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An estimation method for feedback level factor C of a self-mixing 
interferometry system 

 
Yuanlong Fan, Yanguang Yu*, Jiangtao Xi, Joe F. Chicharo 

School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, 
Northfields Ave, Wollongong, NSW, 2522, Australia        

ABSTRACT   

This paper presents a fast estimation method for feedback level factor C  of a self-mixing interferometry (SMI) system.  
The reconstruction of a displacement waveform using a SMI signal needs to know a C  value. However, it is difficult to 
maintain a constant C  value during the reconstruction process. We study the features of the reconstructed displacement 
waveforms incorporating different pre-set C  values and classify waveforms into two types. Bisection method is 
introduced in our method for fast estimating C  value. The effectiveness of our proposed method has been verified by 
both simulation and experimental data.  

Keywords: semiconductor laser, feedback level factor, optical feedback, bisection searching algorithm, self-mixing 
interferometry 

1. INTRODUCTION  
Using a Self-Mixing Interferometry (SMI) system to measure metrological quantities such as velocity, vibration, 
displacement and absolute distance, is a new emerging sensing technique1-3. Comparing to commercial sensors with 
similar functions, SMI based sensing system is low-cost, self-aligned and simple to implement. Due to these merits, it 
has been drawing many researchers’ attention4-6. The principle of SMI is based on self-mixing (SM) effect. It occurs 
when a small portion of laser beam is back-scattered or reflected by an external target and re-enters into the laser active 
cavity. The SM effect results in modulation on both amplitude and frequency of the emitted laser power. The modulated 
laser power, we call it as a Self-Mixing Signal (SMS).  

Feedback level factor (FLF) ( C ) is an important parameter in a SMI system. The measurement method for C  has been 
reported in many literatures7-11. In 1997, Merlo presented a calibration method to pre-calculate C  value7. In 2004, Yu8 
proposed a simple and practical method for measuring Line-width Enhancement Factor (LEF) α , meanwhile, C  value 
can also be estimated. In 2005, Xi and Yu9 proposed a gradient-based optimization algorithm to estimate both C  and α . 
However, these methods are all restricted to a certain feedback regime, such as weak or moderate regime. And they 
consider C  value as a constant during the measurements. In practical, it is difficult to keep a constant C  value during 
the measurements. In order to obtain real-time C  values, Bes10 developed a signal processing method under moderate 
feedback regime to joint estimate C , α  and displacement using instantaneous power of the reconstructed signal 
discontinuities. But, the algorithm requires large computation of SMS samples. In 2009, an improved method based on 
the work in10 was proposed in11. 

In this paper, we propose a fast estimation method for C  values based on the analysis of the shape of reconstructed 
waveforms incorporating different pre-set C  values. Applying a derivative operation firstly and then following a high-
pass filtering, a pulse train is obtained from the waveforms. The magnitude and direction of an impulse can be used to 
indicate the deviation between the incorporating and the true C . Finally, a bisection searching algorithm is employed for 
fast determination of the true C  values. The rest of paper is organized as follows: The theoretical model and basic 
theory of SMI are described in section 2. Our estimation method is proposed in section 3. Then, simulation and 
experiment results are presented in section 4 and section 5 respectively. Section 6 concludes the paper. 
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2. BASIC THEORY 
The SMI technology has been extensively studied by various scholars and a widely accepted mathematical model based 
on the Lang and Kobayashi equation12 has been developed. For the use of this paper, the model is rewritten as below: 

( ) ( )0 1P n P mI n= +⎡ ⎤⎣ ⎦                                                                           (1) 

( ) ( )( )cos FI n nφ=                                                                                (2) 

( ) ( ) ( ) ( )0 sin arctanF Fn n C nφ φ φ α= + +⎡ ⎤⎣ ⎦                                          (3) 

( ) ( )0 04n L nφ π λ=                                                                              (4) 

The physical meanings of the parameters in the above model are described in Table 1. 

In the above four equations, there are two important parameters : C  and α . C  is called feedback level factor (FLF) 
which indicates the influence of optical feedback on the behavior of a Laser Diode (LD)13. C  is defined by14, 15. 

( ) 22
1

1

1 1
SL

RC R
R

τη α
τ

= ⋅ ⋅ − ⋅ +                                                                (5) 

Table 1. Meaning of parameters in Eq. (1)-(5) 

n  Discrete time index. 

( )P n  Power emitted by Laser Diode (LD) with feedback 
from external cavity. 

0P  Intensity emitted by the free running LD. 

m  Modulation index for the laser intensity (typically 
310m −≈ ). 

( )I n  Interference function which indicates the influence of 
the self-mixing effect on the emitted intensity. 

C  Feedback Level Factor (FLF).  

α  Line-width Enhancement Factor (LEF). 

( )F nφ  Laser phase when the external target exists. 

( )0 nφ  Laser phase without feedback under free running 
conditions. 

( )L n  Distance between the LD facet and the external 
target. 

0λ  Emitted laser wavelength without feedback. 

τ  External round trip delay. 

SLτ  Round trip time in the LD. 

η  The coupling coefficient of the feedback power. 

1R  Power reflectivity of the laser mirrors. 

2R  Power reflectivity of the external cavity surface. 
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FLF ( )C  determines the possible solution numbers of Eq. (3). For 0 1C< < , Eq. (3) gives a unique mapping between 

( )F nφ  and ( )0 nφ , that is, there is only a single solution in this situation. This range is also known as weak feedback 
regime. The waveform of a SMS is asymmetric sinusoidal like with slight abruptions. For 1C > , there are more than two 
possible solutions in Eq. (3). This situation is referred to moderate regime or high regime in which the waveform reveals 
abrupt transitions with hysteresis. Meaning of parameters appeared in Eq. (5) is listed in Table 1. 

α  is known as line-width enhancement factor (LEF) which is a parameter used for characterizing a LD, such as the line-
width, the chirp, the injection lock range, and the dynamic range. Both theory and its measurement method have been 
studied extensively8, 16. 

3. ESTIMATION METHOD FOR FEEDBACK LEVEL FACTOR C 
The estimation method for C and α  has been extensively studied in our previous works8, 9, 17, 18. In these works, C  is 
assumed as a constant value. However, C  is time varying in practical application. It is important to develop a method 
for real-time estimation of C  values. The displacement carried in a SMS can be reconstructed using phase unwrapping 
technology. The reconstruction needs C  values. We set different pre-estimated C  values (denoted as Ĉ ) for the 
reconstruction. By studying the features of the reconstructed displacement signals ( )L̂ n , we can classify ( )L̂ n  into two 

types (shown in Fig. 1-c and Fig. 1-d). Fig. 1-c contains saw-tooth like fluctuations with Ĉ  is greater than true  C , Fig. 
1-d has step like fluctuations with Ĉ  is less than true C . 
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Figure 1. Reconstruction results with different pre-estimated Ĉ  values. (a) original displacement ( )L n , (b) SMS with 

3, 4C α= = , (c) reconstructed displacement ( )L̂ n  using a over-estimated Ĉ  ( )ˆ 3C > , (d) reconstruction result 

( )L̂ n  using a low-estimated Ĉ  ( )ˆ 3C < . 

 

We can see that the difference between Ĉ  and true C  results in fluctuations on the reconstructed result. In order to 
minimize fluctuations, we process the reconstructed signal by the following steps: 1. Differentiate it to obtain a signal 
( )D n , 2. Let ( )D n  pass a high-pass filter to obtain fluctuations ( )FD n . Figure 2 shows the reconstruction result and 

the filtered fluctuations ( )FD n  with different pre-set Ĉ  values. From Fig. 2 it can be seen that when Ĉ  is getting closer 

to the true value of C , the magnitude of ( )FD n  becomes less and less. Also, we can see that the direction of ( )FD n  for 

Ĉ  less than true C  is always opposite to the case for Ĉ  greater than true C . 
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Figure 2. Displacement reconstruction results and the filtered fluctuations ( )FD n . (a) reconstruction result and ( )FD n  

when ˆ 1C = , (b) reconstruction result and ( )FD n  when ˆ 2C = , (c) reconstruction result and ( )FD n  when 3C =  

which is the true value, (d) reconstruction result and ( )FD n  when ˆ 4C = , (e)  reconstruction result and ( )FD n  

when ˆ 5C = . 

 

According to the above analysis, a fast C  searching algorithm can be implemented based on a bisection method. Figure 
3 shows the block diagram of our method. We usually set the searching range [ ],a b  as [ ]1,30  which can cover moderate 
and strong feedback regimes. For weak feedback regime, C  can be estimated by our previous proposed method19.  

                

φ0(n)=φF(n)+Csin(φF(n)+atan(α))

DF(n) is
minimized

Optimal C

Y

N

Bisection
 method

high-pass
    filter

dφ0/dn

∧

C
∧

     Initial

   C=(a+b)/2
∧

 set searching 
  range [a,b]

DF(n)

D(n)

 

Figure 3. Block diagram for C estimation method. 
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4. SIMULATION 
The proposed method has been firstly tested on simulation SMSs when C  is a constant. Table 2 shows the simulation 
results when considering C  is a constant. For each C , we simulated SMS 10 times with independent additive noise and 
use the average of the estimated Ĉ  values as the estimation result.  

We also test our method on a SMS which is generated by using a time-varying C . Fig. 4-c shows the estimation result 
Ĉ  by using our method. 

Table 2. Simulation results when C  is a constant. 

Moderate Feedback Regime 

True value of C  1.4 2.2 2.6 3.4 4.3 

Estimated Ĉ  1.4014 2.2018 2.5974 3.4008 4.2882 

Std Dev.% 0.52 0.75 0.81 1.49 1.48 

Strong Feedback Regime 

True value of C  4.8 5.3 5.8 6.2 6.9 

Estimated Ĉ  4.7968 5.3048 5.8296 6.2110 6.8954 

Std Dev.% 2.53 2.82 2.3 3.16 4 
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Figure 4. Estimation result when C  is a variable. (a) actual time-varying C  value, (b) a self-mixing signal with the 

time-varying C , (c) estimated Ĉ  value, (d) residual error between actual C  and estimated Ĉ  value. 

 

5. EXPERIMENT 
Figure 5 shows the experimental set-up of our SMI system. The core part of the system consists of a Laser Diode (LD), a 
lens and an external vibrating target. The LD is biased with dc current and the external target vibrates harmonically by 
placing a loud speaker near it. The SMS is acquired by the Photo Diode (PD) connected to an amplifier and then 
obtained by computer via A/D converter with sampling frequency of 200KHz.  

An experimental SMS and the estimation result of C  are shown in Fig. 6. The reconstructed displacement of target is 
also shown in Fig. 6. We can see that the fluctuations have been greatly reduced by using the estimated Ĉ values. 
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Figure 5. A SMI experimental set-up. 
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Figure 6. Experimental estimation result. (a) a SMS acquired from experimental set-up, (b) estimation result Ĉ , (c) 
reconstructed displacement by using the estimated Ĉ values. 

 

6. CONCLUSION  
This paper presents a fast estimation method for the feedback level factor ( C ). By using advance signal processing 
method and bisection method, we can estimate time-varying C  values rapidly based on the analysis of the features of 
reconstructed waveform incorporating different pre-set Ĉ  values. The effectiveness of our proposed method has been 
tested by both simulations and experiments.  
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