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AN ERROR ESTIMATE
OF THE LEAST SQUARES FINITE ELEMENT METHOD
FOR THE STOKES PROBLEM IN THREE DIMENSIONS

CHING LUNG CHANG

Abstract. In this paper we are concerned with the Stokes problem in three di-

mensions (see recent works of the author and B. N. Jiang for the two-dimensional

case). It is a linear system of four PDEs with velocity u and pressure p as

unknowns. With the additional variable w = curl u, the second-order prob-

lem is reduced to a first-order system. Considering the compatibility condition

divw = 0, we have a system with eight first-order equations and seven un-

knowns. A least squares method is applied to this extended system, and also

to the corresponding boundary conditions. The analysis based on works of Ag-

mon, Doughs, and Nirenberg; Wendland; Zienkiewicz, Owen, and Niles; etc.

shows that this method is stable in the /¡-version. For instance, if we choose

continuous piecewise polynomials to approximate u, a¿, and p , this method

achieves optimal rates of convergence in the //'-norms.

Introduction

Let Q be an open bounded and connected subset of R3 with a smooth

boundary Y. Let / € [L2(Q)]3 be a given function representing the body

force. The Stokes problem can be posed as

-vAu + grad/? = /   in Q,

(1.1) < divw = 0 inn,

m = 0 on r,

where u, p with (p, 1 ) = 0, and v are respectively velocity, pressure, and

kinematic viscosity (constant), all of which are assumed to be nondimensional-

ized.
Over the past two decades many engineers and mathematicians have studied

the above problem. The mixed Galerkin method solves this problem success-

fully. In most cases the elements are required to satisfy a saddle point condition
[4, 5, 8, 9, 22], which is not necessary for our method.
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Introducing g¿ = curl«, we can transform (1.1) into the first-order system

(1.2) LU =

v curw + gradp

-divçy
v curl u - vo¿

-divu

in Q

and the boundary condition

RU =

ri o o
o i o
o  o   i

0
0
0

LO   0   0   n

0
0
0
n2

o On
o o
o o
«3 oj

£/ = 0   onT,

where U = [u, œ, p]'. The above system has been weighted, which is required

by the analysis in the following sections. The relation div<y = 0 is the com-

patibility condition; without it, the numerical scheme may not be convergent.

The boundary condition h = 0 on T implies that the tangential derivatives

of Ui vanish, or Vw; x n = 0 for ¿=1,2,3 and

(du*     du2\ I' dui
^^{-dy--7>z-)nx + {-d7

du3\ (du2     d

dx )H2+\dx " dy

fdui

= o.

du-i

~dx
"2   +

du2 du2

dx
«3-

dz
«i    +

dui

~dz
"2

«3

dui

'dy
«3

The least squares method relaxes the boundary conditions and the exact diver-

gence-free condition, so that the elements require less restriction. For example,
if all of the u, w, and p are allowed to be approximated by piecewise linear

functions in //' (Ci), we will show that the method achieves an optimal rate of

convergence.

Weighted least squares methods were used by Bramble, Nitsche, Schatz, Fix,

Gunzburger, Nicolaides, Oden, Carey, Zienkiewicz, and many others [7, 15]

in [2, 12]. In this paper we are going to apply the theory of Agmon-Douglis-

Nirenberg-type first-order linear systems to the weighted least squares methods.

The work of Aziz, Kellogg, Stephens, and Wendland [2, 23] gave a general

theory for this method. Jiang, Povinelli, and Chang [18-19] have successfully

transformed the Stokes problem into a first-order system in a two-dimensional

region and then treated it by a least squares method.
In this paper we will present not only the numerical least squares scheme,

but also derive error estimates in the three-dimensional case.

2. Notation and formulation of the problem

Throughout this paper, we will employ standard notation for Sobolev spaces

and their associated norms [14, 22]. We let Hm(£l) denote the Sobolev space

of functions having square integrable derivatives of order up to m over Q,

(2.1) Hm(Q) = {v£ L2(Q) ; dav £ L2(Q.) for \a\ < m},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOKES PROBLEM IN THREE DIMENSIONS 43

where a = (aia2a3), dav = d^v/dx°"dya2dza^,  \a\ = 01+02 + 0:3.  We

define the inner product and the norm in Hm(Q) as

(2.2) (u,v)m= Y   í dau-dav
, TT_. Jaa\<m-a

and

u\ym = (u,u) m-

The space Hq(Q) is the closure of 2(0) for the norm || • ||m , where 21 (Ci) is

the linear space of functions infinitely differentiable and with compact support
on Q. We denote by H~m(Q) the dual space of //¿"(O) normed by

(2.3) ||w||_m = supi^-^   over üe//0m(fí) and v^ÉO.

The trace operator jo: HX(Q) —► L2(Y) is a bounded linear operator agreeing

with the restriction operator u i-> u/Y for continuous functions on Q. The

kernel of y0 is H¿(Q) , and the image is denoted by HXI2(Y), which is also a
Hubert space; we define its norm by

(2.4) ll«||i/2,r = {inf Hi ; v £ Hl(Q) and y0U = u on Y}.

The trace inequality shows that there exists c > 0 independent of v such that

(2.5) ||7ov||i/2,r<c||v||i    for any v £ HX(Q).

We define the function space

(2.6) V = {v£[Hx(ii)]>}.

Following the work of Bramble and Scott [6], we will use a finite-dimensional

subspace Vrh £ V of functions to approximate our solutions. The parameter h ,

which represents a mesh spacing, is used to indicate the approximation property
of Vrh . We say that Vrh approximates optimally with respect to r if for every

v£Vn [Hr+1(Q)]1 there exists vh £ Vrh such that

(2.7) h\\v - v% + \\v - vh\\o < Chr+X\\v\\r+i,

where the positive constant C is independent of v_ and h .

We then define the least squares quadratic functional

(2.8) J(v) = f \lv - (Ç)   •  Lv-(Ç\   +h~x Írv-Rv   fory_£V.

If U_ minimizes J(v) over v £ V, it is easy to see that

(2.9) ÍLU-Lv+h-xÍRU-Rv=í(C\-Lv   foranyt/eF,

so a solution of ( 1.2) is also a solution of (2.9), and a sufficiently smooth solution
of (2.9) is also a solution of (1.2).

A finite element approximation to the solution of (1.2) or (2.9) is defined as
a solution of the problem

(2.10) MinJ(vh)   overv_h£Vrh.
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44 C. L. CHANG

Similarly to (2.9), the solution U_h of (2.10) satisfies the corresponding finite

algebraic equations

(2.11)    í LUh -Lvh + h-x í RUh .Rvh= Í (Ç\ • Lvh   for any vh £ Vrh.

Once a basis for Vrh is chosen, (2.11) becomes a symmetric linear algebraic

system. Moreover, in §4 we will show that this algebraic system is also positive

definite.

3. The a priori estimates

In this section we consider an auxiliary elliptic system obtained from the sys-

tem (1.2) by adding another unknown. The a priori inequality associated with

this "enriched" system is important in the derivation of our error estimate. The
"enriched" set of unknowns is "2¿_ = [u, k, ço, p]', where a: is a new variable
that plays a role similar to that of a slack variable in linear programming. The

enriched differential system is defined in terms of the operator Le by

(3.1) LM =

^curlw+ gradp
-divw

v curl u + grad k - vœ

—divu

= F   inQ,

while the enriched boundary conditions are given in terms of the boundary

operator Re by

Re%' =

(3.2)

0    0
0    0

0
0
0     0    0
«2      «3     0.

10 0 0 0
0 10 0 0
0 0 10 0
0   0   0   0«i

"1

"2

"3

nicoi +    n2a>2    + n3a>i

%

= 0   onf.

If /np = Jak = 0 and the compatibility conditions on the data, ¡af4 =

JQ/g = 0, are satisfied, the boundary value problem defined by (3.1), (3.2)
is well posed, and the a priori inequality associated with this problem gives

rise to our desired inequality for the Stokes problem. Taking the div of both

sides of equations 5 through 7 in (3.1) yields Ak = 0; evaluating the normal

component of the vector consisting of the same three rows of Le^ anywhere

on the boundary yields || = 0, ' and together with /a k = 0 this finally gives

k = 0. Equation (3.1) can thus be rewritten as

(3.3) LeW = A&JC + B&y + C&z + D& = F,

where A, B, C, and D are 8 x 8 constant matrices:

Ai    A2

A3    A4

'VA: • n = v(w

u = 0 on T .

curl«) • n = v{uf n - SLilV"'' x «]/) = u(0- 0) = 0, since g¿• n = 0 and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOKES PROBLEM IN THREE DIMENSIONS 45

and the same for B, C, and D, with

^2 = ^3

B2 = B3

C2 = C3 =

and

Da =
0
0

L 0

r o
o
o

L-l

o
o

—v

0

0
v

0
0

0
—v
0
0

0
0
v

0

0
0
0

0
0
0

0
0

-V

0

0
—v

0
0

n
0
0
OJ

0
1

V

0
0   0
0   0

0
0
0

Ai=A4 = [0]4x4,

Bl — B4 = [0]4x4 .

C\ — C4 = [0]4x4 .

Di=D2 = D3 = [0]4x4-

The operator Le in (3.1) has the matrix form

U V>^ = Alx+Bly+Clz+D'
We also define the space for the enriched variables as

(3.4) Ve = {V£[HX (Q)]8}.

Following the procedure in [1], we check the polynomials /¿/(6). We find

that there exist integer weights s, = 0, t¡ = 1, i, j = 1, 2, ... , 8, such that

deg[/,7(e)]<í, + í;   for/, j =1,2, 8.

where 0 = [xyz]' is the spacial variable. We define l'¡j to be the polynomial

with the terms in l¡j which are precisely of the order s¡ + tj ,

J5?(&) = det[/;;(0)] = det(xA + yB + zC)

#0   forreaie = [xyz]< ¿0.

2^4
v\x¿+y¿ + z¿)

By the theory of Agmon, Doughs, and Nirenberg [1], the operator Le defined

in (3.1 ) is an elliptic system and is also uniformly elliptic by the definition given

in [20]. In this paper, since we discuss the problem with constant coefficients,

the position variable P is dropped. We state the supplementary condition,
which is fulfilled for our problem, since we have three independent variables.

Supplementary Condition. -2* (6) is of even degree 2m. For any pair of linearly

independent real vectors 8 and 8', the polynomial -S*(8+t8') in the complex
variable t has exactly m roots with positive imaginary part.

Next, we check the boundary condition to see whether it satisfies the com-
plementing condition.

The operator Re in (3.2) involves a constant matrix of order 4x8. The

order of the boundary operator Re depends on two systems of integer weights,
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in this case the system t}■, j = 1, 2, ... , 8 , already attached to the dependent

variables, and a new system rh , h = 1, 2, 3, 4, of which rh pertains to the
hth condition in (3.2). In this paper we simply take rh = -\, h = 1,..., 4.
Let R'hji—) consist °f the terms in Rf,j(Q) which are precisely of the order

rn + tj. There is no difference between Rf¡j and R'h: in our problem.

At any point P on a regular portion of Y, let n denote the outer normal

at P, and 8 ¿ 0 any tangent to Y. Denote by t£(8) , h = 1,2,3,4,
the four roots in t with positive imaginary part of the characteristic equation
¿2?(Q + T«) = 0. The existence of these roots is assured by the Supplementary

Condition. Set

(3.5) M+(P,e,T) = Yl(z-r+h(P,e)).
h=\

In our case, ^(8 + t«) = 0 implies

((0, + XniY + (02 + TK2r + (03 + ™3)2)4 = 0,

or (t2+1)4 = 0,so M+(P, 8,t) = (t

adjoint to (/,';(8)),

i)4 . Let (LJk(&)) denote the matrix

(/¿/(e)) =

o
o
o
o
o

vz

-vy

—x

0
0
O
o

-vz

0
vx
-y

o
o
o
o

vy

-vx

0
—z

0
0
o
o
x

y
z

0

0
vz

-vy

-x

0
0
O
o

—vz

0
vx
-y

o
o
o
o

vy

-vx

O
—z

0
0
0
o

After tedious elementary operations, the adjoint matrix to (/¿7(8J) is seen to

be

(3.6)

(Ljk(S)) = v3(x2+y2+z2)3

0
0
0
0
0
z

-y

-vx

0
0
0
0

-z

0
x

-vy

0
0
0
0

y
-X

0
-vz

0
0
0
0

vx

vy

vz

0

0
z

-y

-vx

0
0
0
0

-z

0
x

-vy

0
0
0
0

y
-X

0
—vz

0
0
0
0

vx

vy

vz

0
0
0
0
0

The above-mentioned criterion for the boundary problem (3.1), (3.2) to be

coercive is that the following algebraic condition be satisfied.

Complementing Boundary Condition. For any P £ Y and any real, nonzero

vector 8 tangent to Y at P, regard M+(P, 8, t) and the elements of the

matrix

(3.7) Y R'hjip. e + xn)Vk(P, 8 + xn)

7=1
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as polynomials in the indeterminate r. The rows of the latter matrix are re-

quired to be linearly independent modulo M+(P, 8, t) , i.e.,

m

(3.8) YChR'hjLJk =°   (ModM+)
h=\

only if the constants Q are all zero.

Without loss of generality, let the tangent vector 0 = (0i, 92, 03) and the

normal vector n = («i, n2, n3) be unit vectors. In our case, N = 8. From

(3.2) and (3.6) we find that the matrix defined in (3.7) for our problem is

0 0 0 0       0       -m3     m2     vm{

„3,T2,n3 0 0 0 0      m3        0       -m,     vm2

K    +  ' 0 0 0 0     -m2     mx        0      um3    '
Ö3«2 - 02«3      O1/I3-Ö3/I1      Ö2«l — öi«2      VI 0 0 0 0

where
(m\ =0i +t«i,

m2 = 02 + T«2 ,

m3 - 03 + TM3.

Assume the condition (3.8) is fulfilled. In terms of the matrix entries, the

condition implies that there are constants D\, D2,... , D&. such that

C4v\x2 + 1)3(03«2 - 02«3) = DiM+(T) ,

C4v\x2 + l)3(0i«3 - Mi) = D2M+(x),

C4v\x2 + 1)3(02«, - 0,«2) = D3M+(x),

C4v4(x2 + 1)3t = D4M+(x),

v\x2 + l)3(C2m3 - C3m2) = D5M+(x),

i/3(t2 + l)3(C3w, - dm3) = D6M+(x),

v\x2 + l)3(C,m2 - C2mi) = DnM+(x),

v4(x2 + l)3(C,w, + C2m2 + C3m3) = DsM+(x).

The roots of the polynomial M+(x) have positive imaginary parts with multi-

plicity 4. On the left-hand sides we have the factor of positive imaginary parts

with multiplicity 3 only, hence Di, D2, ... , D% — 0, and C4 = 0. From the
last four equations above we have

(Ci, C2, C3)T x (mi, m2, m3)T = 0,

(C,,C2,C3)r-(w,,m2,m3)r = 0.

Since (mi, m2, m3)T ^ 0, we have Q = C2 = C3 = 0, and the Complement-

ing Boundary Condition is indeed satisfied.

By the work in [1], we can now state

Theorem 1. For / > 0 there is a constant C > 0 such that

(3.9) \\m\M < c(\\Lem\,+iiÄetaiz+i+ "£u°)-

It can be shown that the boundary value problem associated with (3.1), (3.2)

has a unique solution. Therefore, the term ||^||0 can be dropped from (3.9). If
the resulting inequality is applied with k = 0, we obtain the a priori inequality

(3.10) \\m\M<c(\\Lem\i+\\Rem\,+i)-
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The inequality (3.10) is crucial for our least squares error analysis. It is in-

teresting to note that (3.10) contains, in particular, the usual shift inequal-

ity for the system (1.1). Let [u,p] solve (1.1), and let to = curl«. Then

^ = \u, k = 0, to, p\ satisfies Le%_ = [/, 0, 0, 0]' and ReK = [Q, 0]'.
Hence (3.10) yields

(3.11) ||«H/+i + l|curlM||/+1 + ||p||/+1<C||i/:i|/.

Since div w = 0, (3.11) yields the usual a priori inequality,

iiKii/+2 + iiJpii/+i<cimi/,

for solutions of ( 1.1 ).

4. Error estimates

In this section we will discuss the numerical scheme defined by (2.11). Denote

the bilinear form

(4.1) a(U,V)= [ LU-LV + h-x [ RU-RV.
Ja Jr

Thus, (2.9) and (2.11) can be reformulated as follows: find U_£V (defined by
(2.6)) such that

(4.2) a(U, V) = [ (Ç\ ■ LV   for any V £ V,

and find Uh £ Vrh (defined by (2.7)), such that

(4.3) a(Uh ,Vh)=[ (Ç\ - LVh   for any Vh £ Vrh.

By inspection, a is symmetric and a(U_, U_) > 0. Furthermore, if a(U_, U_) =
0, from (3.10) we get U = 0.  Hence, the matrix associated with the linear

system (2.11) is positive definite.

Combining (4.2), (4.3), we have

(4.4) a(U - Uh , Vh) = 0   for any V_h £ Vrh.

To obtain an error estimate for our least squares method, we shall require an

"inverse assumption" on the subspace Vrh . Inverse assumptions are common

in least squares analyses; see, for example, [2, 7]. The property we need is the

existence of a constant C > 0 such that

(4.5) ||Ä£A||i/2,r < Ch-xl2\\RVh\\0J   for any Vh £ Vrh.

Our error estimate is contained in the following theorem.

Theorem 2. Suppose Vrh approximates optimally with respect to r and satisfies

(4.5). Let [u,p]' be the solution of (1.1). Let œ = curl«, U = [u, œ, p]',

and Uh £ Vrh be the solution of (2.1). Then

\\U-Vhh<Chr\\U\\r+x.

Proof. Using (3.10) with 1=1, (4.5), and (4.1), we have for any Vh £ Vrh

\\Vh\\2<C(\\LVh\\2 + \\RVh\\2/2tr)

<C(\\LVh\\2 + h~x\\RVh\\2s) = C-a(Vh,Vh).
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THE STOKES PROBLEM IN THREE DIMENSIONS 49

Applying this inequality to Uh - V_h £ Vrh and using (4.4), we get

\\Hh -í^lli < Ca(Uh -Vh,Uh - Vh)

= C(a(Uh - U, Uh - V_h) + a(U - Vh , Uh - Y_h))

= Ca(U - Vh , Uh - Vh) < C\\\U -V_h\\\- \\Uh - Vh\\i.

Hence, \\U_h -ZA||i < C\\U_- Vh\\i. Using the optimal approximation property

of K* , we choose Vh so that \\U -V% < C/zr||f7||r+i. Then \\Uh - V% <

Chr\\U\\r+i, and so

llíí-í£*lli<l|íí-ZAlli + l|í¿A-i:*lli<CAlt/||r+i,
which is the desired result.   D
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