrically esti-
mated entropy for both Shannon’s and Renyi’s definitions when
Parzen windowing with Gaussian kernels is utilized. In practical
applications, the pdf of the random process is often unknowna
priori . Hence, we will utilize the Parzen window method to es-
timate the pdf directly from the samples. The Parzen estimator
of the error pdf is given by

(7)

where denotes the multidimensional Gaussian function with
a radially symmetric variance for simplicity. This estimator
can then be substituted in the Renyi’s entropy definition given
in the first line of (2) or Shannon’s entropy given in (8).

Shannon’s Entropy: We can estimate Shannon’s error entropy
[8] by substituting the Parzen pdf estimate in place of the actual
error pdf, yielding

(8)

Clearly, the global minimum of Shannon’s entropy is achieved
when the pdf of error is a Dirac-function. Since entropy is
independent of the mean of the random variable, without loss
of generality, we can concentrate on the case where the mean
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of is zero. The gradient of entropy estimated for the Gaussian
kernel is given in

(9)

Evaluating this gradient at zero error over the complete set of
data , we get the integral of an odd
function

(10)

Hence, is a stationary point of . Computation of
the Hessian is necessary to see if it is, in fact, a minimum. Using
the same approach as above, the diagonal and off-diagonal en-
tries of the Hessian are found to be

(11)

The eigenvalues of the Hessian matrix can then be computed
as with multiplicity 1, with a corresponding eigenvector

, and , with multiplicity
; hence, the Hessian is positive semi-definite. The eigen-

vector corresponding to the zero eigenvalue lies along the di-
rection on which the mean remains constant, that is, the value
of the entropy is constant. This is expected since the entropy is
independent of the mean. This can be easily shown by a simple
change of variables in the entropy definition. Therefore, we con-
clude that Shannon’s entropy estimated by Parzen windowing
with Gaussian kernels has minima in the directions where all
the error samples are identical over the whole data set.

Renyi’s Entropy: Renyi’s entropy is defined by (2) and is
known to approach Shannon’s entropy asapproaches 1 [16].
Like Shannon’s entropy, it is also independent of the mean of
. In practical situations, we will have to work with an esti-

mator. Here, we will still be using the Parzen estimator with a
Gaussian kernel in (7). The gradient of Renyi’s entropy in the
case of Gaussian kernels, evaluated at , is

(12)

Hence, this is a stationary point. Following steps similar to
those in Shannon’s entropy case, the diagonal and off-diagonal
elements of the Hessian matrix evaluated at are found to
be

(13)

Note that the Hessian matrix for Renyi’s entropy computed at
the optimal solution is independent of, and its second-order
partial derivatives are identical to those of Shannon’s entropy.
Hence, it has the same eigenvalues as the Hessian matrix for

Shannon’s entropy. Similarly, the eigenvector corresponding to
the zero eigenvalue is equal as well, and therefore, all the re-
lated arguments are valid for Renyi’s entropy. Thus, we con-
clude that Renyi’s entropy approximated by Parzen windowing
with Gaussian kernels has minima along the line where the error
is completely constant over the whole data set.

This analysis, however, only shows that is a local min-
imum of Renyi’s entropy estimator. In order to prove global-
ness, we need some further analysis. Consider specifically the
nonparametric estimator for Renyi’s quadratic entropy, which
is much simpler to estimate using Gaussian kernels, compared
with Shannon’s entropy and other orders of Renyi’s entropy
[12], [17]. When we substitute the Parzen estimator in (2) with
the quadratic entropy expression , we obtain

(14)
The argument of the , is called theinformation po-

tential[12]. It can be calculated in closed form from the samples
using Gaussian kernels as

(15)

This expression is obtained from (14) by interchanging the order
of summations and the integral. Then, we notice that the integral
of a product of Gaussian kernels is another Gaussian function
with twice the variance. Using this expression, one can estimate
the value of entropy for . It is simply

(16)

To complete the proof of globalness, we need to show that any
other combination of error sample values results in a larger value
of entropy, i.e.,

(17)

or equivalently

(18)

This inequality is readily satisfied since, for the Gaussian ker-
nels (with zero mean), the maximum value is achieved at zero.
This shows that our nonparametric entropy estimator preserves
the global minimum of the actual entropy.

IV. BACKPROPAGATION FORTDNN USING

ENTROPY CRITERION

A typical prediction scheme with a TDNN built from a delay
line and an MLP [18] is shown in Fig. 1. The training criterion
characterizes the learning process and determines the overall
prediction performance. The purpose of this scheme is to find
the TDNN weights that optimize the criterion of interest. Al-
though TDNNs are specifically mentioned in this section, it
should be noted that the gradient search presented here and
MEE criterion applies to the supervised training of any adap-
tive system with a smooth input–output map.
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If the adaptation criterion is chosen to be the minimization of
the MSE and the optimization procedure is the steepest descent,
then the training algorithm is the well-known backpropagation
algorithm [19]. However, if the adaptation criterion is picked to
be the minimization of Shannon’s entropy of the error due to
the reasons stated before, with steepest descent approach, the
training algorithm becomes [2]

(19)

Here, the pdf estimator for the error (7) is employed. The
gradient of the entropy with respect to the weights is calculated
to be

(20)
The term can be computed as in the standard

backpropagation algorithm [2]. The computational drawback
of this algorithm is the requirement of the numerical evaluation
of a complicated integral over the real line. Therefore, this
algorithm is extremely slow and computationally inefficient.
Employing Renyi’s entropy with , on the other hand,
leads to the closed-form nonparametric estimator in (15),
simplifying the computational load significantly [12], [17].
Since Renyi’s quadratic entropy is a monotonic function of
the information potential, we can equivalently maximize infor-
mation potential instead of minimizing Renyi’s entropy and
further simplify the adaptation algorithm. The gradient vector
to be used in the steepest ascent algorithm for the maximization
of the information potential is

(21)

One important point to note in training with entropy is that
since entropy does not change with the mean of the distribu-
tion, the algorithm will converge to a set of optimal weights,
which may not yield zero-mean error [6]. However, this can be
easily corrected by properly modifying the bias of the output
processing element (PE) of the MLP to yield zero mean error
over the training data set just after training ends. It must also be
noted that the optimization of the TDNN with an entropy cost
function may display local minima, as it does for the MSE cost.
This could be experimentally verified, and it creates well-known
difficulties to gradient-based algorithms [2].

V. SIMULATION RESULTS

As the first case study, the short-term prediction of the
Mackey–Glass chaotic time series [20] with parameter
using both MSE-trained and MEE (Renyi’s)-trained TDNNs
is presented. The TDNN inputs consist of the current value of
the sequence and six delayed values and a single linear output

Fig. 2. Probability densities for errors of MSE (dotted) and entropy (solid)
trained TDNNs.

PE, whereas the number of PEs in the hidden layer is varied
from 3 to 10. The nonlinearity used is the function. The
size of the input delay line is consistent with the embedding
dimension suggested by Taken’s embedding theorem for the
Mackey–Glass series [21]. The sampling period is chosen as
0.1 s.

All TDNNs are trained with a segment of 200 samples. For
each network, 1000 randomly chosen initial weights were tried
(Monte Carlo approach) in order to avoid local solutions. The
training algorithm utilized backpropagation using a variable
step-size gradient algorithm [22] for efficiency. The stopping
criteria was experimentally determined and consisted of 100
iterations for MSE-TDNNs and 30 iterations for MEE-TDNNs.
At the end of the mentioned Monte Carlo training, the best
set of weights (that yield minimum cost function values for
entropy and MSE) obtained by each of the criteria are taken and
checked for further improvement by employing a very small
constant step size to make sure convergence of each criterion
to its global minimum is achieved. The kernel size used to
estimate the entropy was experimentally set at after a
preliminary analysis of the final error dynamic range (however,
this value is not critical to the final performance if set properly
in a wide range given by for this example). The
general rule of thumb we use is to select the kernel size so that
on average, ten samples are covered by each kernel function.
Finally, after training, the bias weights of the output PEs are
adjusted to yield zero error mean over the training set.

The trained networks are tested on an independently gener-
ated test data set of length 10 000 since the goal is to learn the
chaotic attractor rather than the specific trajectory. In Fig. 2,
the error pdf estimates for the two TDNNs with six hidden PEs
(which is the best solution among all MSE-TDNNs) are shown.
Clearly, the error distribution of the MEE-TDNN is more con-
centrated around zero. Fig. 3 depicts the estimated probability
densities of the actual Mackey–Glass data set and the predic-
tions by the two TDNNs of interest. It is clear from these plots
that the density of the predictions made by the MEE- TDNN
is much closer to that of the test data compared with the dis-
tribution of the predictions made by the MSE–TDNN. This is
expected due to the minimization of Csiszar distance when the
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Fig. 3. Probability densities of MG30 test series and its predictions by
entropy-trained and MSE-trained TDNNs; desired (solid), entropy-trained
(dots), MSE-trained (dotted).

entropy criterion is used in training. We know that variance min-
imization can produce locally large errors, and this is clearly
seen in Fig. 3. Entropy training produces a more uniform match
between the two estimated amplitude densities, resembling an

-norm fit. Thus, we are lead to believe that the entropy crite-
rion in this case is better than MSE in extracting more informa-
tion about the pdf of the desired signal distribution. Note, how-
ever, that around the signal amplitude of approximately0.18,
both MSE-trained and entropy-trained networks fail to approx-
imate accurately the distribution of the desired signal. Since
both criteria fail to model this portion of the distribution accu-
rately, we hypothesize that the two most likely possible causes
for this behavior are the insufficiency of the network topology
to capture the specific dynamics involved in that region of the
attractor and/or the inadequate representation of that dynamic
behavior in the trajectories due to the short training sequence
used. Finally, in Fig. 4, we present the central moments of the
desired and predicted signals for all sizes of TDNNs over the
test data. All TDNNs with number of hidden neurons ranging
from three to ten are trained, starting from the 1000 initial con-
ditions using both MSE and MEE criteria. Clearly, for all cases,
entropy achieves a better fit to the distribution of the desired
signal compared with MSE.

As a second case study, we investigate the performance of the
MEE criterion in identification of a nonlinear system, whose dy-
namic equations are given in (23). Once again, a TDNN will be
used. The sought-after mapping in this case is from the delayed
values of the input and the output of the unknown system to its
current output. The training set can be represented as follows:

(22)

Specifically, the number of input samples is chosen to be seven
, and the number of output samples is chosen to be

six . A TDNN with seven hidden PEs is assumed,
following the suggestion in [23]. The nonlinear system that is
utilized has the state dynamics and the output mapping provided

in (23).

(23)

The training set consists of input–output pairs, and
the TDNN is trained starting from 50 different initial conditions
using both MEE and MSE criteria. The output bias is then set
to yield zero error mean over the training set. The performances
of the optimal weights obtained from the two criteria are then
compared on an independently generated 10 000-sample test set.
Fig. 5 shows the error pdfs for the two criteria on this test set.
The MSE of training set errors are 0.0676 and 0.0587, and the
information potentials for the same samples are 0.996 and 0.989
for MEE and MSE trained weights, respectively. As expected,
the training MSE is lower for MSE-trained TDNN, and infor-
mation potential is higher for entropy-trained TDNN.

This case study demonstrates nicely the basic difference be-
tween the entropy and variance minimization. Entropy prefers a
larger and more concentrated peak centered at zero error with a
number of small peaks at larger error values, whereas the vari-
ance (MSE) prefers a wide-distributed error on a smaller range.
In fact, this can be deduced by the following reasoning. Sup-
pose it is possible to obtain many error distributions with the
same variance. Since the Gaussian has the maximum entropy
among fixed variance densities, this error distribution would be
the least desirable for the entropy criterion. In addition, the uni-
form would be another undesirable distribution for the error. The
entropy would prefer rather spiky distributions, i.e., a number
of -like concentrated spikes having the same variance. This is
observed in Fig. 5. A comparison of the desired output signal
and the actual MLP outputs using entropy-trained weights and
MSE-trained weights is depicted in Fig. 6 to illustrate the sta-
tistical matching property of MEE. Clearly, the entropy-trained
TDNN approximates the pdf of the desired output much better
around the most probable regions of the domain when compared
with the MSE-trained TDNN.

VI. CONCLUSIONS

In this paper, an information-theoretic supervised learning
criterion for adaptive systems, namely, minimum error entropy
(MEE), has been proposed. It is shown that minimizing Renyi’s
error entropy is equivalent to minimizing a Csiszar distance be-
tween the joint densities of system input–output and the de-
sired input–output pairs. It was also proved that the Csiszar dis-
tance measure reduces to the well-known Kullback–Leibler di-
vergence when Shannon’s entropy is utilized. Furthermore, it is
known that there is equivalence between entropy manipulation
and maximum likelihood solutions [3], [15].
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Fig. 4. Desired (dashed lines) central moments and those of the predicted series up to order 6 for entropy-trained (diamonds) and MSE-trained (squares) TDNNs
versus number of hidden neurons.

Fig. 5. Distribution of errors of entropy-trained (solid) and MSE-trained
(dotted) MLP’s.

A nonparametric entropy estimator based on Parzen windows
and Gaussian kernels is presented, and it is proved that the
global minimum of the entropy estimator is the same as the
global minimum of the actual entropy. This enables us to use
the nonparametric entropy estimator for entropy minimization
and opens the door to the use of entropy minimization for any
type of supervised training applications, such as system iden-
tification and time series prediction. Renyi’s quadratic entropy
is preferred in practice due to the computational efficiency
of its nonparametric estimator. It becomes possible to define
the information potential, which then facilitates an analogy
between the presented approach for the information potential
computation and the sample test statistics based on kernels
[24]. The latter is the basis of the recently proposed Diks test

Fig. 6. Distributions of desired (solid) and TDNN outputs. Entropy (dots).
MSE (dotted).

for the equivalence of multidimensional vector distributions
[25]. However, unlike Diks’ work, we present here an informa-
tion-theoretic framework, and we use the information potential
to adapt directly the parameters of a nonlinear adaptive system.

Two case studies are also presented. The first one investigated
the performance of the MEE criterion on the adaptation of time-
delay neural networks of various sizes for the short-term predic-
tion of Mackey–Glass chaotic time series. The second one was a
nonlinear system identification problem using TDNNs. The op-
timal solutions obtained by MSE and MEE criteria were com-
pared in terms of the error distributions and their performance in
matching the probability density function of the desired output.
These analyses demonstrated that the error samples of the en-
tropy-trained TDNNs exhibit a more concentrated density func-
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tion, and the distribution of the produced outputs are also closer
to that of the desired signals in both case studies. These results
indicate the potential advantage of entropy training versus MSE
training. Especially since the entropy criterion allows a wider
range for the error in favor of a more concentrated distribution
for small error values, it can be useful in disregarding outliers in
the desired signal if they do not fit the underlying density well.
Consequently, this study prompts a new line of research that ap-
pears to be very promising by offering a feasible alternative to
MSE, which is the workhorse of supervised training.

Further work is needed to study the properties of the entropy
cost function for optimization and to find more robust ways to
set the kernel size for the information potential estimation. The
effect of noise in information-theoretic cost functions must also
be addressed. The issue of scalability of the information poten-
tial method with the size of the space will also be studied. Fi-
nally, we have been applying the information potential method
in many other problems (from blind source separation to pattern
recognition) with very interesting and promising results [12],
[17]. These also provide an encouraging indication for the need
to further study this entropy estimator and its applications in re-
lated problems.
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