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Dedicated to Professor Tadashi Nagano on his sixtieth birthday

Abstract. We prove a best possible lower bound on the Ricci curvature of an

immersed submanifold in a Euclidean space and apply it to study the size of

the Gauss image of a complete noncompact hypersurface with constant positive

mean curvature in a Euclidean space.

1. Introduction

This paper arises as an attempt to apply the method of B. Palmer to the

Euclidean case. In [6] Palmer proved an estimate on the size of the image of

the Gauss map of a complete spacelike hypersurface M" with nonzero constant

mean curvature in a Minkowski space E"+x . His method consisted of two steps.

In the first step Palmer proved that the size of the Gauss image implied a lower

bound on the first eigenvalue Xx of M ; the main ingredient was Lemma 1 of

[6] , which gave an eigenvalue estimate from below. Palmer's proof given in

[6] used the property of Green's function. In §5 we shall give another proof

by using an elementary method due to Cheng [1]. In the second step Palmer

observed that for the Minkowski case there is an obvious lower bound for the

Ricci curvature of M in terms of the mean curvature H, namely,

(1.1) Ric>-//2/4.

(Note that we do not normalize H and so, for example, the unit sphere S" in

the Euclidean space R"+1 will have H2 = n2.) (1.1) enabled Palmer to apply a

theorem of Gage [2] to get an upper bound on Xx and by combining this with

his first step he obtained his theorem.

In order to apply Palmer's method to the Euclidean case we observe that his

first step carries over to this case with straightforward modifications. However

the obvious result for the Euclidean case that corresponds to (1.1) is an upper

bound

(1.2) Ric<H2/4,

and so there is no obvious generalization of his second step to the Euclidean

case. Now we observe that a necessary condition for the Ricci curvature to be
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1052 PUI-FAI LEUNG

bounded below is that the scalar curvature R is bounded below.  Conversely

(1.2) implies

(1.3) Ric>R-(n-l)H2/4,

and so this condition is also sufficient. (Again we do not normalize R and so

for S" we have R = n(n — I).) Therefore Palmer's second step also carries over

under the additional assumption that the scalar curvature be bounded below.

Clearly (1.3) is far from being best possible. (For example look at S" . In

fact, the right-hand side of (1.3) is nonpositive for all aa > 4 because of (2.20).)

This leads us to study the difference between the two sides of (1.3) in order to

find a better estimate. Moreover, our main aim in this paper is to present the

best possible lower bound for the Ricci curvature of any submanifold. We shall

prove

Theorem 1.1. Let M" be an immersed submanifold in the Euclidean space Rn+P

where p denotes the codimension. Let Ric, R, and H denote the functions that

assign to each point of M the minimum Ricci curvature, the scalar curvature,

and the mean curvature respectively of M at the point. Then we have

(1.4)

Ric > R - ("~1)/f  + -^ (yrh~^l(n - 2)\H\ - 2yJ(n- l)H2 - nR

Remark. (1.4) is clearly better than (1.3). In fact, (1.4) is best possible because

for the unit sphere S" in R"+1 c Rn+P we have equality in (1.4).

We shall deduce Theorem 1.1 as a consequence of the following more general

theorem, which will be proved in §3.

Main Theorem. Let M" be an immersed submanifold of the Riemannian man-

ifold Nn+P . Let Ric, S, and H denote the functions that assign to each point

of M the minimum Ricci curvature, the square length of the second fundamental

form, and the mean curvature respectively of M at the point. If all the sectional

curvatures of N are bounded below by k then

(1-5)

Ric > (aa-1)ac + -^ J2(az - l)H2 -(n- 2)\H\^(n- l)(nS - H2) - n(n - l)s\ .

In §4 we shall apply our estimate in (1.4) together with the theorem of Gage

to deduce an upper bound for Xx(M). This result will be applied in §5 to

study the size of the Gauss image of a complete noncompact hypersurface with

nonzero constant mean curvature in R"+1 .

Remark. For complete noncompact surface with constant mean curvature in

R3, Hoffman, Osserman, and Schoen have obtained the best possible result on

the size of the Gauss image. Please refer to their excellent paper [3] for details.

2. Preliminaries

We consider a submanifold M" in a Riemannian manifold Nn+P . We look

at a small neighborhood in N around a point on M.
Let {ex, ... , e„+p} be a local frame of orthonormal vector fields on N such

that when restricting on M, {ex, ... , e„) are tangent to M and {en+x > • • • ,

en+p) are normal to M.
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Let {ojx, ... , œ"+p} be the corresponding dual frame.

We shall use the following convention in this section on ranges of indices and

summation will be taken over repeated indices:

I <A, B,C ,■■■< n+p,

I < i, j » k, • • • < n,       n + l<a,ß,---<n+p.

The structural equations on N are

(2.1) dcoA = -J2^B^ojB

(2.2) dcoj = -Y,o>c*o)cB + ±Y,KBCDUC*uD,

where a>B = -ojba are the connection forms on N and KBCD are the compo-

nents of the Riemannian curvature tensor on N.

Restricting on M, we have œa = 0 and therefore

0 = dcoa = -J) g% À CO4.

Hence by Cartan's lemma, we have

(2.3) cor = Y^hfjCoJ,        hfJ = hJi.

The Riemannian connection of M is defined by (to'-), and the structural equa-

tions on M are

(2.4) dco1 = - 53 w; A ̂ .

and

(2.5) dea) = - 53 <4 A w) + \ 5Z Rijkiwk A w' »

where Rljkl are the components of the Riemannian curvature tensor on M.

From (2.2), (2.3), and (2.5) we obtain the Gauss equation

(2-6) *W = 4c/ + E(W-«)-
The second fundamental form B is a tensor of type (1,2) defined by

(2.7) B := 53 hfjW' ̂o^ ®ea,

and the square length of the second fundamental form is defined by

(2.8) S:=53(/a«.)2.

The mean curvature vector of M in N is defined by

(2.9) î;:=53/a^,

and the mean curvature of M in N is

(2.10) H:=\\v\\.

From now on we impose the following choice in our basis: if v ^ 0, we

choose e„+x by v = ||v||e„+1 . Therefore by (2.9) and (2.10), we have in all

cases

(2.11) // = 53/a,",+1 >0
1
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and

(2.12) 53^ = 0   VyS > « + 2.
i

From (2.8) and (2.11) and by applying the Cauchy-Schwarze inequality, we

obtain

(2.13) "^»E^+^ÍE'C1)   =tf2.

The Ricci curvature in the direction, say en, at a point x on M is

(2.14) Ric:=53<„,
i

and so from (2.6), (2.11), (2.12), and (2.14) we have

(2.15) Ric = 53^;„ + /An"„+1//-53(/A«)2.
i a, i

The scalar curvature of M is defined by

(2.16) *:=£*},,,

and so from (2.6), (2.11), (2.12), and (2.16) we have

(2.17) JR = 53^ + /72-.S.

Now consider the special case when N is the Euclidean space Rn+P . Then

we have

(2.18) KÊcd = 0-

From (2.17) and (2.18) we have

(2.19) R = H2-S,

and using (2.13) and (2.19) we have

(2.20) (n-l)H2>nR.

Proof of (1.2). For any unit tangent vector u at x on M, we choose a basis

such that en(x) = u. Then the Ricci curvature in the direction u at x is given

by (2.15), and using (2.18) we have

Ric = hTn'H - 53(/Af„)2 < KlxH - (Ktx)2 < *Ç .    Q.E.D.

3. Proof of the main theorem

Our main estimate is the following algebraic lemma.
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Lemma 3.1. Let (h¡j), i,j=l,...,n,bea symmetric n x n matrix, n>2.

Let Y,hn = H>0 and £(/a,7)2 = S. Then

hnnH-J2(hin)2

(3.1) ¿=i

> \ ll{n -l)H2-in- 2)Hy/(n-l)(nS-H2) - n(n - l)s\ ,

and equality holds if and only if either n = 2 or when n > 3,  (h¡j) is of the

form

f H-x

(3.2)

n-\

V o
H-x
n-\

°\

xj

with x = \(H - y/(n- l)(nS-H2)).

Proof. We shall use the same method that we used in proving Lemma 1 on p.

78 of [5]. We shall look for the minimum of h„„H - Y^ii^in)2 among the class
of all ai x AA symmetric matrices that have the same Trace = H and the same

square norm — S. To do this we apply the Lagrange multiplier method to

/ = hnnH - 53(/i/„)2 = min!
/=i

subject to the constraints

(3.3) EA»=//

and

(3.4) 53(/a/;)2 + 253(/a,7)2 = 5,
i<J

where (/z,;) is a symmetric aa x aa matrix. Let

g = hnnH-53(aa,„)2+x(53hu-h) + p Í5>„)2 + 2£(%)2-s),

where X and p are the Lagrange multipliers. Setting the partial derivatives

of g with respect to the variables h¡j equal to zero we obtain the system of

equations

(3.5) X + 2pha = 0    for a = 1, ... , aa - 1,

(3.6) H - 2h„n + X + 2phn„ = 0,

(3.7) 4ph¡j -0    for i < j < n,

(3.8) -2hin + 4phin = 0    for i = I, ... , n - I.

Now we shall consider three cases.
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Case 1 p = 0. In this case we have X = 0 by (3.5). Therefore (3.6) and
(3.8) imply

hxn = •■ • = h„-x„ = 0

and

hnn = 2H.

Therefore in this case, we have

(3.9) f=\H2,

which as we have seen from (1.2) is the maximum.

Case 2 p = \ . Then (3.5), (3.6), and (3.7) imply

(3.10) hu = -X    for/= 1, ... , aa-1,

(3.11) hnn = H + X,

(3.12) hij = 0    forl<j<n.

Using (3.10), (3.11), and (3.3) we have

(3.13) (n-2)A = 0.

If aa = 2 then a direct calculation using (3.10), (3.11), and (3.4) shows that

f = \(H2 -S). If aa > 3 then (3.13) implies X = 0, and so by (3.10) and
(3.12) we have

hu = 0    for i, j = 1, ... ,n-l,

and by (3.4) we find that this only occurs when H2 < S and / = ¿(H2-S) < 0.

Hence for Case 2, we have

(3.14) if AA = 2then/=i(i/2-S)

(3.15) and if « > 3 and/Í2 < S, then / = X2(H2 - S) < 0.

Case 3 p # 0 and p ¿ \ . Then (3.5), (3.7), and (3.8) imply

(3.16) An = •■• = hn-Xn-l,

(3.17) hu = 0    for i<j<n,

(3.18) hin = 0    for i = 1, ... , aa- 1.

For convenience we put h„n = x . Then (3.3), (3.16), (3.17), and (3.18) imply
that ihij) is of the form (3.2) where x is to be determined. Using (3.4) we

find that x satisfies the quadratic equation

(3.19) nx2-2Hx + H2-in- 1)5 = 0.

In this case we have

(3.20) f=Hx-x2.

Solving (3.19) and substituting into (3.20) we find two values for /. Using the

given condition that H > 0, we find that the smaller of these two values is

(3,21)    f=\ Í2(aa -l)H2-(n- 2)Hy/(n-l)(nS-H2) - n(n - l)s\ ,

and this occurs at jc = ±(H - y/(n- l)(nS - H2))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE RICCI CURVATURE OF A SUBMANIFOLD 1057

Finally to complete the proof of the lemma we compare (3.14), (3.15), and

(3.21). A direct calculation shows that if aa = 2 then (3.14) = (3.21). If aa > 3
and H2 > S then (3.15) does not occur, and so (3.21) is the minimum. If

aj > 3 and H2 < S then a direct calculation shows that (3.15) > (3.21) (here

we assume that S > 0 since if S = 0 then the lemma is trivial). This completes

the proof of lemma.   Q.E.D.

Remark. We observe that when H = 0, (3.1) becomes

(3.22) _¿(A/BJ2>_«±15)
. n
i

which is the result of Lemma 1 on p. 78 of [5].

Proof of the main theorem. Fix an arbitrary point x0 in M, and we shall prove

that (1.5) holds at Xo. Consider a small neighborhood in N around xo such

that the formulas in §2 are all valid. Take any unit vector u tangent to M at

xo . We choose our basis such that en(xo) = u. If H(xo) = 0 then the result is

already proved in Theorem A on p. 80 of [5]. Therefore we assume H(xo) ^ 0.

Now we choose our basis locally so that en+x is in the same direction of the

mean curvature vector, and so we have H(xq) > 0. By (2.15) we have that the

Ricci curvature in the direction u at xo is

(3.23) Ric = 53^in + AA^1/7-53(/A»,+ 1)2-     53    ihfn)2.
i i a>n+2,i

We let

(3.24) Sa := 53(Ao-)2     fora = AA+l,..., AA+p.
i,j

Applying (3.1) to the matrix (A?*1) and using (2.11) we obtain

(3.25)

i

> í¡ J2(/i - l)H2 -in- 2)HyJ(n-l)(nSn+x-H2) - n(n - 1)S„+, j .

Using (2.12) we can apply (3.22) to the matrices (A?-) for a = n + 2, ... , n +p

to obtain

-Y,Wn)2 >-^S*     fora = n + 2,...,n+p,

and so

(3.26) - 53 (h?n)2>-^ 53 Sa.
a>n+2,i a>n+2

Now observe that

(3.27) S=   53  Sa.
a>n+l
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(3.27) implies that S„+i < S and putting this into (3.25) we have

(3.28)
A«„+1//-53(A1>1+1)2

> -^Í2(aa- l)H2 - (n - 2)Hy/(n - l)(nS - H2) - n(n - l)Sn+x\ ■

Now adding (3.26) and (3.28) and using (3.27) we obtain

(3.29)

KtxH-    53   (hfn)2
a>n+\,i

> \ J2(« - l)H2 -(n- 2)Hy/(n-l)(nS-H2) - n(n - l)s\ .

By the assumption on the sectional curvature of N ,we have

n n—\

(3.30) 53^,.„ = 53^,.„>(AA-1)AC.
;'=1 1=1

Substituting (3.29) and (3.30) into (3.23) we obtain (1.5).   Q.E.D.

Theorem 3.2. Let Mn be an immersed submanifold in the Euclidean space

R"+p. Let Ric, R, and H denote the functions that assign to each point of

M the minimum Ricci curvature, the scalar curvature, and the mean curvature

respectively of M at that point. Then we have

(3.31) Ric > \ i-(n - 1)(aa - 2)H2 - (n - 2)\H\^J(n - l)2H2-n(n- l)R

+ nin-l)R\.

Proof. Substituting ac = 0 and (2.19) into (1.5) we obtain (3.31).   Q.E.D.

Proof of Theorem 1.1. A direct calculation shows that the two right-hand sides

of (1.4) and (3.31) are equal.   Q.E.D.

4. Application to eigenvalue estimates

It is well known that a lower bound on the Ricci curvature implies various

bounds on the other geometric quantities. In this section we shall consider one
of these situations.

Let M" be a complete noncompact Riemannian manifold. Fix an arbitrary

point x in M. Let Dr denote the open geodesic ball of radius r centered at

x. Let XxiDr) denote the first eigenvalue of the boundary value problem

j Au + Xu = 0    in Dr,

\ u = 0 on dDr,

where A is the Laplacian on M.

By the domain monotonicity principle we have that r < t implies Ai(A-) >

Xx(Dt) and hence Iíitl-^oo Xx(Dr) exists. This limit is also independent of the
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choice of the center x as can be seen again from the domain monotonicity

principle. Therefore the following definition is well defined

Xx(M):= limXx(Dr).
r—>oo

Theorem 4.1. Let Mn be a complete noncompact immersed submanifold of the

Euclidean space W+p . Suppose the mean curvature of M satisfies 0 < \H\ < A

and the scalar curvature of M satisfies R > -n(n - l)a2 where A and a2 are
nonnegative constants. Then

in-I)2

An2

Proof. This follows by applying our Ricci curvature bound (3.31) together with

a theorem of Gage [2, Corollary 5.5, p. 909].   Q.E.D.

(4.1)      XX(M)<  ("       *)    {(AA-2)A2 + (AA-2)Av/A2-t-AA2fl2 + AA2(AA-l)a2}

Corollary 4.2. Let M" be a complete minimal submanifold in W+p . Suppose

the scalar curvature of M satisfies R > -aa(aa - l)a2 for some nonnegative

constant a2. Then

(n - l)3a2(4.2) Xx(M)<[n    ¡)a   .

Corollary 4.3. Let M" be a complete noncompact submanifold with nonnegative

scalar curvature in W+p. If the mean curvature of M satisfies H2 < h2 for

some constant A aTa^aa

A,(») <"-">-2)*'.

5. Complete hypersurface with constant mean curvature in R"+1

We shall study the size of the Gauss image of a complete hypersurface with

constant mean curvature inR"+1 .

The following lemma is due to Palmer [6, Lemma 1, p. 53]. We give here a

different proof using the method of Cheng [1].

Lemma 5.1. Let D be a relatively compact smoothly bounded domain on a Rie-

mannian manifold M " . Let Xx(D) denote the first eigenvalue of the problem

(Au + Xu = 0inD,

( ' ' \u = 0 ondD.

Suppose f is a smooth function on D that satisfies A/ > 1 in D. Then

(5.2) Xx(D)>——,
p — a

where a, ß are any lower and upper bounds respectively of f on D.

Proof. Put Xx - X\(D) and let u denote the solution of (5.1) corresponding to

Xx . It is well known that u does not change sign in D, and so we may assume

u > 0 in D.
Take any constant a > ß . Then the function u/(a - f) is smooth in D,

continuous in D, equal to zero on 3D, and positive in the interior of D.

Hence this function must attain a maximum at some interior point xq in D.
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Hence we have

(5.3) {\jL.yXo)=Q

and

(5.4) (A-i^)(xo)<0,

where V denotes the gradient.

From (5.3) and (5.4) we obtain at x0

Aw uAf
a^J + Ja~^T)2

Since Au = -Ai«, aa(xo) > 0, a > /(xn) > a, and A/ > 1, (5.5) implies

Xx > l/ia-a),

and the result follows by   letting a —> ß .   Q.E.D.

Now let us consider M" a complete noncompact immersed hypersurface

with constant mean curvature H = A > 0 in R"+1 . Then en+x gives the Gauss

map from M" to the unit sphere Sn .

Suppose the Gauss image of Mn lies inside a closed geodesic disc of radius

8 on S" for some 0 < 8 < 7r/2. Let a denote the position vector of the center

of this geodesic disc. Then we have

(5.6) coso < (a, e„+x) < 1.

It is well known [4, p. 131] that for hypersurfaces M in R"+1, the following

equation holds on M

(5.7) A(a,en+x)=S(a,en+x) + (a,VH).

Using H = A > 0, (2.13), (5.6), and (5.7) we obtain

,r „-, a , v     h2cos8
(5.8) A{a,eH+l)>——>0.

Hence if we let

,SQn n(a, e„+x)

(    ' J -   A2 cosö   '

then by (5.6) and (5.8) / satisfies on M,

. , n      , n
Af > 1     and     -^ < f <

h2 A2cosö '

Therefore applying Lemma 5.1 to this /, we find that on any geodesic ball Dr

of M, we have

;■'/_. A2 cos 6
^Dr)^nil-cos8)-

Hence we obtain

(5.10) XxiM)>_
«(1 - COS0)
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Now suppose that the scalar curvature of M satisfies R > -aa(aa - l)a2. Then

(4.1) is applicable and we have

(5.11) XxiM)<c,

where c denotes the expression on the right-hand side of (4.1).

Combining (5.10) and (5.11) we obtain

(5.12) 0>cos-'(^).

Hence we have proved

Theorem 5.2. Let M" be a complete noncompact immersed hypersurface of con-

stant mean curvature A > 0 in the Euclidean space R"+1. If there is a constant

a2 such that the scalar curvature of M satisfies R > -aa(aa - l)a2, then the

Gauss image of M cannot lie totally inside a closed spherical cap of radius 8

for any 8 < cos" ' ( j¡r+ñc )  wnere c /s me value given by the right-hand side of

(4.1).
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