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AN ESTIMATE FOR THE LOSS PROBABILITY
IN A QUEUEING SYSTEM OF THE MAP/G/m/0 TYPE

IN THE CASE OF LIGHT TRAFFIC
UDC 519.21

D. BAUM AND I. N. KOVALENKO

Abstract. We consider a queueing system with losses and with a general distri-
bution of the service time. It is assumed that the input is of the MAP type and
the phase process assumes values in a general measurable space. The asymptotic
behavior of the loss probability is studied for the case where the mean service time
tends to zero. In particular, we find conditions under which the loss probability is
asymptotically invariant with respect to the shape of the service time.

1. Introductory remarks

Algebraic methods have become widely popular in the theory of queueing systems
over the last 15–20 years. These methods are useful for the analysis of real systems,
mainly for computer networks and telecommunication systems. On the other hand, the
implementation of these methods became available due to the growth of possibilities with
computers.

The class of models of input random events used in the theory as well as in practice
is being extended essentially nowadays (see [1]–[4]). The so-called MAP model (with a
Markov input) is the most useful one. The input random events in this model depend on
the states of a certain Markov process (called the “phase” process) and on the changes of
states of this process. It is worthwhile mentioning that the processes mentioned above as
well as many other models are, from a formal point of view, particular cases of processes
with homogeneous second component (see [5]).

Models in the case of light traffic are important in many problems in the analysis of
queueing systems and the loss probability plays an important rôle for all those models
(see [6] and [7]).

Of special interest is the question on the invariance of the loss probability with respect
to the distribution of the service time if the mean service time is known. The papers [8]–
[12] treat this problem for a wide class of queueing systems and networks. It is proved
in [8] that the property of invariance of the loss probability for a MAP/G/m/0 queuing
system holds only if the input is Poissonian.

It was observed recently that systems that have no invariance of the loss probability
in the case of regular traffic may possess this property if the traffic is light (see [6] and
the references therein). In this paper, we study this phenomenon for queueing systems
of the MAP/G/m/0 type.
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18 D. BAUM AND I. N. KOVALENKO

2. A queueing system and its basic characteristics

2.1. Phase process. Let E be a complete metric space, � be a σ-algebra of its subsets,
and let P (u, ·) be a Markov transition function; that is, P (u, ·) is a probability measure
for all u ∈ E and P (·, A) is a Borel function of the first argument for all A ∈ �.

We treat the process (Un, n ≥ 0) of phase transitions as a Markov chain for which
P (u, ·) is its Markov transition function. By π0 = π0(·) we denote the initial distribution
of U0 and let πn = πn(·) be the distribution of Un; that is,

πn =
∫

E

π0(du)Pn(u, ·),

where Pn(u, ·) is the transition function over n steps. Note that P1(u, ·) = P (u, ·) and

Pn+1(u, ·) =
∫

P (u, dv)Pn(v, ·), n ≥ 1.

Assumption 1. The sequence (Un) is stationary. This means that πn = π, n ≥ 0,
where π is a distribution on (E,�).

2.2. Sojourn times. Consider the phase process U(t), t ≥ 0, as a semi-Markov process
with the transition times 0 = T0, T1, T2, . . . . Assume that the transition moments of the
process U are determined by (Un); that is,

U(t) = Un for Tn ≤ t < Tn+1

and for all n ≥ 0. Thus U(t) is a right continuous function with probability one. The
sojourn times at the states Tn+1 − Tn are defined as follows. If Un = u, then, inde-
pendently of the past, Tn+1 − Tn is an exponentially distributed random variable with
parameter λ(u) being a Borel function of u ∈ E. The transitions (Un) are independent
of the sojourn times, so that

P{Un+1 ∈ · | the past; Un = u} = P (u, ·).

2.3. Input flow. Assume that

P (u, ·) = F (u, ·) + G(u, ·),

where F and G are nonnegative measures on (E,�) for every fixed u and both F and G
are Borel functions of u ∈ E. The transitions of the type F are associated with the
arrivals of customers, while customers do not arrive in the case of transitions of the
type G. Formally, the input of the queueing system is determined by the following
assumptions.

1. Customers may arrive to the system only at the moments (Tn, n ≥ 1).
2. No more than one customer may arrive at every time Tn, n ≥ 1.
3. If In is the indicator of the event {a customer arrives to the system at the

moment Tn}, then

P{In = I; Un ∈ · | Un−1 = u; the past} = F (u, ·);
P{In = 0; Un ∈ · | Un−1 = u; the past} = G(u, ·).

If the sequences (Un) and (Tn) are known, then the input flow is determined by
the sequence of independent Bernoulli trials (In).

Assumption 2. There exist positive constants λ and λ such that

λ ≤ λ(u) ≤ λ, u ∈ E.
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2.4. A MAP/G/m/0 queueing system. According to the Kendall classification, the
number “0” in this abbreviation means that a customer does not wait for the service in
the system if there is no free server, m denotes the number of servers, and G means that
the service times are independent random variables Yn with the distribution function
Bτ (x) = 1 − Bc

τ (x) whose mean value τ > 0 is finite.
We study such a system in the case of light traffic and for the scheme of series. The

main attention is paid to the behavior of the loss probability as τ → 0. We assume that
the input flow is independent of τ . The expression “scheme of series” has its roots in
the theory of limit theorems of probability theory, but in our context it means that the
dependence of the distribution of Bτ (x) on τ is rather complicated; the precise statements
can be found in Section 4.

Finally, the symbol “MAP” in the abbreviation MAP/G/m/0 determines the input
flow that satisfies all the assumptions discussed above.

3. The loss probability

Denote by Jnτ the indicator of the event

{a customer arrives at the moment Tn and leaves the system without service}.
Put

Nn = I1 + · · · + In,

Lnτ = J1τ + · · · + Jnτ ,

and

(1) Qnτ =
E{Lnτ}
E{Nn}

.

We study the behavior of Qnτ for large n and small τ . Since (Un) is stationary, it follows
that

E{In} =
∫

E

π(du)F (u, E).

We avoid the trivial case where this number is zero, so that

(2) E{Nn} = n

∫
E

π(du)F (u, E)

grows linearly together with n.
Now we consider Jnτ . In order that a customer leaves the system without service at

a moment Tn, the following event must occur:
{there are m preceding transition moments, say Tn1 , . . . , Tnm

, and a
customer arrives at a moment Tn; moreover, the point Tn belongs to
the union of time intervals when the earlier m customers are served}.

Consider sequences of natural numbers

s̄ = (s1, s2, . . . , sm+1)

such that
1 = s1 < s2 < · · · < sm+1 = l + 1.

Such sequences are called (l, m+1)-chains. We say that a customer leaves the system at
the moment Tn without service due to an (l, m + 1)-chain s̄ if m + 1 customers arrive at
the system at the moments Tn1 , . . . , Tnm

, Tn where n1 = n − l, n2 = n − l + s2 − 1, . . . ,
nm = n − l + sm − 1, and, moreover, Yni

> Tn − Tni
, 1 ≤ i ≤ m. Denote by r the

minimum of the numbers l for which the probability of some (l, m + 1)-chain is positive.
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20 D. BAUM AND I. N. KOVALENKO

The latter definition can be explained in a different manner. Assume that a customer
arrives at the system at a certain moment Tn. Then the next m customers may arrive
at the system after the moment Tn+r, that is, after at least r transitions of the phase
process. We denote by Γ0 the set of (r, m + 1)-chains. Below we list some properties of
this set.

1. If A(r,m+1) denotes the event that the customer n leaves the system without
service due to an (r, m + 1)-chain, then these events are disjoint for different
chains.

2. There is no customer arriving at the system between the moments

Tn1 , . . . , Tnm
, Tn.

Now we define the weight w(s̄) of an (r, m + 1)-chain s̄ as follows:

w(s̄) =
1

(s2 − s1 − 1)! · · · (sm+1 − sm − 1)!

∫
. . .

∫
Er+1

∫
. . .

∫
λ(u1) · · ·λ(ur) π(du0)

×

⎛
⎝m+1∏

j=1

F
(
usj−1, dusj

)⎞⎠
⎛
⎝ ∏

i/∈{s1,...,sm+1},2≤i≤r

G(ui−1, dui)

⎞
⎠ .

(3)

According to Assumption 2, we have

(4) w(s̄) ≥ c(s̄)λr, s̄ ∈ Γ0,

for some constants c(s̄) > 0.
Taking into account the weight of a chain s̄, the joint probability density of increments

Tn2 − Tn1 , . . . , Tn − Tnm
is estimated from above as follows:

w(s̄)ts2−s1−1
1 (t2 − t1)s3−s2−1 · · · (tm − tm−1)sm+1−sm−1.

Thus the loss probability at the moment Tn due to the (r, m + 1)-chain s̄ is bounded
from above by

E{Jnτ ; s̄}

≤ w(s̄)
∫

. . .

∫
0<t1<···<tm

∫
. . .

∫
ts2−s1−1
1 (t2 − t1)s3−s2−1 · · · (tm − tm−1)sm+1−sm−1

× Bc
τ (tm)Bc

τ (tm − t1)Bc
τ (tm − t2) · · ·Bc

τ (tm − tm−1) dt1 · · · dtm
def= J̄0τ (s̄).

(5)

Put

αkτ =
∫ ∞

0

xk dBτ (x).

Theorem 1. If

(6) αr−m+2 = O
(
τ r−m+2

)
,

then

(7) E{Ln} ∼ n
∑
s∈̄Γ0

J̄0τ (s̄)

as n → ∞ and τ → 0. (The terms in this sum are defined by the right-hand side of
inequality (5).)
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Proof. Let Γ1 be the set of all (l, m + 1)-chains such that l > r. Then E{Jnτ ; Γ1} does
not exceed the probability that some customers arrive at moments Tn1 , . . . , Tnm

and Tn

where n1 < · · · < nm < n, n−n1 > r, and Yni
> Tn −Tni

, 1 ≤ i ≤ m, where the Yni
are

corresponding service times. The latter probability is bounded from above by

P{Z1 + · · · + Zm > r; Zi > 0, 1 ≤ i ≤ m},
where the Zi are independent random variables with the distribution

P{Z1 = k} =
∫ ∞

0

e−λ̄x (λ̄x)k

k!
dBτ (x).

Thus

P{Z1 + · · · + Zm > r; Zi > 0, 1 ≤ i ≤ m}
≤ mP{Z1 > z − m + 1; Z2 > 0, . . . , Zm > 0}(8)

+
∑

1≤i1,...,im≤r−m+1,
i1+···+im>r

P{Z1 = i1, . . . , Zm = im}

< mτm−1 αr−m+2

(r − m + 2)!
+

∑
1≤i1,...,im≤r−m+1,

i1+···+im>r

αi1

i1!
. . .

αim

im!

= O
(
α

(r+1)/(r−m+2)
r−m+2

)
,

whence

(9) E{Jnτ ; Γ1} = O
(
α

(r+1)/(r−m+2)
r−m+2

)
.

Now we show that E{Jnτ ; Γ1} is small compared to
∑

s̄∈Γ0
J̄m(s̄). First we establish a

lower bound for J̄m(s̄). For all a > τ/3,

τ =

(∫ τ/3

0

+
∫ a

τ/3

+
∫ ∞

a

)
Bc

τ (x) dx ≤ τ

3
+

(
a − τ

3

)
Bc

τ

(τ

3

)
+

αr−m+2

(r − m + 2)ar−m+1
.

Equating the third term of the latter expression to τ/3, we obtain

(10) Bc
(τ

3

)
≥

(
3

(
3

(r − m + 1)
αr−m+2

τ r−m+2

)1/r−m+1

− 1

)−1

≥ c0 > 0.

Substituting this inequality in (5), we get the lower estimate

J̄0τ (s̄) ≥ w(s̄)cm
0

×
∫

. . .

∫
0<t1<···<tm<τ/3

∫
. . .

∫
ts2−s1−1
1 · · · (tm − tm−1)sm−sm−1−1 dt1 · · · dtm

≥ c1τ
r,

(11)

where c1 > 0. Comparing the latter estimate with (9), we prove that

(12) E{Jnτ ; Γ1} = o

( ∑
s̄∈Γ0

J̄0τ (s̄)
)

as τ → 0 provided relation (6) holds.
To derive the lower estimate for E{Jτ}, note that

(13) E{Jτ} ≥
∑
s̄∈Γ0

J0τ (s̄),
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22 D. BAUM AND I. N. KOVALENKO

where J0τ (s̄) is defined via the same integral as in the case of J̄0τ (s̄) (see (5)), but with
the factor e−λ̄tm under the integral sign and with the factor (1− λ̄τ ) before the integral
sign. It is easy to prove that

(14)
∑
s̄∈Γ0

J̄0τ (s̄) −
∑
s̄∈Γ0

J0τ (s̄) = O
(
a
(r+1)/(r−m+2)
r−m+2

)
= O

(
τ r+1

)
as τ → 0.

Now (7) follows from (12), (13), and (14). �

4. The invariance of the loss probability in the case of light traffic

The property of the invariance of the loss probability can be described in this case as
follows. Let B1

τ (x) and B2
τ (x) be two arbitrary parametric sets of distribution functions

of the service times such that∫ ∞

0

B1c
τ (x) dx =

∫ ∞

0

B2c
τ (x) dx = τ

and ∫ ∞

0

xr−m+2 dBi
τ (x) = O

(
τ r−m+2

)
, i = 1, 2,

as τ → 0 where r is defined in Section 3. Then

(15)
Q1

nτ

Q2
nτ

→ 1 as n → ∞ and τ → 0,

where Q1
nτ and Q2

nτ are defined similarly to Qnτ in equality (1) with Bτ = B1
τ and

Bτ = B2
τ , respectively.

Theorem 2. Assume that all the assumptions of Theorem 1 hold. Then Qnτ is invariant
in the case of light traffic with respect to Bτ (x) if and only if r = m.

Proof. 1. Sufficiency. If r = m, then there exists a unique (r, m + 1)-chain

s̄ = (1, 2, . . . , m + 1).

It follows from (5) that

w−1(s̄)J̄0τ (s̄)

=
∫

. . .

∫
0<t1<···<tm

∫
. . .

∫
Bc

τ (tm)Bc
τ (tm − t1) · · ·Bc

τ (tm − tm−1) dt1 · · · dtm

=
1
m!

(∫ ∞

0

Bc
τ (x) dx

)m

=
τm

m!
.

Thus the loss probability is invariant.
2. Necessity. Assume that r > m. Put

Bc
τ (x) = θe−θx/τ ,

where θ ∈ (0, 1] is a parameter. Then we have

w−1(s̄)J̄0τ (s̄)

= θm

∫
. . .

∫
0<t1<···<tm

∫
. . .

∫
ts2−s1−1
1 · · · tr−sm−1

m e−θR(t1,...,tm)/τ dt1 · · · dtm

for all chains s̄ ∈ Γ0 where R(t1, . . . , tm) is a linear function. Changing the variables
ti = τyi/θ we prove that the latter integral is equal to

τ r

θr−m
· const.

This means that the loss probability is not invariant in the case of light traffic. �
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5. Addendum

5.1. Nonstationary phase process. Let all the above assumptions be satisfied except
for the assumption that the sequence (Un) is stationary. Instead, we assume that this
sequence has a stationary distribution π such that the distribution πn = (P{Un ∈ ·})
converges to π as n → ∞. We consider two types of convergence, namely

(A) ‖πn − π‖ → 0 as n → ∞, that is the total variation of the difference of distribu-
tions tends to zero;

(B) πn
w→ π as n → ∞ where the symbol w→ stands for the weak convergence and

where the functions F (u, ·), G(u, ·), and λ(u) are continuous with respect to u.
In both cases, (A) and (B), it follows that

(16) Qnτ ∼
∑

s̄∈Γ0
J̄0τ (s̄)∫

E
π(du)F (u, E)

as τ → 0,

for n > n(τ ) where an integer number n(τ ) depends on the mean service time τ . Note
that the uniform convergence

Qnτ

right-hand side of (16)
→ 1

as n → ∞ and τ → 0 does not hold in the general case if the sequence (Un) is nonsta-
tionary.

5.2. Frequency approach. One can use another definition of the loss probability, na-
mely

(17) Qτ (t) =
E{Lτ (t)}
E{N(t)}

instead of equality (1) related to the number n of transitions of the phase process. Defi-
nition (17) involves N(t), the number of customers arriving during the time period (0, t),
and Lτ (t), the number of customers leaving the system without service during the same
time period. The results in this case are similar to those we obtained above for Qnτ ; in
any case, we have for all τ > 0 that

Qτ (t)
Qnτ

→ 1 as t → ∞ and n → ∞.
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