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An Error Estimate Uniform in Time for
Spectral Galerkin Approximations for
the Equations for the Motion of

a Chemical Active Fluid

M.A. ROJAS-MEDAR and S.A LORCA

ABSTRACT. We study error estimates and their convergence rates for
a approximate solutions of spectral Galerkin type for the equations for the
motion of a viscous chemical active fluid in a bounded domain. We find error
estimates that are uniform in time and also optimal in the L%-norm and H!-
norm. New estimates in the H ~-norm are given.

1. INTRODUCTION

In this work we will study error estimates and their respective con-
vergence rates for approximate solutions of spectral Galerkin type for
the equations for the motion of a viscous chemical active fluid. These
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equations are considered in a bounded domain @ C R?, with bound-
ary I, in the time interval [0,+00). To describe them, let u(t,z) €
R3,6(t,x) € R, ¥(t,x) € R and p(t,z) € R denote respectively the un-
known velocity, temperature, the concentration of material in the liquid,
and the pressure at time ¢ € [0, %), at point z € . Then, the governing
equations at level of Oberbeck-Boussinesq approximation are

(2t uVu—-Aut Vp=j5+ 6+ Py, .

Y] ‘ 5 3

20 4 (4. V)8 - k;AG = f,

at g

. o ) i (1.1)
Lt (VY- kyAP = h,

\ div u=0
together with the following boundary and initial conditions

u=0, 6 =6, =1 on (0,+00)x T,
} ; ) . (1.2)
u(0,2) = up(z), 6(0,2) = bo(z), ¥(0,2) = 1/)(37) in

Here, j{t,z) € R3, g(t,x) € R3, f(t,x),h(t,x) € R are known
external sources; ¥ > 0 is the viscosity of fluid, k; and k; are the termal

and solute diffusity, respectively. &, and 1, are known functions; uo,éo
and g are given functions on the variable z € .

The expressions A,V and div denote the gradient, Laplacian and

divergence operators, respectively (we also denote % by u, or dsu);
3

the ith component of (u.V)u is given by [(u- V)ul; = > "ia_i;”i and
i=1

3 - -
(u-V)g=73 uj%forqﬁzﬂori,b.
. j=1 b}

For the derivation and physical discussion of equation (1.1) see, for
instance, Joseph [7].

We observe that this model of fluid includes as a particular case the
classical Navier-Stokes, which has been much studied (see, for instance,
the classical books by Ladyzhenkaya [9], Lions [10] and Temam [21]
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and the references there in). It also includes the classical Boussinesq’s
problem (or Bernard’s problem), (in the case when chemical reactions
are absent: 3 = 0) which has been investigated by several authors;
see for instance Hishida [6], Korenev [8], Morimoto [12], Shinbrot and
Kotorynski [20] and references therein.

Concerning system (1.1). Belov and Kapitanov [2} study the sta-
bility of the solutions of the system (1.1) with different boundary con-
ditions. They used linearization and fixed point arguments.

More interessed in techniques directly related with numerical appli-
cations, Rojas-Medar and Lorca [15], [17] established the local and global
existence of strong solutions of (1.1), (1.2) by the spectral Galerkin meth-
ods (see Rojas-Medar and Lorca [15]; [17]); [18] and also the next section
for the precise statements of the results). Here, the word spectral is
used in the sense that the eigenfunctions of the associated Stokes and
Laplacian operators are used as the approximation basis.

In this paper we are inleressed in establishing error estimate, uni-
form in time and the convergence rates of these spectral approximations
in several norms. But, before we describe our results, let us briefly
comment related results.

In [13], Rautmann gave a systematic development of error estimates
for the spectral Galerkin approximations to classical Navier-Stokes equa-
tions.

These error estimates are local in the sense that, they depend on
functions that grow exponentially with time, and, as observed by Hey-
wood [5], this is the best that can be expected without further assump-
tions on the stability of the solution being approximated. Working with
the classical Navier-Stokes equations and assuming the uniform in time
in the LZ-norm of the gradient of the velocity (which is usually obtained
in global existence theorem) and the exponential stability in the H'-
norm of the solution (which is natural), in the same paper (5], Heywood
was able to derive an optimal uniform in time error estimates for the ve-
locity in the H!-norm. Assuming exponential stability in the L*-norm,
Salvi in [19] proved an optimal uniform in time error estimate for the
velocity in the L2-norm also for the classical Navier-Stokes equations,

Also, without explicity assuming the L? (or H!) - exponential sta-
bility (this being in general difficult to verify), Rojas-Medar and Boldrini
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[14] proved an uniform in time optimal error estimates for the spectral
Galerkin approximations in the H! and L? norms, under requirement
that the external force field has a mild form of decay {(analogous require-
ments will be considered will be considered in this work).

Concerning system (1.1)-(1.2), in a previous work [16] the authors
obtained a local in time optimal L? and H! error estimates.

In this work, we will generalized the results of [14] to system (1.1)
- (1.2), and we obtain the optimal error estimates uniform in time,

The paper is organized as follows. In Section 2 we describe the
approximations, we state certain known results that will be used later
on in the paper, and we derive certain a priori estimates. In Section 3
we obtain our optimal L?-estimate; in Section 4 we derive our, optimal
Hl.estimate, and in Section 5 we present two new estimates in the H~1-
norm. We would like to say that this estimates are also true for the
Navier-Stokes equations. Consequently, this estimates complements the
results obtained earlier by Rautmann [13], Heywood [5], and Rojas-
Medar and Boldrini [14].

We observe that, as it is usual, we will denote by C' a generic positive
constant depending only on {2 and the data of the problem.

2. PRELIMINARIES AND A PRIORI ESTIMATES

We start by recalling certain definitions and facts that will be used
in the rest of the paper.

In wha.t follows we will assume  of class C1'l. We will consider
the usual Scobolev spaces

wm™4(D) = {f € LI(D); |10°fll+(p) < +o0,(la| £ m)},

m=0,1,2,...,1<g< 00, D=Ror (0,T)x2,0< T < +00, with the
usual norm. When ¢ = 2, we denote H™(D) = W™?(D) and H{* (D)=
closure of C§°(R2) in H™(D). If B is a Banach-space, we denote by
L9(0,T, B} the Banach space of the B-valued functions defined in the
interval [0,T) that are L%-integrable in the sense of Bochner. When
B = L?(Q), we will denote L?((0,T); LP(Q)) by L¥?{((0,T) x Q) for
1 € p,q £ +0o. Also, we denote by H~1(Q) the topological dual of
H3(S).
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To easy the notation, in the rest of this paper the functions which
are R or R® valued will not be notationally distinguished; the distinction
will be clear from the context.

Let C3%,(Q) = {v € C§°(); div v = 0in Q2}; V= closure of C§5, ()
in H§(Q), and H = closure of C§%,(R) in L*(R), V*= Topological dual
of V.

Let P be the orthogonal projection from L*(Q) onto H obtained
by the usual Helmholtz decomposition. Then the operator A: H — I
given by A = ~PA with domain D(4) = H*(Q) NV is called the
Stokes operator. It is well known that A is a positive definite self-adjoint
operator and is characterized by the relation

(Aw,v) = (Vw, V) for all w € D(A), ve€ V.

From now on, we denote the inner product in H (i.e., the LZ-inner
product) by (, ). The general LP-norm will denoted by || ||1»; to easy
the notation, in the case p = 2 we simply denote the L?-norm by || ||.

We observe that for the regularity properties of the Stokes operator,
it is usually assumed that Q is of class C?; this being in order to use
Cattabriga’s results [3]. We use instead the stronger results of Amrouche
and Girault [1] which implies, in particular, that when Az € (L*(Q))?
then 4 € H%(f) and ||u|| g2 and ||Au|| are equivalent when Q is of class
C11, This will be enough for all of the results in this paper.

The same remark is valid for the Laplacian operator B = —A :
L*(§)) — L*(Q) with the Dirichlet boundary conditions with domain
D(B) = HY{Q)n H}(Q).

We shall denote by w*(z) and A, the eigenfunctions and the eigen-
values of the Stokes operator. It is well known (see [4], [21]) that w*(z)
are orthogonal in the inner product (-,-),(Vu, Vv),(Au, Av) and com-
plete in the spaces H,V and H? NV, respectively.

For each £ € N, we denote by P, the orthogonal projection from
L¥*() onto Vi = spanfw?,...,w*].

The following results can be found in Rautmann’s paper [13].
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Lemma 2.1. If v €V, then holds
2 1 2
o= Peal? < 519l
: k+1

Also, if v € V 0 HY(Q), we have

1

2
'\k+1

llv = Pyo|)® < [l 40|,

1
IVe — VPl < 11"
k+1

Further informations on the Stokes operator and spaces of divergen-
ce-free functions can be found in Constantin and Foias [4] and Temam
[21].

Now, let us denote B = —A : L*(22) — L%*(f2) with the Dirichlet
boundary conditions with domain D(B) = H}(Q)NH?(Q) and ¢*(x), 7x
be the eigenfunctions and eigenvalues of B, respectively. As it is well
known, all the above porperties have a corresponding one for B.

We will denote Ry, k € N, the orthogonal projection of L?(Q) onto
Hy = spanfy¢!,---, ¢%].

Before we give the definition of strong solution, we transform prob-
lem (1.1)-(1.2) into another problem with homogeneous boundary value.
In order to do it, we consider extenstons 6, and ¥, of the functions &,
and 1, respectively, such that

B0 — A8y =0 ; Byypr — Aypy = 01in (0,00) x £,
0 =6, 7 ¥y =1 on (0, OO) X F, (2.1)
6:(0) € HX(Q) ; 2(0) € H*(Q),

where #3(0) = 6,(0) on T and #3(0) = ¢4(0) on I'. We known that
problems (2.1) are uniquely solvable for suitable conditions for 8, and



An Error Estimate Uniform in Time for... 437
¥y (see Lions-Magenes [11] and references there in) with continuous
dependence on the initial datas.

Now, we can transform the equations (1.1)-(1.2) by introducing the

new variables # = § — 8; and ¥ = ¥ — 15, obtaining

( Ot (uV)u—Au+Vp=(8+¥)g+n

Btﬂ + (HV)G - AB = f — (uV)82
4 (2.2)
Bp+ (w.VY — A = h — (u. V)

. divu=0 in(0,T)xQ

vu=0;86=0; ¥v=00n(0,T)xT (2.3)
u(0) = ug ; 6(0) = 8y = 8y — 82(0) ; ¥(0) = Yo = 9o — ¥2(0) (2.4)

where g1 = (0, + 2)g + j. Here, without loosing generality for our
purposes, we have put the viscosity and coeflicients of diffusity to be
one,

We observe that the problem (1.1)-(1.2) is equivalent to the problem
(2.2)-(2.4); with this is mind, it is enough to study the problem (2.2)-
(2.4).

With the above notation, we write problem (2.2)-(2.4) as follows:
find (u,8,%) € C([0,T}; V x (Hy(R)%) N L*(0,T; D(A) x (D(B))?),
(Opu, 8:9) € L0, T; H x (L*(2))*)(0 < T € +o0) such that

ug + P(u.Vu) + Au = P((0 + ¥)g + g1),
8 +u.V0+ BO = f — u.V,
P+ u.Vy+ By = h —u. Vi,

u(0) = uo, 8(0) = 6o, ¥(0) = %o,
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which is equivalent to the weak form

%(u, W)+ (w.Vu,0) + (Vu, Vo) = (8 + $)g + g1,0), Yo € V
SO.6)+ (wV0,6)+ (V8,V6) = (f - u.V8,6), VE € H}

Z(0,8)+ (w9, 6)+ (Vi,V9) = (h - w.4), ¥ € H}

’U.(O) = to, 8(0) = 901 Tﬁ(U) = ¢0'

The above functions (u,#, ) are called strong solutions for the system
(2.2)-(2.4).

Concerning the existence of solutions for the above equations, one
way to proceed is to use the Galerkin method. That is, we consider the

k ,
Galerkin approximations: u*(z,t) = ¥ au(t)w'(z), 8%(z,t) =
=i
k & ,
3 bie(t)p*(2), vF(z,t) = T ei(t)p'(z), satisfying the following equa-
i=1 i=

tions

uf + Pe(uf . Vuk) + Au* = P((8F + ¥*)g + 01), (2.5)
0F + R (uk.VO*) + BO* = R, (f — v*.V4,), (2.6)
VE + Ri(uF . VyF) + ByF = Ry(h — u* Vi), (2.7)

u*(0) = Peug, 8(0) = Rifo, ¥*(0) = Rubo,

which is equivalent to the weak form

(uf, ) + (u* .V, v) + (VuF, Vo) = ((6* + )9 + g1,0), Vv eVi



An Error Estimate Uniform in Time for... 439

(6°,6) + (v*. V8, 6) + (V8*,VE) = (f ~ v*.V8,,6), VE€ Hy

(VF, 0) + (u*. V95, 8) + (VY*,Ve) = (h — . Vin,¢), Vo€ Hy
uk(O) - Pkuo, 9"(0) = RkG{), ’!l)k(O) = R;ﬂbo.

Then, it can be proved that (u*, 8%, ¢*) converges is an appropriate
sente to a solution (u,#,) of (2.2)-(2.4) as ¥ — oo. These conditions
are given in the following Theorem, proved by Rojas-Medar and Lorca
(17, Theorem 3.1 and Corollary 3.2] on the existence and uniqueness of
global strong solutions for problem (2.2),(2.4).

Theorem 2.2. Let ug € V, 6o, v € H3 (), 62,42 € L=(0, 00;
HYQ)NL2(0,T; HY(Q)), g € L=3((0,00) X Q). 4, f, h € L=2((0, 00) X
Q) 0 L*2((0,00) x @) If ||uo|l1, |80l }1 |1%0ll1, 1182]] L. (0,00: 2 (02))
2l Lo (0,00:2¢00))5 [1fl o2 ((0,00) x02))> [|B)l£02((0,00) %2}

[17]] Lo=12(0,00)x) 1A ||g]|L=.3((0,00)xq2) Gre sufficiently small, then the
unique solution of (2.2)-(2.4) exists for all t > 0 and satisfies

jgg{IIVu(t)ll, IV, || V() } < +o0;
sup [ (AU +11B()IP + 1 B(s))ds < +oo;
t>0 Jo '

t
sup [ (Ul + B + 14)iI)ds < +o
t>0 Jo

the same estimates hold the Galerkin approzimations u*,0* and¢*. =

Corollary 2.3. Under the hypothesis of Theorem 2.2, there exists
a positive constant C such that for each k € N and t > 0, we have
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c
lu(t) - Pru)|l* < ==,
’ kT

t C
/ llu(s) — Piu(s)|[ds < ~=—.
o Akl

Proof. It immediately follows from Lemma 2.1, and the estimates
of the Theorem 2.2. ®

Remark. The above Corollary, also, is valid for @ and ¢, instead
of u.

We will need, to obtain optimal rate of convergence, the following
stronger Theorem, also proved in [17] (Theorem 3.3, p.13 and Corollary
3.4, p.16). :

Theorem 2.4. The assumptions are those of Theorem 2.2 and
we assume, moreover that 8,0,, 8,9, € L*?*((0,00) X ), 8¢5, d:f,0:h €
L2((0,00) x Q) N L22((0,00) x 2)); 0ig € L((0,00) X ) and the

initial data ug € VOHYQ), 8, 10 € HF(Q)NH*(Q). Then, the solution
obtained in Theorem 2.2 satisfies

sup{{luc(I 8L, eI} < +o0;

sup{[|Au(O)I], [|BO@I], | B(s)ll} < +oo;

sup [ (IValoI + V8 + [V ))ds < +oo.

The same estimates hold for the Galerkin approximations u*,8* and ¥*.
|

Corollary 2.5. Under the hypothesis of Theorem 2.4, there ezists
a positive constant C such that for each k € N and t > 0 we have
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C
lu(®) = Pa)lf < o
k+1
IVu(t) - VPP < ——;
Akt1

and,

/ llu(s) — Peu(s)|l*ds < 5

k+1

/ [|Vu(s) — V Pru(s)]|*ds < —C— [
0 Akt1

Remark. Similar estimates are valid for # and .

3. OPTIMAL L[> ERROR ESTIMATES

In this section an uniform in time optimal L%-error estimates will
be derived The a.nalysis will be done by using the following facts. Let

®= E A;(Dw'(z), 0 = E B;(t)p'(z)and ¢ = E Ci(t)¢'(z) the eigen-

functlons expansion of u 0 and 1, respectively.
. k .
Let v* = Pou = E Ai(Dw'(z), pF = R0 = E Bi(H)¢'(x) and

p* = Ry = Z Ci(t)p(z) are the k** partical sums of the series for
u, 4 and ¥, respectwely, and let
Ekzuk—vk, Ek=0—pk, (5k=1l)—ﬁk
k

n* = ok —uk, oK = pk_ gk oF = gk _ gk

where u*, 8% and %* are the k" Galerkin approximations of u,# and %,
respectively. Then

v—uf=EF4pf, 0-0 =" +0h, p—9F=6"+a"
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With these notations, we state.

Lemma 3.1. There ezist a positive constant C, independent of
k ¢ N, such that

I I + 151 + Nl (11 +/0 (VR &I + 195 ()P +

+||Va"‘(s)||2)ds§C( L +—1—).
Ak+1l Ykl

Proof. We observe that v*, p¥ and 3* satisfies

ok 4 Av* + Py(w.Vu) = Po((8+ $)g+ 1) (3.1)
p¥ + Bp* + Ry(u.V8) = Ry(f — u.V8;) (3.2)
Bf + BB* + Ri(u.Vp) = Re(h ~ u.Vihy) (3.3)

v¥(0) = Pyuo, p"(0) = Ribo, B%(0) = Ritho.

Substracting (2.5) from (3.1), (2.6) from (3.2) and (2.7) from (3.3),
respectively, we obtain

7+ An* = Pi(e* + 7%)g + Pe(6* + o*)g
— P(E*.Vuk) — Pu(n*.Vub) (3.4)
— P (uw.VE*) — (P(uVn*),
rf + Br¥ = —RL(E*.V8,) — Ri(n*.V8;) — R (E*.V8)

(3.5)
— Ri(7".V8) — Ry(u* . Ve¥) — Ry(uh.Vr*),
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af + Ba* = —Ry(E* . V2) — Ri(n*. Vi) — Ri(E*. V)
(3.6)
- Ri(n*.V¥) — Ri(uF.V6F) — R (uk.Vat),
n*(0) = 0, 7*(0) = 0, a*(0) = 0.

By taking the inner product in (L%(2))™ of identity (3.4) with n*
and also the inner product in L%(Q) of (3.5), (3.6) with r* and o*,

respectively, we get.

L) aH P + IVHE = (6 + )0, 7% + (8 + a¥)g, %)

2 dt
— (EX.Vuk, n%) — (n* . Vu*, ) (3.7
— (u.VE*, 7%) — (1.V7%,9%),
1d, k0o k(|2 k k k k
L 4 [V = —(B* 98y, r4) — (198, %)
— (E*.V8,r%) = (4*.V0, r¥) (3.8)
— (u*.Vek, %) — (k. Vb, rF),
L4 o) + 1904 = ~(B*.T9s, %) — (. Vi, o)
(3.9)

- (Ek.V1,b,ak) - (nk.V@b, a")
— (uF.VE*, o*) - (uF.VaF, k).
We observe that

(u.Vn*,n*) = (uF. V¥, %) = (u*.Vak, o) = 0.
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Also, by the Hélder and Young’s inequalities we have

1
(" +5)g, m™) < CUIPIE + Nl PlalZs + 1511911,

1
(8 + &*)g, ") < CUISI® + i IP)glIZs + 7511Vt

The Holder’s and Young’s inequalities together with the Sobolev
embedding H! « L& H! « L3 imply

1
|(E*.Vu*, n%) < Cl|Au®| 2| EX|)® + Ellvﬂkllzs
1
|(n*.Vuk, n%)| < CllAu¥|P[In*I1* + EIIVW*IF

1
(. VES, 7*)| = |(w. V0", E5)| < CllAulPIEHI* + 5 11Va"II*.

Analogously, we can prove that

1
(E* Vo, )| < CIIEXP(IVelILs + 751V I1%,
1
(n*.905,74)] < Clln PV + 19411,
I(E*.V6,%)] < CIIEHPILBOI + SV T,

1
(7" V0, 7)< ClIn*(*11BOII* + 51V eI,
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1
(u*.Vek, 78)| = [(u*, V¥, e5)| < ClleX| 1P| Auk|® + ﬁllV’rkllz-
Analogous estimates are satisfied by a*.

Bearing in mind the above estimates and the differential equalities
(3.7)-(3.9), we obtain the integral inequality

@I + N I + lle* (@) +/0 VA I + [IVrH(s)l1*+
IVa*(s)|1*)ds S/o XUl )P + eI + e ()I*)ds+

/0 X(8)IE*()I1* + lle*(s)I1* + (165()l*)ds,

where x(s) = ¢(llg(s)[1Zs + [[VO2(s)lIZs + [IV2(s)lILs + | Au(s)l|?+

1BO()I? + HBw(s)II* + || Au*(s)]|?).
Now, by applying Gronwall’s inequality, we obtain

@112 + (5@ + Nl @I + /o (v ()P + 1Vr5(s)l*+
||V (s)]]*)ds S/O X()IE* I + Nl (o)1 +

+ 116%(s)[|ds exp / x(s)ds.
0
(3.10)
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By using the estimates given in the Lemma 2.1,we have

]0x(é‘)(lIE'°(-‘3)I|2+l|'€"(8)ll+II*5"(-‘-*)||2)dsexp‘/‘0 x(s)ds

1 2 t t
5( + _) / x(s)ds exp/ x{s)ds.
Akt Y1/ Jo 0

Now, by the estimates given in the Theorem 2.2, we have

(3.11)

t
f x(s)ds £ C, forall t > 0.
0

This, together with (3.10) and (3.11), implies the result. ™

Now, we are ready to prove the following

Theorem 3.2. Suppose the assumptions of the Theorem 2.2 hold.
Then, the approzimations u*,8% and ¥* satisfy

()= I +[00) - DI +11v) - O < € (7= + 1)

)\k+1 Th+1
foralit > 0.
Proof. We have

lu(z) = w* @)1 < lu(t) — v* @I + v¥(2) — w*(1)]]?
< E*@)I1? + k)l

)‘k+1 Y+l

thanks to the Lemma 3.1 and Corollary 2.3 Similar results can be proved
for 6 and v*. m
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By using the Theorem 2.4 and Corollary 2.5, we prove the following
stronger result, '

Theorem 3.3. Suppose the assumption of the Theorem 2.4 hold.
Then, the approzimations u*, 8% and ¢*, satisfies

Hu(e) — w7 + 118(2) ~ 6°OI + ll9(e) — v*(O)I?

+ /0 (I1Vu(s) = T ()] + [V6(s) — VE*(s)|[+

+ ||V(s) — Vipk(s)||2)ds < C(_l- N L)

2 2
Akt Yi+1

for allt > 0.

Analogously as in the proof of the Theorem 3.2, and with the same
notation, we only have to proof the following.

Lemma 3.4. There ezist a positive constante C, such that

IO + 1= @I + [le* (@) +[) (V7 I +[1Vr*(s)IP+

1 1
+{|Vek(s)I12)ds < c(A—2~ + ——)
k+1 Teq

for allt > 0.

Proof. By using the Lemma 3.1, and the estimates given is the
Theorem 2.2 and the inequality (3.11), we have the required result. B

4. OPTIMAL H»-ERROR ESTIMATES UNIFORM IN TIME

In this section an uniform in time optimal H?! error estimate will
be derived.
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- Theorem 4.1. Under the hypothesis of the Theorem 2.4, we have
that there ezists a constante C > 0

IVu(t) = Tu*()I1* + |[VO(t) - VE*O)II” + [IV9(t) - Vo)l
t
+/0 (Nlels) — ui (I + [18e(s} = BE(? + pels) = 9 (s)II*)ds

1
50( - )
Akl Tkl

for allit > 0.

Analogously as in the section 3, and with the same notation, we
only have to prove the following

Lemma 4.2.

V7N + TP + 9@ + [ Umb(IP + lirk(s)1 P+

1 1Yy
+ {let(s)lI*ds < C( o+ —)
k1 Ykt

for allt > 0.
Proof By taking the inner product in (L%())® of ldentlty (3. 4)

with n¥ and the inner product in L2(Q) of (3.5), (3.6) with rf and af,
repectively, we obtain

S NI+ 1n1” = (& + g, ) + (6% + a)g, )

- (Ek.Vuk, 77:;) - (nk.Vu ant) (41)

- (U-VEk,Ut) - (u V'? )y Mt )1
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1d
5 S IVPHI 4 [P = ~(BX.98,78) — (198, 78)
~ (E*.V,7%) = (4*.V8, 75 (4.2)

— (uk.Vek, r‘f) — (uk.V'rk,rf),

1d

> NIVt 4o} = (B Vi, af) - (1.9, a)

- (B-.V4,0f) - (1.9, 1) (43)
— (u*.Vé*, af) - (uF, Va*, af).

We estimate the right-hand side of (4.1), (4.2) and (4.3) of the
following manner. From the Holder and Young inequalities, and by
using the Sobolev embedding H! — L%, H? — L°°, we have

1
(% +r5)g,me)l < CUVEN + 11V rHIP)lgllzs + S Imells
1
(&* + &*)g, a)l < CAUVEI + [V IIgllLs + il
1
(B Vu*, )| < CIIVEH || 4w + S lInell?,

1
|(n* Vb, n6)) < ClIVR* I At + Sl
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(.Y E¥, 98)] < CIlAUPIVEH? + ]Il
(w975, 7 < VAPl AuP + lIH,
(B%.985, )| < CIIVEHPIIVaIIEs + S IrHI,
((7.983, )| < CIVAHIPIIVEIIs + IrHP,
((EX.V8,78)] < CIVERIIBOI + eI,
(798, 7)] < CITAIPIIBOI + 5 lirHI,
(k. ek, P < ClAPITHI? + AP,
(@h 9k, TR < CllAH IV + I

The estimates for the terms that involve a* are quite similar.

The above estimates, together with (4.1)-(4.3), imply

d
VAP VPP + 1V I2) + gl + 111 + o)

< x@OUIVAHIP + VAR + 1 Va®(1®)+

+ X IVEH® +[|VeX||? + 1 v8¥|1?)

where x(t) = C(|lg()|lZs + 11V823s + V(D75 + [JAu(@)I]?
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HIBOOII + || B(t)|? + 1| Au*(2)I7).

Now, by the estimates given in the Theorem 2.4 we get

¢
/ x(s)ds < C, Vt20,
0
and consequently, by using the Gronwall’s Lemma,

V25O + Ve @IF + [Vl

+ [ A+ rE P + (s} P)ds
0

< [ XUTEHG)IE + V@I + [IVE(s)I)ds exp €

gé’( ! +L),
Aktl  Vht1

thanks to the estimates given in the Lemma 2.1. This completes the
proof. ®H

Also, we can easily obtain

Proposition 4.3. Under the hypothesis of the Theorem 2.4, we
have that there exists a positive constant C, such that

/0 (lAu(s) = Auk(S)|I® + ||BO(s) — BE*(s)|?

+||B¢(s)—w(s)n?)dssc( 1,1 )

AR+l Tkl

forallt>0. B
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5. FURTHER HIGHER ORDER ESTIMATES

In this section an uniform in time optimal V* error estimate (resp.
H™') will be derived for u; (resp. #; and ;) and Au (resp. Bf and

B).

Theorem 5.1. Under the hypothesis of the Theorem 2.4, we have

that there ezists a positive constant C, such that

i) = @)1 < (5= + = );

k+1 Te+1

1 1
0,(t) — 8% (2 2_<C(““—+ );‘
[18:(2) — 65 (2}l | -2 < Xet1 | Vet

||¢:(t)—¢f(t)nif_lsc( 1 .1 )

Abtl ki1
forallt > 0.

Proof. We observe that u — u* satisfies

ue = uf + A(u = u¥) = Pu(6 - 05)g + Po(v ~ ¥*)g
+(P =P8+ 9¥)g+ (P - Py
= F*.

Consequently,

llue = ufllve = sup |(F*,0) + (A(x* — ), v)|
olly <1

< sup |[(FX,v)l+ sup |(V(u-— u¥),Vv).

Hellv <a Jlellv €1

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)



An Error Estimate Uniform in Time for... 453

On the other hand, we have

[(V(u — 6*), Vo)l < [|V(x - «*)I] ||V}

. L\ (5.6)
S C — + _—) v )
('\HI Th+1 ” “V
thanks to the Theorem 4,1.
Also,
I(F*,0) < (8 - 8%)g, Peo)| + |((% — ¥*)g, Piv)]
(5.7)

+1((8 + ¥)g, (P — Pe)v)| + {91, (P — Pi)o)l.

Since v € V, Lemma 2.1 and Theorem 2.4, imply

@+ $)9,(P~ B)ol < llp + llzellallco L]
Akl
< CIVol+ 1V gl lLY;;“
k+1
< Cllvlly
k+1

Analogously,

C
(g1, (P — Pi)v| < “7/7“”“\/-
A1
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The other terms in the inequality (5.7) are estimated as follows

[((8 — 6%)g, Pv)| < 110 — 6%||eligl|L2]| Pev]]

< C|IVe - VE¥|| ligllza|lll

1 1 1/2
<oy ) v,
()ik+1 Tr+1 Ilellv

where we have use the estimates given in the Theorem 4.1, and the
Sobolev embedding H! — L% and V — L%, and ||| = 1.

Similarly, we obtain

'“‘”“””9”’*”)'50(7::“‘ 1) lfolly.

Te+1
The above inequalities together with {5.6) imply (5.1).
Now, we prove (5.2); The equalities for # and 8% imply

6, — 8 + B(6 — 6%) = (I — R)(f —u.V8,)
+ Ri(u - u*).VE?
= G*.
Consequently,

lI6: = O ll-2 = sup [(G*, )+ (B(8 - 6*),9)|

<1
Ilwilgg_

(5.8)
< sup [(GH,@)+ sup  [(V(8-6F), V).

<1 <1
Hvllgs_ ellmy <
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On the other hand, we have

[(V(6* - 6), V)l < 1IV(6* - 8)|| |Vl

1 e (5.9)
<C
<c(5+2=) lvlln
by Theorem 4.1. Also,
(RBx(u ~ u"). 902, 0)] < [((u - v*). V62, Rip)|
< N = u¥]| 2] V01| 1| Ricpl}
(5.10)

< ClIVu = Vo] ||Bo:| |}l

1 1 1/2
<o+ 25) Vel
<ot =) liellm

The other term in (5.8) is estimated as follows

(= Ri)(f = w.V8:), )| = |(f — w.V6y, (I - Ri)p)|

\Y

1/2
'M.-il

STI—TVH;

< ._S_z(”f“-[- (1Aull 11V8AN el a2,
Yi+1
(5.11)
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where we have used the estimates given in theorem 2.4 and Lemma 2.1.
This and inequalities (5.10)-(5.11) imply

. | 1 \1?
64 < ¢ (5= + — ) iy
k+1  Tk+1
This estimate, together with (5.9), implies (5.2).
Finally, (5.3) is proved exactly as the above estimate. B

Also, we have

Theorem 5.2. Under the hypothesis of the Theorem 2.4, we have
that there ezists a positive constant C, such that

lu(e) - AR < 05—+ =) (5.12)
(1 BO(t) — BO ()]s < C(ﬁl + 7;1); (5.13)
1890 - B0l < (x4 —=) (619

Jorallt > 0.

Proof. We will pr(.)vé' (5.12). The other estimates are analogously
proved.

Inequality (5.4) implies

AGw — w)lve < llwe = uillve + || F¥[lv-.
By using the above theorem, we have the desired result. B
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