
Modern Stochastics: Theory and Applications 3 (2016) 315–323
DOI: 10.15559/16-VMSTA68

An estimate for an expectation of the simultaneous
renewal for time-inhomogeneous Markov chains

Vitaliy Golomoziy

Taras Shevchenko National University of Kyiv,
Faculty of Mechanics and Mathematics,

Department of Probability Theory, Statistics and Actuarial Mathematics,
60 Volodymyrska Street, City of Kyiv, 01033, Ukraine

vitaliy.golomoziy@gmail.com (V. Golomoziy)

Received: 28 November 2016, Revised: 6 December 2016, Accepted: 7 December 2016,
Published online: 23 December 2016

Abstract In this paper, we consider two time-inhomogeneous Markov chains X
(l)
t , l ∈ {1, 2},

with discrete time on a general state space. We assume the existence of some renewal set C

and investigate the time of simultaneous renewal, that is, the first positive time when the chains
hit the set C simultaneously. The initial distributions for both chains may be arbitrary. Under
the condition of stochastic domination and nonlattice condition for both renewal processes, we
derive an upper bound for the expectation of the simultaneous renewal time. Such a bound was
calculated for two time-inhomogeneous birth–death Markov chains.
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1 Introduction

1.1 Overview

Simultaneous renewal is an important topic for a practical application of Markov
chains. Although it has its own value, for example, in queuing theory, we are inter-
ested in its investigation because it plays an essential role in coupling construction,
which can be used to derive stability estimates of the n-step transition probabilities
and other results like the law of large numbers and limit theorems.
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For example, in [5, 6], we can find how a stability estimate can be calculated using
the coupling method for two time-inhomogeneous Markov chains with discrete time
on the general state space. Good examples of applications of the coupling method
(for both homogeneous and inhomogeneous Markov chains) are given in [2, 3].

It worth mentioning that the coupling construction for time-inhomogeneous
chains is slightly different from its classical setup (see, e.g., [16, 17]). Such a time-
inhomogeneous coupling for general state space can be found in [5]. Its modification,
called the maximal coupling, can be used for a discrete space. More information about
maximal coupling and its application to stability in the time-homogeneous case can
be found in [14, 15].

For maximal coupling and its application to stability in the time-inhomogeneous
case, see [10–12].

The crucial problem in the application of the results in the listed papers was cal-
culation of the expectation for the coupling moment deriving from the simultaneous
renewal. But there were no good estimates for the expectation of a simultaneous re-
newal for the time-inhomogeneous case.

For the time-homogeneous case, the paper [13] proposes such an estimate based
on the Daley inequality (see [1]).

In [9], we derived conditions (see Thm. 3.1) that guarantee that the expectation
for the simultaneous renewal time is finite. But there were no practical estimates for
the expectation.

In [8], we derived an analogue of the Daley inequality that is used in this paper.
The key condition for this inequality is a finiteness of the second moment for the
stochastic dominant of the original renewal process. Thats why it is a crucial condition
for the estimate construction.

1.2 Definitions and notation

We consider two independent time-inhomogeneous Markov chains with discrete time
and general state space (E,E). We assume that both chains are defined on the same
probability space (Ω,F,P). Denote these chains as (X

(1)
n ), (X

(2)
n ), n ≥ 0. We use the

following notation for the one-step transition probabilities:

Plt (x,A) = P
{
X

(l)
t+1 ∈ A

∣∣X(l)
t = x

}
, (1)

where x ∈ E is an arbitrary element, l ∈ {1, 2}, and A ∈ E is an arbitrary set.
We continue to use the definitions and notation from [9]. We consider some set

C ∈ E, and our goal is to find an upper bound for the expectation of the first time of
visiting the set C by both chains.

Define the renewal intervals

θ
(l)
0 = inf

{
t ≥ 0, X

(l)
t ∈ C

}
,

θ
(l)
n = inf

{
t ≥ θ

(l)
n−1, X

(l)
t ∈ C

}
,

(2)

where l ∈ {1, 2}, n ≥ 1, and renewal times

τ (l)
n =

n∑
k=0

θ
(l)
k , l ∈ {1, 2}, n ≥ 1. (3)
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Then we can define the renewal probabilities

g(t,l)
n = P

{
θ

(l)
k = n

∣∣τ (l)
k−1 = t

}
, l ∈ {1, 2}, n ≥ 1. (4)

It is worth mentioning that, in general, g(t,l)
n also depends on the value x of X

(l)
t which

can hit different states inside C. However, we will omit x for simplicity. We refer the
reader to [9] for more details about definition (4).

Let us define the renewal sequence recursively:

u
(t,l)
0 = 1,

u(t,l)
n =

n−1∑
k=0

u
(t,l)
k g

(t+k,l)
n−k .

(5)

The time of simultaneous hitting the set C is defined as

T = inf
{
t > 0 : ∃m, n, t = τ (1)

m = τ (2)
n

}
. (6)

The notion of the overshoot or excess is defined as follows:

R(l)
n = inf

{
t > n : X

(l)
t ∈ C

}
, l ∈ {1, 2}. (7)

It is, in fact, the next time after n when the chain X(l) hits the set C.

2 Estimate for the expectation of the simultaneous hitting time

First, we need put the condition on u
(t,l)
n that guarantees its separation from 0. In

the time-homogeneous case, this follows from the renewal theorem, but for the time-
inhomogeneous case, there is no such theorem. Therefore, we need the following
condition.

Condition A. There are a constant γ > 0 and a number n0 ≥ 0 such that, for all
t, l and n ≥ n0,

u(t,l)
n ≥ γ. (8)

It is important that this condition also guarantees certain “regularity” of a chain in
terms of periodicity. The periodic chains obviously do not satisfy it.

There are various theorems that allow us to check Condition A in practice. See,
for example, [7], Theorems 4.1, 4.2, 4.3. We will later use some of them.

We need a condition of the stochastic domination in order to apply Theorem 3.1
from [8].

Condition B. Distributions (g
(t,l)
n ) are stochastically dominated by some sequence

(ĝn), ĝn ≥ 0, which means that

G(t,l)
n =

∑
k>n

g
(t,l)
k ≤ Ĝn =

∑
k>n

ĝk (9)

and that the stochastic dominant (ĝn) has finite first and second moments

μ̂1 =
∑
k≥1

kĝk =
∑
k≥0

Ĝk < ∞,

μ̂2 =
∑
k≥1

k2ĝk < ∞.
(10)
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The sequence Ĝn is nonincreasing because ĝn ≥ 0.
It is worth mentioning that we do not require (ĝn) to be a probability distribution,

that is, the total mass
∑

k≥1 ĝk not necessarily equals 1.

Theorem 1. Assume that conditions (A) and (B) hold for the chains (X
(l)
n ), l ∈ {1, 2},

defined before and that the renewal sequences are generated by them. Then the ex-
pectation of the simultaneous hitting time for the set C satisfies the inequality

E[T ] ≤ E
[
θ

(1)
0

] + E
[
θ

(2)
0

] + M

γ
, (11)

where
M = μ̂2 + μ̂1

(
γ −1 + n0

)
. (12)

Proof. Let us recall the notation from [9]:

ν0 := min
{
j ≥ 1 : τ 1

j > n0
}
,

B0 := τ 1
ν0

,

ν1 := min
{
j ≥ ν0 : τ 2

j − τ 1
ν0

> n0, or τ 2
j − τ 1

ν0
= 0

}
,

B1 := τ 2
ν1

− τ 1
ν0

,

and further on

ν2m := min
{
j ≥ ν2m−1 : τ 1

j − τ 2
ν2m−1

> n0 , or τ 1
j − τ 2

ν2m−1
= 0

}
,

B2m := τ 1
ν2m

− τ 2
ν2m−1

,

ν2m+1 := min
{
j ≥ ν2m : τ 2

j − τ 1
ν2m

> n0 , or τ 2
j − τ 1

ν2m
= 0

}
,

B2m+1 := τ 2
ν2m+1

− τ 1
ν2m

.

The moments νk are called coupling trials. Let us define τ = min{n ≥ 1 : Bn =
0} and the sequence of sigma-fields Bn, n ≥ 0, by

Bn = σ
[
Bk, νk, τ

l
j , k ≤ n, j ≤ νn

]
.

We will use the same idea as in the Theorem 5.1 from [9].
First, we assume that θ

(2)
0 = 0, which means that the second chain starts from the

set C.
The next representation of time T is following directly from the definitions:

T ≤ θ
(1)
0 +

τ∑
n=0

Bn = θ
(1)
0 +

∑
n≥0

Bn1τ>n. (13)

Using Lemma 1 and the fact that {τ > n−1} ∈ Bn−1, we can derive the following
inequality:

E[Bn1τ>n|Bn−1] = E[Bn1τ≥n|Bn−1] + E[01τ=n|Bn−1]
= 1τ≥nE[Bn|Bn−1] ≤ 1τ≥nM. (14)



Simultaneous renewal of time-inhomogeneous Markov chains 319

Lemma 8.5 from [9] implies

P{τ > n} ≤ (1 − γ )n. (15)

Taking the unconditional expectation of the both parts in (14) gives us

E[Bn1τ>n] ≤ MP{τ > n} ≤ M(1 − γ )n. (16)

Applying this inequality to (13), we have

E[T ] ≤ E[θ0] + E

[ τ∑
n=0

Bn

]
= E[θ0] +

∑
n≥0

E[Bn1τ>n]

≤ E[θ0] +
∑
n≥0

M(1 − γ )n = E[θ0] + M

γ
. (17)

Now, we have to get rid of the assumption θ
(2)
0 = 0. The same calculations as in

[9] after formula (20) give us

E[T ] ≤ E
[
max

(
θ

(1)
0 , θ

(2)
0

)] + M

γ
≤ E

[
θ

(1)
0

] + E
[
θ

(2)
0 )

] + M

γ
.

3 Application to the birth–death processes

Consider two time-inhomogeneous processes X(1) and X(2) with the following tran-
sition probabilities on the t th step:

Pt =

⎛
⎜⎜⎝

αt0 1 − αt0 0 0 0 . . .

0 αt1 0 1 − αt1 0 . . .

0 0 αt2 0 1 − αt2 . . .

. . .

⎞
⎟⎟⎠ (18)

and

Qt =

⎛
⎜⎜⎝

βt0 1 − βt0 0 0 0 . . .

0 βt1 0 1 − βt1 0 . . .

0 0 βt2 0 1 − βt2 . . .

. . .

⎞
⎟⎟⎠ . (19)

We would like to estimate the expectation applying Theorem 1. So we have to
check the regularity condition A and the domination condition B.

We will need the second moment of the dominating distribution, which is difficult
to derive for chains X(1) and X(2). So the idea is to construct a domination sequence
based on some simple homogeneous Markov chain whose renewal sequence is well
studied and whose second moment can be calculated easily. The closest chain similar
to the birth–death chains we consider here is a random walk on the half-line.

The domination sequence based on such a random walk is constructed in Lem-
ma 2, and Lemma 3 gives its first and second moments that we need for Theorem 1.
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Next, we will check regularity condition A. First, we assume that, for every t > 0,
g

(l)
1 = αt0 > 0, and

γ0 = inf
t

{αt0, βt0} > 0. (20)

We will use Corollary to Theorem 4.2 from [7] in order to check Condition A.
It says that if g

(t)
1 > 0 and a domination sequence exists, then Condition A holds.

Moreover, its proof (see [7, p. 12], inequality for F(G)) contains an estimate for γ :

γ = exp
(
μ̂ ln(γ0)/γ0

)
. (21)

Finally, we can state the following result.

Theorem 2. Assume that for chains with transition probabilities Pt , Qt defined be-
fore, condition (20) holds and that there exists p that satisfies condition (28) for both
chains X(1) and X(2). If both chains start from the zero state, then the expectation of
their simultaneous renewal satisfies the inequality

E[T ] ≤ μ̂2/γ + μ̂1/γ
2, (22)

where μ̂1, μ̂2 are defined in Lemma 3, and γ is defined in (21).

Proof. The statement of the theorem follows from Theorem 1, applied to chains X(1)

and X(2) with domination sequence constructed in Lemma 2, the constant γ defined
before, and the variables μ̂1 and μ̂2 calculated in Lemma 3.

4 Auxiliary results

Lemma 1. We have the inequality

E[Bn|Bn−1] ≤ M, (23)

for n ≥ 1, where M is defined in (12).

Proof. From Lemma 8.3 of [9] we can derive:

E[B2n+1|B2n] =
∑

t

E
[
R

(2)
t+n0

]
1

τ
(1)
ν2n

=t
,

E[B2n|B2n−1] =
∑

t

E
[
R

(1)
t+n0

]
1

τ
(2)
ν2n−1 =t

.
(24)

At the same time, Theorem 3.1 from [8] gives us the inequality

E
[
R(l)

m

] ≤ M, m ≥ 0, l ∈ {0, 1}, (25)

taking into account the domination condition B.
Putting (25) into formulas (24) yields the required result (23).
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Lemma 2. Consider the following time-inhomogeneous birth–death Markov chain
Zt with the transition probabilities on the t-th step

Pt =

⎛
⎜⎜⎝

αt0 1 − αt0 0 0 0 . . .

0 αt1 0 1 − αt1 0 . . .

0 0 αt2 0 1 − αt2 . . .

. . . ,

⎞
⎟⎟⎠ (26)

and the time-homogeneous random walk Ẑt with the transition probability matrix

P̂ =

⎛
⎜⎜⎝

0 1 0 0 0 . . .

p 0 1 − p 0 0 . . .

0 p 0 1 − p 0 . . .

. . . ,

⎞
⎟⎟⎠ . (27)

Let
C = {0},

and let g
(t)
n be a distribution of the first after t returning into 0 for the chain Z, which

is in the zero state at the moment t .
Assume that there exists some p such that, for all t, i, s, j , the following inequa-

tions hold:
p > 1/2,

p(1 − p) ≥ (1 − αti)αsj , ∀t, s, i, j.
(28)

Denote by fn the renewal probability for the chain Ẑt (fn is the probability of the
first returning to 0 for the chain Ẑ started at 0):

fn = P̂{Ẑ0 = 0, Ẑ1 �= 0, . . . , Ẑn−1 �= 0, Ẑn = 0}, (29)

and let ĝn = fn/p, n > 1, and ĝ1 = 1.
Then the sequence (ĝn)n≥1 stochastically dominates g

(t)
n , or, in other words,

G
(t)
k ≤ Ĝk, (30)

where G
(t)
n = ∑

k>n g
(t)
k , Ĝn = ∑

k>n ĝk , and P, E and P̂, Ê are the probabilities and

expectations on the canonical probability space for the chains Z and Ẑ, respectively.

Proof. First of all, notice that (ĝn) is not a probability distribution. But this is not a
big problem since the domination sequence in our construction does not have to be a
distribution.

We will show that
ĝn ≥ g(t)

n , (31)

for all t, n.
Let us start with n = 1:

g
(t)
1 = αt0 < 1 = ĝ1.
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For n > 1, consider the event

A(2n)t = {Zt = 0, Zt+1 �= 0, . . . , Zt+2n−1 �= 0, Zt+2n = 0}.
It can be interpreted as a set of trajectories ω = (ω1, . . . , ω2n), ωi ∈ {+1,−1},
where ωi = +1 if Zt+i goes up and ωi = −1 otherwise. It is clear that, in order
to return back to 0 at time 2n, there should be exactly n steps up (the first one must
be step up) and n steps down. It is worth mentioning that not every trajectory of
length 2n that has n steps up and n down belongs to A(2n)t because some of them
might visit 0 before 2n + t , which is not acceptable for A(2n)t . The exact number
of such trajectories in A(2n)t is unknown and not important for this proof. What is
important, is that each ω ∈ A(2n)t corresponds to the same trajectory for the chain Ẑ.
This means that summing P̂{ω} for all ω ∈ A(2n)t gives the probability f2n. Strictly
speaking, the chains Z and Ẑ are defined on different probability spaces, but there is
an obvious correspondence between the trajectories, and the difference is only in the
probabilities. So we can use the same symbol ω for both.

Since ω has exactly n steps up and n steps down, its probability is a product of n

different (1 − αtini
) and n different αtj ,ni+1, for i, j = 1, n. Notice that some of ni

can be the same.
This means that, after reordering, the probability of such ω can be presented as

P{ω} =
∏(

(1 − αtini
)αtj ni+1

)
, (32)

for some ti , ni, tj . We emphasize again that the terms in that product may repeat, but
this is not important for this proof.

At the same time, it follows from condition (28) that for any indexes, αtn(1 −
αsm) < p(1 − p) and

P{ω} ≤ (
p(1 − p)

)n−1 = P̂{ω}/p. (33)

Summing over all such ω, we obtain (31) for n > 1.

Lemma 3. The sequence (ĝn) defined in Lemma 2 has the finite first and second
moments

μ̂1 = 2/(2p − 1) + 1,

μ̂2 = (2p − 1)−1
(

2 + 8(1 − p)

1 − 4p

)
+ 2/(2p − 1) + 1.

(34)

Proof. First we note that since ĝn = fn/p, n > 1, and ĝ1 = 1 = 1 + f1, we have
μ̂1 = μ1/p + 1 and μ̂2 = μ2/p + 1, where μ1 and μ2 are the expectation and the
second moment for the probability distribution fn, n ≥ 1.

The generating function F(z) for the distribution fn equals (see, e.g., [4, Ch. XIII])

F(z) = 1 − √
1 − 4p(1 − p)s2

2(1 − p)
. (35)

So, μ1 = F ′(1) and μ2 = F ′′(1) + μ1.
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