AN ESTIMATE FOR CHARACTER SUMS

NICHOLAS M. KATZ

In this note, we give estimates for a class of character sums that occur as eigenvalues of adjacency matrices of certain graphs constructed by F. R. K. Chung. Her situation is as follows. We are given a finite field F, an integer $n \geq 1$, an extension field E of F of degree n, and an element x in E that generates E over F, i.e., an element x such that E is $F(x)$.

Theorem 1. Let χ be any nontrivial complex-valued multiplicative character of E^{\times}(extended by zero to all of E), and x in E any element that generates E over F. Then

$$
\left\|\sum_{t \in F} \chi(t-x)\right\| \leq(n-1) \sqrt{\#(F)}
$$

It turns out to be easier to consider the following more general situation. F is a finite field, $n \geq 1$ is an integer, and B is a finite etale F-algebra of dimension n over F (i.e., over a finite extension K of F, there exists an isomorphism of K-algebras $B \otimes_{F} K \simeq K \times K \times \cdots \times K$). We assume given an element x in B that is regular in the sense that its characteristic polynomial $\operatorname{det}_{F}(T-x \mid B)$ in the regular representation of B on itself has n distinct eigenvalues. (In terms of the above isomorphism $B \otimes_{F} K \simeq K \times K \times \cdots \times K, x$ is regular if and only if $x \otimes 1 \simeq\left(x_{1}, \ldots, x_{n}\right)$ with all distinct components x_{i}. Or equivalently, x is regular if and only if B is equal to the F-subalgebra $F[x]$ generated by x. In the special case when B is a field F, the element x is regular if and only if $F(x)=E$.)

Theorem 2. Let χ be any nontrivial complex-valued multiplicative character of B^{\times}(extended by zero to all of B), and x in B any regular element. Then

$$
\left\|\sum_{t \in F} \chi(t-x)\right\| \leq(n-1) \sqrt{\#(F)}
$$

Proof. The basic idea is that the theorem is an immediate consequence of Weil's estimates for one-variable character sums in the case when the F-algebra B is completely split, and that one can reduce to this case by thinking geometrically about suitable Lang torsors.

[^0]We begin by explaining how to view the problem geometrically. Given any finite-dimensional commutative F-algebra A, we denote by \mathbb{A} the smooth affine scheme over F given by " A as algebraic group over F "; concretely, for any F-algebra R, the group $\mathbb{A}(R)$ of R-valued points of \mathbb{A} is $A \otimes_{F} R$. We denote by \mathbb{A}^{\times}the open subscheme of \mathbb{A} given by " A^{\times}as algebraic group over F "; concretely, for any F-algebra R, the group $\mathbb{A}^{\times}(R)$ of R-valued points of \mathbb{A} is $\left(A \otimes_{F} R\right)^{\times}$. These concepts will be applied to the cases $A=B$ and $A=F$. It will be important in what follows to think of \mathbb{A}^{\times}as a smooth commutative group scheme over F, but to think of \mathbb{A} only as an ambient scheme (not as a group scheme) containing \mathbb{A}^{\times}as an open subscheme.

Because \mathbb{B}^{\times}is a smooth, geometrically connected commutative group scheme over the finite field F, the Lang isogeny $1-\mathrm{Frob}_{F}: \mathbb{B}^{\times} \rightarrow \mathbb{B}^{\times}$makes \mathbb{B}^{\times}into a B^{\times}-torsor over itself, the "Lang torsor" \mathbb{L}. Let us now fix a prime number $l \neq \operatorname{char}(F)$, an algebraic closure \bar{Q}_{l} of Q_{l}, and an isomorphism of fields $C \simeq \bar{Q}_{l}$. This isomorphism allows us to view χ as a \bar{Q}_{l}-valued character of B^{\times}, by which it makes sense to push out the Lang torsor \mathbb{L} to obtain a lisse rank one \bar{Q}_{l}-sheaf \mathbb{L}_{χ} on \mathbb{B}^{\times}which is pure of weight zero. If we denote by $j: \mathbb{B}^{\times} \rightarrow \mathbb{B}$ the inclusion, we may form the extension by zero $j \mathbb{L}_{\chi}$ on \mathbb{B}. Now consider the morphism of F-schemes of $f: \mathbb{F} \rightarrow \mathbb{B}$ defined by $f(t):=t-x$, and the pullback sheaf $\mathscr{F}:=f^{*}\left(j_{!} \mathbb{L}_{\chi}\right)$ on \mathbb{F}. The sheaf \mathscr{F} is lisse of rank one and pure of weight zero on the open set $f^{-1}\left(\mathbb{B}^{\times}\right)$, and zero outside. The sheaf \mathscr{F} is everywhere tamely ramified, simply because on $f^{-1}\left(\mathbb{B}^{\times}\right)$it is lisse of order dividing that of χ, hence of order prime to the characteristic of F.

In terms of this data, the character sum in question is given by

$$
\sum_{t \in F} \chi(t-x)=\sum_{t \in f^{-1}\left(\mathbf{B}^{\times}\right)(F)} \operatorname{Trace}\left(\text { Frob }_{t, F} \mid \mathscr{F}\right),
$$

and by the Lefschetz Trace Formula this last sum is equal to

$$
\sum_{i}(-1)^{i} \operatorname{Trace}\left(\operatorname{Frob}_{F} \mid H_{\mathrm{comp}}^{i}\left(f^{-1}\left(\mathbb{B}^{\times}\right) \otimes_{F} \bar{F}, \mathscr{F}\right)\right) .
$$

By Weil (but expressed in the language of Deligne's paper [De]) we know that the above cohomology groups $H_{\text {comp }}^{i}$ are mixed of weight $\leq i$. For dimension reasons, $H_{\text {comp }}^{i}$ vanishes for $i>2$, and $H_{\text {comp }}^{0}$ vanishes because \mathscr{F} is lisse on the incomplete curve $f^{-1}\left(\mathbb{B}^{\times}\right) \otimes_{F} \bar{F}$. It thus remains only to establish the following two facts:
(a) $H_{\text {comp }}^{2}\left(f^{-1}\left(\mathbb{B}^{\times}\right) \otimes_{F} \bar{F}, \mathscr{F}\right)=0$,
(b) $\operatorname{dim} H_{\text {comp }}^{1}\left(f^{-1}\left(\mathbb{B}^{\times}\right) \otimes_{F} \bar{F}, \mathscr{F}\right)=n-1$.

Both of these facts are geometric, i.e., they concern the situation over the algebraic closure of F, and hence it suffices to verify them universally in the case when the F-algebra B is completely split. (The key point here is that our hypothesis that χ is nontrivial is stable under finite extension of scalars.

Indeed, after extension of scalars from F to any finite extension field K, the pullback to $\left(\mathbf{B}^{\times}\right) \otimes_{F} K$ of \mathbb{L}_{χ} is $\mathbb{L}_{\tilde{\chi}}$, where $\tilde{\chi}$ is the character of $\left(B \otimes_{F} K\right)^{\times}$obtained from χ by composition with the norm homomorphism Norm ${ }_{K / F}$ from $\left(B \otimes_{F} K\right)^{\times}$to B^{\times}. Because this norm map is surjective, the character $\tilde{\chi}$ is nontrivial provided that χ is nontrivial.)

Suppose now that B is simply the n-fold self product of F with itself. Then a nontrivial character χ of B^{\times}is simply an n-tuple $\left(\chi_{1}, \ldots, \chi_{n}\right)$ of characters of F^{\times}, not all of which are trivial, the regular element x is just an n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ with all distinct components x_{i}, the open set $f^{-1}\left(\mathbb{B}^{\times}\right)$is just the complement $\mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}$ of the n distinct points x_{i} in \mathbb{F}, the sheaf \mathscr{F} is just the tensor product of the sheaves $\left[t \mapsto t-x_{i}\right]^{*} \mathbb{L}_{\chi_{i}} \mid \mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}$, and the sum in question is

$$
\sum_{t \in F-\left\{x_{1}, \ldots, x_{n}\right\}} \chi_{1}\left(t-x_{1}\right) \chi_{2}\left(t-x_{2}\right) \cdots \chi_{n}\left(t-x_{n}\right)
$$

By assumption, at least one of the χ_{i} is nontrivial. For such an index i, the sheaf $\left[t \mapsto t-x_{i}\right]^{*} \mathbb{L}_{\chi_{i}}$ is tamely but nontrivially ramified at x_{i}, while all the other factors $\left[t \mapsto t-x_{j}\right]^{*} \mathbb{L}_{\chi_{j}}$ with $j \neq i$ are lisse at x_{i} (by the hypothesis that all the x_{j} are distinct). Therefore, the sheaf \mathscr{F} is nontrivially ramified at the point x_{i}. Because \mathscr{F} is lisse of rank one on $\mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}$, its coinvariants under the inertia group $I_{x_{i}}$ must vanish, and a fortiori its covariants under the entire $\pi_{1}^{\text {geom }}$ of $\mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}$ must also vanish, i.e., its $H_{\text {comp }}^{2}$ vanishes. Once we have the vanishing of all the $H_{\text {comp }}^{i}$ save for $i=1$, the asserted dimension formula $\operatorname{dim} H_{\text {comp }}^{1}=n-1$ is then equivalent to the Euler characteristic formula

$$
\sum_{i}(-1)^{i} \operatorname{dim} H_{\mathrm{comp}}^{i}\left(\left(\mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}\right) \otimes_{F} \bar{F}, \mathscr{F}\right)=1-n,
$$

which holds because \mathscr{F} is lisse of rank one and everywhere tame on the open curve $\left(\mathbb{F}-\left\{x_{1}, \ldots, x_{n}\right\}\right) \otimes_{F} \bar{F}$, whose Euler characteristic is $1-n$. Q.E.D.
Remarks and Questions. (1) If we drop the hypothesis that the element x be regular, then Theorem 2 remains valid for characters χ of B^{\times}whose restriction to F^{\times}is nontrivial. The proof proceeds along the same lines as above, reducing to the completely split case in which χ is simply an n-tuple $\left(\chi_{1}, \ldots, \chi_{\eta}\right)$ of characters of F^{\times}, with the property that their product $\prod_{i} \chi_{i}$ is nontrivial on F^{\times}. Now one gets the vanishing of $H_{\text {comp }}^{2}$ by observing that the sheaf \mathscr{F} is nontrivially ramified at ∞ (as an I_{∞}-representation, \mathscr{F} is isomorphic to $\mathbb{L}_{\Pi_{i} \chi_{i}}$), and the constant " $n-1$ " actually improves to "(the number of distinct $\left.x_{i}\right)-1$." Indeed, in the case of the choice $x:=0$, the character sum in question is exactly $\sum_{t \in F^{\times}} \chi(t)$. (Alternately, one could apply Theorem 2 directly to the (automatically finite etale) subalgebra $B_{0}:=F[x]$ of B generated by x over F, to the regular element x of B_{0}, and to the nontrivial (because nontrivial on F^{\times}) character $\chi \mid\left(B_{0}\right)^{x}$.)
(2) What happens if we also drop the hypothesis that B be etale? Suppose that we are given an arbitrary n-dimensional commutative F-algebra A, a multiplicative character χ of A^{\times}(extended by zero to all of A) whose restriction to F^{\times}is nontrivial, and an element x in A. It seems plausible that the estimate

$$
\left\|\sum_{t \in F} \chi(t-x)\right\| \leq(n-1) \sqrt{\#(F)}
$$

should still hold. For example, in the case when A is the algebra of dual numbers $F[x] /\left(x^{2}\right)$, the character sums in question are none other than the usual Gauss sums attached to the field F.

References

[Ch] F. R. K. Chung, Diameters and eigenvalues, J. Amer. Math. Soc. 2 (1989), 187-196.
[De] P. Deligne, La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math., no. 52, 1981, pp. 313-428.
[We] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

[^0]: Received by the editors February 10, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11L40, 11T21.

