Document downloaded from:

http://hdl.handle.net/10251/60277
This paper must be cited as:

Pan, Q.; Ruiz Garcia, R. (2012). An estimation of distribution algorithm for lot-streaming flow
shop problems with setup times. Omega. 40(2):166-180. doi:10.1016/j.omega.2011.05.002.

The final publication is available at

http://dx.doi.org/10.1016/j.omega.2011.05.002

Copyright E|sevier

Additional Information

An estimation of distribution algorithm for lot-streaming
flow shop problemswith setup times

Quan-Ke Pan®, Rubén Ruiz”
*College of Computer Science, Liaocheng University, Liaocheng, 252059, PR China
°Grupo de Sistemas de Optimizacién Aplicada, InstitutoTecnolégico de Informética, Ciudad Politécnica de la

Innovacién, Edifico8G, Acc. B. Universidad Politécnica de Valencia , Camino de Vera s/n, 46022 Valencia, Spain

email: panquanke @ gmail.com, rruiz@eio.upv.es

Abstract: Lot-streaming flow shops have important applications in different industries including textile,
plastic, chemical, semiconductor, and many others. This paper considers an n-job m-machine
lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling
and no-idling production cases. The objective is to minimize the maximum completion time or
makespan. To solve this important practical problem, a novel estimation of distribution algorithm
(EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient
initialization scheme based on the NEH heuristic is presented to construct an initial population with a
certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the
algorithm search towards good solutions by taking into account both job permutation and similar
blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A
diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a
speed-up method is presented to reduce the computational effort needed for the local search technique
and the NEH-based heuristics. A comparative evaluation is carried out with the best performing
algorithms from the literature. The results show that the proposed EDA is very effective in comparison
after comprehensive computational and statistical analyses.

Keywords: Flow shop scheduling; Lot-streaming; Estimation of distribution algorithm; Makespan;

Sequence-dependent setup times.

1. Introduction

The permutation flow shop scheduling problem is one of the most extensively studied combinatorial

optimization problems. It has important applications, among others, in manufacturing systems,

*Corresponding author. Tel: +34 96 387 70 07, ext: 74946. Fax: +34 96 387 74 99

1

assembly lines and information service facilities in use nowadays. In a traditional flow shop, there are n
jobs that have to be processed on m machines. All jobs visit the machines in the same sequence. Each
job is assumed to be indivisible, and thus, it cannot be transferred to the downstream machine until the
whole operation on the preceding machine is finished. Nevertheless, this is not the case in many
practical environments where a job or lot consists of many identical items. For example, in the fastener
production process, jobs are batches of thousands of bolts, dowels, or rivets. The whole batch does not
need to be finished in order to move on to the next machine. Another example comes from the
electronics and semiconductor production environment where a job comprises thousands of identical
electronic components and again it is not necessary to wait for all items in the lot to be completed
before moving to the downstream machine. In order to accelerate production, a job is allowed to
overlap its operations between successive machines by splitting it into a number of smaller sub-lots and
moving the completed portion of the sub-lots to downstream machines (Yoon and Ventura (2002a)).
More examples arise in the ceramic tile sector where batches of ceramic tiles are composed of literally
thousands of ceramic tiles. When going from the molding and glaze decoration lines to the kiln firing
machines, the whole batch of tiles does not need to be fully completed and overlapping is desirable in
practice. The process of splitting jobs into sub-lots is usually called lot-streaming, which was first
introduced by Reiter (1966) and has become one of the most effective techniques used to implement
time-based strategies in today’s global competition (Chang and Chiu (2005), Sarin and Jaiprakash
(2007)). Generally, there are two different production situations when processing the sub-lots of a job,
namely, the idling case and no-idling case. In the no-idling case, jobs must be continuously processed
without interruptions (i.e., idle time) between any two adjacent sub-lots of the same job. The idling
case allows idle time on machines. It is known that makespan based on the idling case is shorter than
that based on the no-idling case under the same sub-lot type (Chang and Chiu (2005)). However, both
cases have their respective practical applications in today’s competitive production environments. With
regards to the potential benefits of lot streaming, they are mentioned by Truscott (1986) as follows: (a)
reduction in production lead times (thus, leading to better due-date performance); (b) reduction in
work-in-process inventory and associated costs; (c) reductions in interim storage and space
requirements, and (d) reduction in material handling system capacity requirements. Therefore, in recent
years, lot streaming has received extensive attention and has been applied to flow shop scheduling
problems starting with the work of Tseng and Liao (2008).

Setup times involve non-productive operations such as cleaning, obtaining or adjusting tools, fixing
or releasing parts to machines, and others. Setup times are very important in practice as noted in
Allahverdi and Soroush (2008). Although they are not part of the job processing times, these operations
have to be done prior to the processing of the jobs. Setup times can be broadly classified in two
categories (Allahverdi, Gupta and Aldowaisan (1999), Allahverdi et al. (2008)). The first category is
referred to as sequence-independent setup, where setups depend only on the machine and on the next
job to be processed. The second one is sequence-dependent setup, in which setups depend not only on
the job to be processed next but also on its immediately preceding job on the same machine. An
example is given by Ruiz and Allahverdi (2007): in the painting industry, after producing a black paint,

substantial cleaning must be performed if one intends to produce a white paint, while less cleaning is

necessary if a batch of dark grey paint is to be produced. On the other hand, almost no cleaning is
required when production is changed from a sub-lot of the black paint to another one of a similar black
paint.

This paper considers lot-streaming flow shop scheduling problems with sequence-dependent setup

times, with important applications, as commented, in textile, plastic, chemical and semiconductor

industries. Without loss of generality, this problem is denoted as Fm,Ln| prmu, SY}d|Cmax by using the

well known a/fB/y notation with the extensions of Chang and Chiu (2005) and Allahverdi, Gupta and

Aldowaisan (1999), where ST,, represents the sequence-dependent setup time and F, and L,

stand for the n-job m-machine lot-streaming flow shop configuration. The permutation flow shop
scheduling problem under makespan criterion is already NP-Hard as was shown by Garey, Johnson and
Sethi (1976) (for three or more machines, i.e., m=3). Since we consider lot-streaming and
sequence-dependent setup times, the studied problem is also NP-Hard.

Estimation of distribution algorithms (EDA) were introduced by Miihlenbein and Paass (1996). EDA
are a class of novel population-based evolutionary algorithms. Unlike traditional evolutionary
algorithms, EDA samples new solutions from a probabilistic model which characterizes the distribution
of promising solutions in the search space at each generation. Due to its effectiveness and search ability,
EDA has recently attracted much attention in the field of evolutionary computation (Larrafiaga and
Lozano (2002)), and it has already been applied to solve combinatorial optimization problems,
including the flow shop scheduling problem in Jarboui, Eddaly and Siarry (2009) or more complex
hybrid flow shop settings in Salhi, Vdzquez Rodriguez and Zhang (2010). Therefore, EDA seems like a
promising venue of research for the studied scheduling problem. However, to the best of our
knowledge, there is no published work dealing with the lot-streaming version of flow shop scheduling

problem using EDA, let alone with sequence-dependent setup times. In this paper we study this
important and practical F,,,L,|prmu,ST,;|C,,,, problem. Furthermore, both the no-idling and idling

cases are considered. The proposed EDA makes extensive use of some effective techniques like an
NEH-based initialization, a sequence-representation-based probabilistic model, diversity measures and
an insert-neighborhood-based local search. Computational experiments and statistical comparisons
show that the proposed EDA outperforms the best performing algorithms that have recently appeared
for solving the lot-streaming flow shop scheduling problem.

The rest of the paper is organized as follows: In section 2, the literature on the lot-streaming flow
shop scheduling problem is reviewed. In section 3, the lot-streaming flow shop scheduling problem
with sequence-dependent setup times is stated and formulated. Section 4 gives a brief introduction to
the basic EDA methodology and presents our proposed EDA method in detail. Section 5 contains the
calibration of the proposed EDA. The computational results and comparisons are provided in section 6.

Finally, concluding remarks are presented in section 7.

2. Literaturereview

Having so many practical applications, lot-streaming has been extensively studied in the academic as

well as in the industrial fields since the late 1980s (Chang and Chiu (2005)). Some papers deal with

single-job lot-streaming problems, where the main goal is to determine the best allocation of sub-lots or
the size of each sub-lot so as to minimize some given performance measures.

There are some important theoretical or basic results to highlight. First, Potts and Baker (1989)
indicated that it was sufficient to use the same sub-lot sizes for all machines as regards makespan
criterion. This is an important result for the flow shop problem as different number of sub-lots for the
machines would complicate the problems significantly. However, it remains to be seen if this result
holds when sequence-dependent setup times are present. Furthermore, Baker and Jia (1993) showed
that makespan improved with the number of sub-lots. While this is an expected result (the more
sub-lots the higher the machine utilization), the paper of Baker and Jia (1993) actually quantifies and
deeply studies the effect. Lastly, Trietsch and Baker (1993) generalized some important structural
properties by reviewing the different forms of single-job lot-streaming in the literature.

Apart from these theoretical results, many papers have been published where different lot-streaming
flow shop settings and objectives are studied. Many of them are now discussed in chronological order.
Kropp and Smunt (1990) presented optimal sub-lot size policies and two heuristic methods for
flowtime minimization in a flow shop setting with no additional constraints. Vickson and Alfredsson
(1992) studied the effect of batch transfer in a two-machine and special three-machine flow shop
problems with unit-size sub-lots. Cetinkaya (1994) proposed an optimal transfer batch and scheduling
algorithm for a two-stage problem with separated setup, processing and removal times. Vickson (1995)
examined a two-machine problem involving setup and sub-lot transfer times with respect to both
continuous and integer valued sub-lot sizes and some exact algorithms were presented. Sriskandarajah
and Wagneur (1999) presented an efficient heuristic for solving the problem of simultaneous
lot-streaming and scheduling of multiple products in a two-machine no-wait flow shop. For the
m-machine lot-streaming flow shop problem, Kumar, Bagchi and Sriskandarajah (2000) extended the
approach presented by Sriskandarajah and Wagneur (1999) to the m-machine case. Later, Kalir and
Sarin (2001) proposed a bottleneck minimal idleness heuristic to sequence a set of batches to be
processed in equal sub-lots for minimizing makespan. Yoon and Ventura (2002b) developed sixteen
pairwise interchange methods to optimize the mean weighted absolute deviation from due dates. To the
best of our knowledge, this is the first study about lot-streaming flow shop involving due dates.
Bukchin, Tzur and Jaffe (2002) examined the optimal solution properties and developed a solution
procedure for a two-machine flow shop scheduling problem with sub-lot detached setups and batch
availability. Liu (2003) proposed a heuristic method for discrete lot streaming with variable sub-lots in
a flow shop. Kalir and Sarin (2003) developed a near optimal solution procedure for the determination
of the number of sub-lots as well as the sequence in a flow shop lot streaming problem with
sub-lot-attached setups.

Zhang et al. (2005) developed two heuristic algorithms for the multi-job lot-streaming problem in a
two-stage hybrid flow shop with the objective to minimize the mean completion time of the jobs.
Marimuthu and Ponnambalam (2005) proposed a genetic algorithm (GA) and a simulated annealing
(SA) for lot streaming in a two-machine flow shop to minimize makespan. Liu, Chen and Liu (2006)
studied the multi-product variable lot streaming in a flow shop. A hybrid heuristic was applied for

determining product sequences, lot streaming reallocation machines, and lot streaming ranges by

combining a tabu search (TS) with simulated annealing (SA). Additionally, a linear programming
model was used to find the minimal makespan and lot streaming for each machine and each product.
Feldmann and Biskup (2008) provided a mixed integer programming formulation for the multi-product
lot streaming problem in a permutation flow shop with intermingling of sub-lots from different jobs.
While in this paper we do not consider intermingling, (where not all sub-lots of the same job follow
one another in a sequence), it is a very promising venue of research.

Recently, more complex single-job lot-streaming problems were addressed. Liu (2008) investigated
the continuous version of the problem and provided optimal and heuristic solution methods for the
general problem. Edis and Ornek (2009) proposed a heuristic by combining simulation and tabu search
to minimize the makespan for a single-product multistage stochastic flow shop problem with consistent
sub-lot types and discrete sub-lot sizes. Kim and Jeong (2009) proposed a self-adaptive genetic
algorithm for scheduling a flow shop problem with no-wait flexible lot-streaming constraints, where
the splitting of order quantities of different products into sub-lots and alternative machines with
different processing times was dealt with. Martin (2009) presented a hybrid genetic
algorithm/mathematical programming approach for a multi-family flow shop scheduling problem with
lot streaming.

Most of the literature studies the lot streaming flow shop scheduling problem with fixed sizes of
sub-lots under the non-intermingled case. For example, Yoon and Ventura (2002b) presented a hybrid
genetic algorithm (HGA) to minimize the mean weighted absolute deviation of job completion times
from their due dates. Tseng and Liao (2008) developed a discrete particle swarm optimization (DPSO)
algorithm. It was shown by the authors that their DPSO algorithm performed much better than the
HGA proposed by Yoon and Ventura (2002b) for solving 900 randomly generated instances. More
recently, Pan et al. (2010) presented a discrete artificial bee colony (DABC) algorithm which
outperformed both previous DPSO and HGA algorithms. Marimuthu, Ponnambalam and Jawahar
(2007), (2008) and (2009) applied a tabu search (TS), simulated annealing (SA), hybrid genetic
algorithm (HGA), ant colony optimization (ACO) and threshold accepting (TA) algorithms,
respectively, to deal with both makespan and total flow time criteria for a flow shop problem involving
setup times. For multi-objective problems, Huang and Yang (2009) presented a scheduling mechanism
and an ant colony optimization heuristic for an overlap manufacturing problem with various ready
times and sequence-dependent setup times.

As we can see from the previous review, and to the best of our knowledge, no metaheuristic has been
applied to minimize the makespan in the n-job m-machine lot-streaming flow shop problem with
sequence-dependent setup times. A comprehensive review of scheduling problems involving

lot-streaming can be found in Chang and Chiu (2005) and in Sarin and Jaiprakash (2007).

3. Lot-streaming flow shop scheduling problem

This paper considers an n-job m-machine lot-streaming flow shop scheduling problem. The

statement of the problem and an illustrative example are described in this section.

3.1. Statement of the problem

We assume that each job j can be split into a number [(j) of smaller sub-lots with equal size such
that /(j) is the same for all machines. This follows the research work of Yoon and Ventura (2002a),
Yoon and Ventura (2002b), Tseng and Liao (2008); Marimuthu, Ponnambalam and Jawahar (2007),
(2008) and (2009). Once the processing of a sub-lot on its preceding machine is completed, it can be
transferred to the downstream machine immediately. However, all I(j) sub-lots of job j should be
processed continuously as no intermingling is allowed. A separable sequence-dependent setup time is
necessary for the first sub-lot of each job j before it can be processed on any machine k. Furthermore, at
any time, each machine can process at most one sub-lot and each sub-lot can be processed on at most
one machine. Let the processing time of each sub-lot of job j on machine k be p(k, j), and the setup
time of job j on machine k, after having processed job j’is s(k, j', j). For simplicity, let s(k, j, j)
represent the setup time of job j if it is the first job to be proceeded in the machine. The objective is to

find a sequence with the optimal sub-lot starting and completion times to minimize the makespan.

Let a job permutation 7={n,7n,,..,7,} represent the sequence of jobs to be processed, and
ST(k, j,e) and CT(k, j,e) denote the earliest start time and the earliest completion time of the em
sub-lot of job j on machine k, respectively. C,..(77) denotes the makespan of the schedule under

permutation 71. Then, for the idling case, C

‘max (/1) can be calculated as follows:

ST (1, 1) =s{, 7, 1m)

CT (1, 7,1) =ST (1, 1)+ p(1,71)

ST (k, 5£1) =max{ CT (k -1, 1.1), s(k, 1,71)}, k=23,..m
CT (k, 1) =ST (k, t,1) + p(k,71), k=23,..m

(D

ST, 7,e) =CT (1, T,e 1), e=23,.,1(7T)

CT (1, e) =ST(, m.e)+p(l, 1), e=23,..1(7) @)
ST (k, 7re) =max{CT (k -1, 75,e),CT (k, e =)}, e =23,.,1(7T),k =23,..m

CT (k, me) =ST(k, m.e) +p(k, 7T), e =23,..1(70),k =23,..m

ST, m)=CT (1, 7. (7)) +s(, 7, 7T), i=23,...n

CT(,) =ST(,)+ p(,7m), i=23,...n

ST (k,) =max{ CT (k =1, 711),CT (k, 70,,1(77.)) +s(k, 7T, 7T)}, ©)
i=23,..n,k=23,... m

CT (k, 71.1) =ST (k, 1) + p(k,7T), i=23,..n,k =23 .,m

ST(, 7he) =CT (I, e =1), i =23n e =23, 1(7T)

CT(, 7e) =ST(L, 7e) + p(LL /), i =23un,e=23,..1(7T)

ST (k, 7,e) = max{ CT (k —1, 77,),CT (k, 7T e 1)}, “)
=23, e =230 (7). k =23, m

CT (k, e) =ST(k, e) +plk,), i =23vsnt,e =230 [(TT).k = 23,0000 m

Coax (77 =CT(m, 177,,1(1T,)))

Correspondingly, C,,.. (77 for the no-idling case is calculated as follows:

ST (1, ;1) =s(1, m,m,)
CT (I, mI(/) =8T (1, g1y +1(m)*x p(,m)

(6)

CT(k -1, mI() =U(7F) =D X p(k.)}, k =230sm (7)
CT (k, fl(@) =ST(k, .0) +1(75)x p(k, 7)), k=23,..m

{ST(k, i) =max{s(k, 7 7),ST(k =1, 73.1) + p(k =1, 1)),
{ST(I, al) =CT(, 7, (m)) +s(, 7. 7)), i=23...n

(3)
CT(, ml(@) =STQ,) +I(m)x p(l,m), i=23,..n
ST (k, 17.1) =max{ ST (k =1, 77.1) + p(k =1, 7T;),
CT(k -1, ml(m) —U(m)-1)x p(k,m;), ©)
CT (k, 17T, 1(77.,) +s(k, T, 7T)}, i =23 mk =23,...m
CT (k, ml(@) =ST(k, 7.1) +I(m)x p(k. 1)), i=23,..nk=23,..m
Conax (77= CT(m, 75,,1(77,)) (10)

Then the objective of the lot streaming flow shop scheduling problem with makespan criterion is to
find a permutation 7 in the set of all permutations 1 such that

Conax (78 Cpoge (70,0 70N
(11

In equation set (1), the first and third equations specify the earliest start time for the first sub-lot of
job 75, where both the completion time of the sub-lot on the previous machine and the setup time of
the job on the current machine are considered. The second and fourth equations calculate the
completion times, making sure that preemption of jobs is not allowed. Equation set (2) controls the
earliest start time and the earliest completion time for the successive sub-lots of job 77, which ensure
that sub-lots of the same job are processed continuously. Equation sets (3) and (4) contain the
calculations for the sub-lots of the following jobs in the sequence. When calculating the start time for
the first sub-lot of a job in set (3), we take into account the completion time of the previous job on the
current machine, the completion time of the sub-lot on the previous machine, and the setup time of the
job on the current machine. Finally, from equation (5), we can see that the makespan is equivalent to

the completion time of the last sub-lot of the last job 77, on the last machine.

Equation sets (6)-(10) consider the makespan for the no-idling case. In sets (6) and (7), the top

equations give the earliest start time for the first sub-lot of job 77. We can see that the earliest start

time is equal to the maximum value among the setup time of the job on the current machine, the
completion time of the first sub-lot on the previous machine, and the difference between the completion
time of the whole job on the previous machine and the total processing time of the whole job on the
preceding machine except the last sub-lot, which ensures that no idling interruption time exists between
any two adjacent sub-lots of the same job. The bottom equations calculate the earliest completion time

for the last sub-lot of job 77. Sets (8) and (9) control the calculation of the subsequent jobs in the

permutation. Different from sets (6) and (7), we need consider the completion time of the last sub-lot of

the previous job on the preceding machine when calculating the earliest start time.

3.2 lllustrative example

The following example illustrates the calculation for a four-job, three-machine instance with a given

permutation 71 ={1,2,3,4} . Let us give the necessary data for the example:

[l(j)]1><4 = [2,2,1,2], i.e., jobs 1, 2 and 4 contain two sub-lots and job 3, just one sub-lot.

21 217211172122
4325 Pror 1| |22 2 20 {111
ky')(:22239 k"'7.><x=
[k,)5 [sCk. 7' Dl 121 2|1 21201t 112
2235
211 1] 111 1] 1221

For the idling case, the makespan is calculated below and the Gantt chart is shown in Fig. 1.
STALLY) =s(LL)=2. CTALD =STALL) +p(1l) =2+4=6.
ST(2.1,1) =max{CT(L,11), s(2.11} =max{6,2} =6. CT(2.11) =ST(2.L1) +p(2.]1) =6+2=8.
STG.L1) =max{CT(2.1.1), s@.11)} =max{8.2} =8. CT@B.L1) =ST@.LD) +p3.1) =8+2=10.
ST(11,2)=CT(LLY=6. CT(11,2) =ST(1,1,2) +p(Ll) =6+4=10.
ST (2.1,2) =max{CT(1.1,2).cT(2.11)} =max{10.8} =10. CT(2,1,2) =ST(2.1,2) +p(2.1) =10+2=12.
ST(3.1,2) =max{CT(2.1,2), T (3,11} =max{12,10} =12. CT(3.12) =ST(3.1.2) +p(3.]) =12+2=14.
ST(1,2,)) =CT(1L,12) +s(1,1,2) =10+1=11. CT(1,2,]) =ST(1,2,) +p(1,2) =11+3=14.
ST2.2.1) =max{CT(1,21),CT(2.1.2) +s(2.1.2)} = max{14,12 +1} = 14.
CT(2,.2,)) =ST(2,2,1) +p(2,2) =14+2=16.
ST(3.2.1) =max{CT(2.2.1),cT(3,1,2) +5(31.2)} =max{16,14 +1} =16.
CT(3,2,]) =ST(3,2,1) +p(3,1) =16 +2 =18 and so on until C,, =CT(3,4,2)=40.

m

3 / MERIE 71+ 1 ¢+ |
0 VM MEEYVR U1+] [4]
AEN7 7

0 5 10 15 20 25 30 35 40

Fig. 1. Gantt chart for the idling case example.

For the no-idling case, the makespan is calculated below and the Gantt chart is shown in Fig. 2.
ST(LL) =s(1,L1)=2. CT(11,2) =ST(L1) +(1) xp(l,]) =2 +2x4 =10.
ST(2.1,1) =max{s(2.11),ST(LL1) +p(L1),CT(1.1,2) (1) 1) xp(2.)} =max{2,2 +4,10 ~1x2} =8.
CT(2,1,2) =ST(2,1,1) +I(1) xp(2,]) =8 +2x2=12.
STG.L1) =max{s(3.11), ST(2.11) +p(2.1),CT(2.1,2) «(I(1) —1) xp(3.1)} =max{2.8 +2,12 -1x2} =10.
CT(3,1,2) =STBRLD) +I1(1)x p3,1) =10+2x2=14.
ST(1,2,1) =CT(1L,1,2) +s(1,1,2) =10+1=11. CT(1,2,2)=ST(1,2,1)+1(2)x p(1,2) =11+2x3=17 .
ST(2.2.1) = max{ST(1,2,1) + p(1,2), CT(1,2,2) - (1(2) — 1) x p(2.2),CT(2.1,2) + s(2.1,2)}
=max{l1 +3,17 -1x2,12 +} =15
CT(2,2,2) =ST(2,2,]) +1(2) xp(2,2) =15 +2%x2 =19 .
ST(3,2,1) = max{ST(2.2.1) + p(2.2).CT(2,2.2) - (1(2) - 1) x p(3.2),CT(3.1,2) + 5(3.1,2)}
=max{15 +2,19 -1 x2,14 +1} =17
CT(322) =ST(3,2,1) +1(2) xp(3,2) =17 +2x2 =21, and so on until C,, =CT(3,4,2)=42.

3 7z
2 7 212V A 414]
AEN7 7

15 20

25 30 35 40

0 5 10

Fig. 2. Gantt chart for the no-idling case example.

4. Proposed EDA for the lot-streaming flow shop problem

EDA is a new metaheuristic methodology proposed by Miihlenbein and Paass (1996), which is based
on populations that evolve within the search process and has a theoretical foundation in probability
theory. Instead of using the conventional crossover and mutation operations of regular genetic
algorithms, EDA adopts a probabilistic model learned from a population of selected individuals to
produce new solutions at each generation. Starting from a population of PS randomly generated
individuals, EDA estimates a probabilistic model from the information of the selected Q individuals in
the current generation, and represents it by conditional probability distributions for each decision
variable. M offspring are then sampled in the search space according to the estimated probabilistic
model. Finally, the next population is determined by replacing some individuals in the current
generation with new generated offspring. The above steps are repeated until some stopping criterion is
reached. The pseudo code for the basic EDA is summarized as follows (Larrafiaga and Lozano (2002)):

begin
Generate a population of PS individuals randomly;,
Calculate fitness for each individual;
while termination criterion not met, do
Select Q individuals and estimate a probabilistic model;
Sample M offspring from the estimated probabilistic model;
Evaluate the M generated offspring;
Generate new population;
end while
end

We now detail the proposed EDA for solving the lot-streaming flow shop scheduling problem
involving sequence-dependent setup times to minimize makespan. We explain the solution
representation, population initialization, probabilistic model, generation of new individuals, population

update, local search procedure and a diversity controlling mechanism in the next sections.
4.1. Solution representation and population initialization

One of the key issues when designing EDA lies in the solution representation where individuals bear
the necessary information related to the problem domain at hand. The permutation based representation
indicates the job processing order by machines. This representation has been widely used in the

literature for a variety of permutation flow shop scheduling problems (Ruiz, Maroto and Alcaraz (2006),

Vallada and Ruiz (2010), Jarboui, Eddaly and Siarry (2009)). Therefore, we also employ it in this study.

The EDA method is formed by a population of PS individuals or n-job permutations. To guarantee an
initial population with a certain level of quality and diversity, a common trend is to construct a few
good individuals by effective heuristics and to produce others randomly. This initialization approach
ensures a faster convergence to good solutions, and it is widely used in evolutionary algorithms
developed for traditional flow shop scheduling problems (Vallada and Ruiz (2010)). It has been long
known that the NEH heuristic (Nawaz, Enscore and Ham (1983)) is a high performer for flow shop
scheduling problems under different scenarios (Framinan, Leisten and Rajendran (2003), Ruiz and
Maroto (2005), Rad, Ruiz and Boroojerdian (2009)). In this research, we extend it to handle the studied
problem, and obtain two heuristics, referred to as NEH1 and NEH2, respectively. The NEHI is
obtained by modifying the objective evaluation in the basic NEH heuristic with the calculations
described in section 3. NEH1 can be described as follows:

Step 1: An initial permutation 7&{ 7 78,...,7T,} is generated by sorting jobs in decreasing sum of

their total processing times, i.e., i plk, HXI(J), j=12,..,n.

k=1
Step 2: A job permutation is established by evaluating the partial sequences based on the obtained

initial order. Suppose a current sequence /& { 7{, 75,,7'[1} is already determined for the first

i jobs of the initial permutation 77, then i+1 partial sequences are constructed by inserting
job 7z, into the i+1 possible positions of the current sequence. Among these i+1 partial

sequences, the one with the minimum makespan is kept as the current sequence for the next
iteration. This step is repeated by considering job 7Z,, and so on until all the jobs have been

scheduled.
NEH?2 has the same steps as NEH1 with the exception that the step 1 is modified as explained below:

Step 1: An initial permutation 7F{ 7, 7%,...,7T,} is generated by sorting jobs in decreasing sum of
m n
their total processing times and mean setup times, i.e.,Z(p(k, j)xl(j)+Zs(k, j',j)/1),
k=l j=l
j=12,..,n.

There are a total of (n—1)(n+2)/2 partial sequences generated in step 2, so the computational
complexity is O(mn3) in both no-idling and idling cases using the calculations presented in section 3.
For the basic NEH heuristic, a speed-up method was proposed by Taillard (1990) resulting in an

improved complexity of O(mnz). Later, the method was extended to the permutation flow shop

problem with setup times (Rios-Mercado and Bard (1998)), no-wait flow shop problem (Pan,
Tasgetiren and Liang (2008), Pan, Wang and Qian (2009)), no-idle flow shop problem (Pan and Wang
(2008)), blocking flow shop problem (Wang et al. (2010)), and others. Accelerations are very effective
for flow shop problems. Rad, Ruiz and Boroojerdian (2009) stated that a very efficient NEH
implementation with accelerations results in CPU times of only 77 milliseconds for instances as large
as 500%x20 on a PIV 3.2 GHz PC computer. Non accelerated versions can take up to 30 seconds for
the same problem size. Therefore, we propose makespan calculation accelerations for the lot-streaming

flow shop problem with setup times, which results in NEH1 and NEH2 to have a computational

complexity of just O(mn*) . This acceleration is now explained below:

10

Let STb(k, j,e) be the latest start time of the " sub-lot of job j on machine k in the backward pass

calculation, that is, we proceed from the end of the sequence to the beginning. The procedure to

evaluate the i+1 partial sequences when inserting job 7z,, into the i+1 possible positions of the
partial permutation /& { 7{, 7'5,,7'[1 } can be simplified in the following way:

Step 1: Get CT(k, 77,I(77,)) for z=12,.,i and k=12,..m.

Step 2: Get STh(k,7.,1) for z=i,i=2,.,01 and k=m-1m=2,.,1.

Step 3: Repeat the following steps until all possible positions ¢q, ¢g={1,2,....i+1}, of the
permutation /& { 7{, 7'5,...,77;} are calculated:

Step 3.1: Insert job 7z,, into position ¢ and generate a partial permutation 7".

Step 3.2: Calculate CT (k, 77,.1(1r,)) by using the previously calculated CT (k, 77,_,.1(71,_,)) ,
where k =1,2,...,m . Note that né =11, .

Step 3.3: The makespan of the permutation 71" is given as follows (see in Figs 3 and 4):

Croax (79 =max (' (CT (k, LI(7)) +s(k, 77, 7))+ STh(k,T,.1)) .

STH1.2,1)

\J

STH2.2,1)
m STH321)

7l B 1+ 1+ e/
N7 N RN 8% |
] 4 [4 2 [VR

30 3

(98]

—_

0 5 10 15 20 25 5 40
CT142) >
CI242)
CT342)
- Crnax >

Fig. 3 Insert job ‘4’ into the second position of the permutation 71 ={1,2,3} .Idling case.

STH1.2,1)

ST
” ST

miZ00
07,

-

A 2 Tof1 /Il
0 5 10 15 20 25 30 35 40
-« CT(1,42y—>
-« CT2 42—
-« (73,42 ———»
- Cinax >

Fig. 4 Insert job ‘4’ into the second position of the permutation 71 ={1,2,3}. No-idling case.

Clearly, both NEH1 and NEH2 heuristics result in a computational complexity of O(mn*) by using

the above procedure to evaluate the generated partial sequences. With the presented NEH1 and NEH2,

we propose a population initialization procedure with both a high quality and a high diversity as

11

follows:

Step 1: Generate an individual using NEH1.

Step 2: Generate an individual using NEH?2. If it is different from the individual generated by NEH1,
put it into population; otherwise discard it.

Step 3: Randomly produce an individual in the solution space. If it is different from all existing
individuals, put it into the population; otherwise discard it. Repeat Step 3 until the population

has PS individuals.
The PS individuals of the population are always stored in ascending order of their makespan values.

4.2. Selection operator and probabilistic model

The probabilistic model construction represents the main part of the EDA method, which is
estimated from the genetic information of the individuals chosen from the population by a selection
operator. In classic evolutionary algorithms, roulette and tournament selection operators are commonly
used. Such selection operators either require fitness and a mapping calculation or the individuals to be
continuously compared and sorted. In this paper, we select the Q best individuals from the population
to estimate a probabilistic model. Since individuals are stored in ascending order of their makespan
values, we can complete the operator by selecting the first Q individuals in the population. This results
in a very fast selection operator.

The performance of the EDA is closely related to the probabilistic model, and obviously, a good
model can enhance the algorithm’s efficiency and effectiveness for optimizing the problem considered.
Thus, the best choice of the model is crucial for designing an effective EDA. For solving the
permutation flow shop scheduling problem with total flowtime criterion, Jarboui, Eddaly and Siarry
(2009) presented a probabilistic model based on both the order of the jobs in the sequence and on

similar blocks of jobs present in the selected individuals, which is described as follows:

Let 0;; be the number of times that job j appears before or in position i in the selected
individuals, and 7 ;, ; (i) the number of times that job ;j appears immediately after job ;' when job
Jj' is in position i—1. Then, 7, ; =4 Xp;; and U (i) = 0, XT; (i) indicate the importance of
the order of jobs and of the similar blocks of jobs in the selected sequences, respectively, where &

and J, are two parameters used for the diversification of the solutions. Then, the probability for

positioning job j in the i"™ position of the offspring is determined by:
Nij > My ;@)
ZIDQ(i)”i,I XM (@)

where Q(i) is the set of jobs not scheduled until position i and j' is the job in the (i —1) position

Cti,j =

12)

of the offspring.

There are some shortcomings in the EDA model presented by Jarboui, Eddaly and Siarry (2009).
First, as shown in Ruiz, Maroto and Alcaraz (2006), there are many similar blocks of jobs within the
individuals’ sequences in the latter stages of evolutionary methods. If these blocks are disrupted, the

algorithm has a high probability to produce offspring with worse makespan values. These similar

12

blocks may occupy the same positions or different positions. However, only the blocks in the same

positions are considered by Jarboui, Eddaly and Siarry (2009). Second, according to the definition of
T; ;(i),itis equal to zero when i =1, since job j is the first job in the sequence and no job j’ is located
before it. This results in the probability of selection of any job j in the first position to be always equal

to zero. In other words, the first job of the offspring is determined randomly and not according to

genetic information. Finally, if at an early stage of the algorithm there are not enough blocks in the
same position, and 7 ; ; (/) is equal to zero for most of jobs, only a few jobs with 7, ;({)) >0 are
selected for producing offspring. Thus, the population easily looses diversity. To address the above
shortcomings, we present a new probabilistic model, which is now detailed:

Let A j.j Trepresent the number of times that job j appears immediately after job ;' in the selected
individuals, which indicates the importance of similar blocks of jobs not only in the same positions but
also in different positions as well. Then, the probability of placing job j in the i™ position of the

offspring is given by:

Py =1
ZIDQ(I') Pi -
5,'._/ = o, + /]_/'../
P i /‘”'
Zmﬂ iy Pt ZIDQ(!) I i=23,..,n

2

An example with four jobs is used to illustrate the presented probabilistic model. Suppose the

selected individuals are 71(1) ={1,2,3,4}, 7n(2)={2,3,4,1} and n(3) ={1,4,2,3}. Therefore, P and

A ;are given below:

21 0 0 -1 1
2 21 1 0O - 30
[pi,j]4x4 - 2 3 2 2 [Aj':j]4x4 - 00 - 2
3333 1 1 0 -

Then, we calculate the probability of selection of each job in Q(1) ={1,2,3,4} for the first position
as follows: &, =2/(2+1)=0.67, &, =1/2+1)=0.33, &;=0/2+1)=0, ¢, =0/2+1)=0.
Suppose job 1 was selected for the first position and Q(2)={2,3,4}, then we calculate the
probability of section of each job in Q(2) ={2,3,4} as follows:
$0 =(2/2+1+D)+1/A+0+1))/2=0.5, &3 =1/2+1+1)+0/1+0+1))/2=0.125,

S0 =1/2+1+1D)+1/1+0+1))/2=0.375.

4.3. Generation of new individuals and population update

Inspired by the algorithm developed by Rajendran and Ziegler (2005) and the DPSO algorithm by
Tseng and Liao (2008),we present a procedure to generate a new sequence JE&{ 7;; @,,ZT” }.

Starting from an empty sequence, the procedure constructs 71" by choosing a job for the first position,

followed by choice of the second job, and so on. The pseudo code of the constructing procedure is

13

given as follows:
begin
for i=1 ton do
if rand() <& then

Choose the first unscheduled job in the reference sequence.
else

Select job j according to probability c,z,»,j .
endif
endfor
end
In the above procedure, & is a control parameter; rand() is a function returning a random

number sampled from a uniform distribution between 0 and 1. The reference sequence is randomly

chosen from the selected individuals for estimating the probabilistic model. When rand() = €, we

randomly select & jobs from the unscheduled job set and the job with the largest &;, ;j is put into the

i" position of the new sequence 77'. To generate M offspring, the above procedure is repeated M

times so to sample M offspring from the probabilistic model.

Another aspect considered in the EDA is the population update for the next generation. To maintain
the diversity of the population and to avoid cycling the search, the population is updated in the
following way (Ruiz, Maroto and Alcaraz (2006)):

Step 1: Set i=1.

Step 2: If offspring i is better than the worst individual of the population and if there is no other

identical individual in the population, replace the worst individual by i, otherwise, discard i.

Step 3: Set i =i+1,if i<M , go to step 2; otherwise stop the procedure.

4.4, Local search

It is natural to add a local search into the EDA to carry out intensification. We employ a local search
based on the job insertion operator, which is very suitable for performing a fine local search and that is
commonly used to produce a neighboring solution in the flow shop literature (Ruiz and Stutzle (2007),
Vallada and Ruiz (2010)). In this local search, a job is extracted from its original position in the
sequence and reinserted in all other n —1possible positions. If a better makespan value is found, the
solution is replaced. We repeat the procedure until no improvements are found. According to the
extraction order of jobs in the first step, the local search can be classified as referenced local search

(Pan, Tasgetiren and Liang (2008)) and local search without order (Ruiz and Stutzle (2007)). Let
#={ 1, 2,71’} denote the best job sequence found so far, and 7n={n,,n,,.,7n,} be a
sequence that undergoes local search. Then the referenced local search is described as follows:

Step 1: Set i =1 and a counter Cnr toO.
Step 2: Find job i in permutation 77 and record its position.

Step 3: Take out job % from its original position in 72. Then insert it in another different
position of 71, and adjust the permutation accordingly by not changing the relative positions

of the other jobs. Consider all the possible insertion positions and denote the best obtained
sequence as 77",

Step 4: If 71 is better than 71 , then set 77= 7 and Cnt=0 ; otherwise set Cnt =Cnt +1.

14

i+l i<n
Step 5: If Cnt<n.let i ={ L i=n’ and go to step 2, otherwise output the current permutation

l1=n

71 and stop.
The local search without order is sensibly different:

Step 1: Set counter Cnt =0.

Step 2: Remove a job at random from its original position in 71 without repetition. Then insert it
in another different position of 77, and adjust the permutation accordingly by not changing
the relative positions of the other jobs. Consider all the possible insertion positions and denote

the best obtained sequence as .
Step 3: If 7 is better than 71, then let 7= 7"
Step 4: Let Cnt =Cnt+1.1If Cnt <n, go to step 2.
Step 5: If the permutation 71 was improved in the above Steps 1 through 4, then go to Step 1;

otherwise output the current permutation 71 and stop.
We test both the referenced local search and the local search without order in our study. The local

search is applied to each generated offspring with a probability F , that is, local search is applied if a
random number uniformly generated in the range of [0,1] is less than F; . In addition, the local search

is also applied to the best individual after the initialization of the population. Obviously, the previously

proposed speed-up procedure is used in the presented local search methods.
4.5. Diver sity controlling mechanism

Invariably, as the population of the EDA evolves over generations, its diversity diminishes and the
individuals in the population become very similar. This results in search stagnation. To overcome this
problem, as did in the literature (Ruiz, Maroto and Alcaraz (2006), Vallada and Ruiz (2010)), a restart

mechanism is applied when the diversity value falls below a given threshold value . In the restart

mechanism, the 20% best individuals are kept from the current population and the remaining 80% are
generated randomly. At the same time, to reduce the computation, the diversity value is calculated at
least 100 generations after the algorithm restarts. In addition, we present a very simple method to
evaluate the diversity of the population based on both the job order and on similar blocks of jobs in the

sequences of the current population as follows:

& % o 4.
Step 1. Calculate the matrix |.¢i,jJnx,, as [P ,-] - @ 9> .|, where ¢ j Is the
Ql %,2 ¢n,n
number of times that job j appears at position i .
/11,2 /]l,n
Step 2: Calculate matrix I-/]J'"J'Jnxn as follows: [’ j] _ Ay - A0 |, recall that Ai
/]n,l /]n,Z -

represents the number of times that job j appears immediately after job j'.

15

Step 3: Count the number of elements which are larger than zero in |_¢,~’ jJan , and denote itas «a .

Step 4: Count the number of elements which are larger than zero in l/] i, j,J ,and denote itas [.

nXn

StepS. The diversity value of the population div is then computed as follows:

div:(a-n .\ ,6’.—(n—1) j/z
nXmin(n, PS—1) (n—1) Xmin(n—1,PS —1)

Hence, div gives a very simple diversity measure with a value between zero and one. Obviously, the

higher the div value is, the more diverse the population is. A value close to one indicates a very
diverse population where each job occupies different positions and no similar blocks of jobs exist
among the individuals. On the other hand, a value close to zero means that all individuals are very

similar or identical. A simple example is given by considering a population of three individuals with

four jobs: n(1) ={1,23.4}, n(2)={2,3,41} and n(3)={1,4,2,3}. Firstly, we calculate l%,f]m and
2100 -1 1
01 11 0 -30

l"j,j'Jan as follows: [ql,,j]M: 01 1 1l [/1/",/]4x4= 00 - 2|
101 1 10 -

Then we get a =11 and S=6.
Finally, we obtain div = ((11-4)/(4xmin(4,3-1)) +(6-3)/((4 1) xmin(4 —1,3-1)))/2 =0.69.

5. Calibration of the proposed EDA

Considering all previous sections, the proposed EDA method goes as follows:

Step 1: Set the algorithm parameters PS , O, M, B, ,£,6, y.Let gen=1.
Step 2: Initialize the population and evaluate each individual.

Step 3: Perform local search to the best individual in the initial population.
Step 4: Select Q best individuals and estimate the probabilistic model.

Step 5: Sample and generate M offspring from the probabilistic model.
Step 6: Perform local search to each offspring in M with probability B .

Step 7: Evaluate the offspring and update the population.
Step 8: Check the diversity of the population if gen >100 . If the diversity level is less than J,

perform restart procedure, and set gen = 0 ; otherwise set gen = gen+1.

Step 9: If the stopping criterion is reached, return the best solution found so far and stop; otherwise,

go to Step 4.

As we can see, the proposed EDA depends on 8 parameters. Therefore, we need to carry out a
calibration in order to set them to appropriate values. We first carefully decide the ranges of parameters
according to the existing literature, like carried out by Ruiz, Maroto and Alcaraz (2006) and by Vallada
and Ruiz (2010), among many others and also according to our past experience. Then, we conduct a
preliminary experiment to determine the levels for each parameter. In the experiment, we try several

typical values for each parameter by simply fixing others, and select the best two or three for

16

calibration in our calibration experiment to keep the aforementioned calibrations at a manageable level.
Next, we employ a Design of Experiments approach where each parameter is a controlled factor as
follows: Population size (PS) tested at three levels, 10, 30 and 50. Selection size (Q) tested at two
levels, 5 and 10. Offspring number (M) tested at two levels, 5 and 10. Probability to apply local search

(P,,) tested at two levels, 0.15 and 0.30. Local search type with two variants, referenced local search

and local search without order. Parameter (£) (generation of new individuals from section 4.3) tested
at two values, 0.7 and 0.9. Parameter (8) (also from section 4.3) tested at two values, 2 and 5. Finally,

we have the diversity threshold ()/) tested at 0.3 and 0.5 values. This results in a total of

3x2%x2%x2%x2x2x2x%x2 =384 different combinations, i.e., 384 different configurations for the
proposed EDA. All the 384 configurations are tested in a full factorial experimental design with a

termination criterion of maximum elapsed CPU time of ¢ =50xnX(m/2) milliseconds. This

termination allows for more time as the number of jobs and machines increases, and has been used in
Ruiz, Maroto and Alcaraz (2006) and by Vallada and Ruiz (2010) and by many others. Each algorithm
is tested with a small set of 24 randomly generated instances. The number of jobs and machines for

each instance are chosen randomly from the following sets n[J1{10,30,50,70,90,110} and
m[1{5,10,15,20} . Following Yoon and Ventura (2002a) and Tseng and Liao (2008), the related data for
the instances is given by discrete uniform distributions as follows: I(j)OUI[1,6], p(k,j)OUI[1,31]
and s(k, j', j)OU[L31]. For each instance, 5 difference replicates are run. Therefore, the total number
of results is 384x24x5=46,080. Two sets of experiments are conducted: one for the idling and

another for the no-idling case.

The proposed EDA procedure is coded in Visual C++ 6.0 and all the 384 configurations are run on a
cluster of 30 blade servers each one with two Intel XEON E5420 processors running at 2.5 GHz and
with 16 GB of RAM memory. Each processor has four cores and the experiments are carried out in
virtualized Windows XP machines, each one with one virtualized processor and 2 GB of RAM memory.

As a response variable for the experiment, we measure the relative percentage increase (RPI):
RPI(c;) =(c; =)/ c7x100 (14)
where c¢; is the makespan value generated in the i replication by a given algorithm configuration,

and ¢ is the best objective value found by any of the algorithm configurations. Note that for this
problem there are no known effective exact techniques and comparing against an optimum solution is
not possible. Due to the sequence-dependent setup times, lower bounds are extremely weak and the
results would be difficult to analyze. Instead of carrying out a comparison against the best solution
given by an algorithm, we tried to obtain better solutions by running the best tested method for an
extended period of time. This resulted in negligible differences so we preferred to compare algorithms
against the best solution given by them.

All results are analyzed by means of the Analysis of Variance (ANOVA) technique, a very powerful
statistical approach that allows us to set the different parameters at statistically significant values
among the tested ones. This approach has been followed in Ruiz, Maroto and Alcaraz (2006), Ruiz and

Stutzle (2007), Ribas, Companys, and Tort-Martorell (2011), among many others.

17

The results of both calibration experiments (idling and no-idling) are very similar. All 8 controlled
factors (parameters of the proposed DEA) are statistically significant at a 95% confidence level. The
ANOVA table with the full results is not shown here due to reasons of space. However, all experimental
results are available upon request from the authors. Let us picture just one result for the most
significant factor in the idling experiment, which is factor &, whose means plot and 95% Tukey

Honest Significant Difference (HSD) confidence intervals are given in Fig 5.

1.23F 1
113 .
o
e 1.03 1 '
<
0.93F .
0.83 L -]
0.7 0.9
€

Fig. 5 Means plot and 95% Tukey HSD confidence intervals for the calibration experiment in the idling

case, factor &£.
As we can see, a level of 0.9 for the factor £ is statistically better (and by a wide margin) than the

value 0.7. This means that in the generation of offspring, it is much better to use the proposed
probabilistic model than the reference solution.

After the calibration experiments, we set the parameters as follows for both the idling and no-idling
cases: £€=09, PS=10, =5, 09=10, y=03, P,=015, M =10, Local search is
referenced local search (factors in order of statistical relevance).

It might be argued that the presented EDA can be further improved by trying consecutive rounds of
tuning a few significant parameters and fixing the rest to the best combination found in the above full
factorial experiment. We have tried consecutive rounds of tuning by setting & from 0.85 to 1.0 with a
step equal to 0.01 and other parameters unchanged. The experimental results show that the EDA with
£ =0.95 produces better results than with & =0.9. However, these differences are not large (about 0.2%)
and have little relevance in reality. Therefore, to avoid the problem of over-calibration, we adopt the

parameters calibrated by the previous ANOVA.

6. Computational results and comparisons

Several metaheuristics exist in the literature for solving n-job m-machine lot-streaming flow shop
scheduling problems. Although none of them considers sequence-dependent setup times, we have
carried out a comprehensive re-implementation and adaptation work of most published related material
for comparisons. Marimuthu, Ponnambalam and Jawahar (2007), (2008) and (2009) presented seven
methods including a tabu search (which we denote by TS), simulated annealing with insertion

neighborhood (SA;), simulated annealing with swap neighborhood (SA;), hybrid genetic algorithm

18

(HGA), ant colony optimization (ACO), threshold accepting with insertion neighborhood (TA;), and
threshold accepting with swap neighborhood (TA;) to minimize both makespan and total flow time for
an n-job m-machine lot-streaming flow shop problem involving attached setup times. By numerical
comparison, the authors claimed that their algorithms were effective and efficient for the problem
considered. Tseng and Liao (2008) developed a discrete particle swarm optimization (DPSO) algorithm
for an n-job m-machine lot-streaming flow shop scheduling problem with the objective to minimize the
mean weighted absolute deviation of job completion times from their due dates, and it was
demonstrated by the authors that their DPSO algorithm performed much better than the HGA proposed
by Yoon and Ventura (2002b) for solving 900 randomly generated instances. More recently, Pan et al.
(2010) presented a discrete artificial bee colony (DABC) algorithm for the problem considered by
Tseng and Liao (2008) and Yoon and Ventura (2002a), which outperformed the previously commented
DPSO and HGA methods. We compare the proposed EDA with the above 9 state-of-the-art algorithms,
ie., TS, SA;, SA,, HGA, ACO, TA;, and TA; by Marimuthu, Ponnambalam and Jawahar (2007), (2008)
and (2009), the DPSO algorithm by Tseng and Liao (2008), and the DABC algorithm by Pan et al.
(2010), for solving the problem considered in this paper. We also compare with a recently presented
EDA (denoted as EDAj) by Jarboui, Eddaly and Siarry (2009), which was a new state-of-the-art
algorithm for minimizing the total flow time in the permutation show shop scheduling problem and
provided new upper bounds for 49 out of 90 Taillard benchmark instances. Since the above algorithms
are not designed for the problem considered here, we adapt them by using the makespan calculation
presented in section 3, including all accelerations, whenever possible. For the proposed EDA in this
paper, we also test it without the speed up procedure (denoted as EDA,s) and without local search
(denoted as EDA,;1), to show the effect of the speed-up and local search procedures.

To test all the methods (13 in total), we employ a completely different benchmark as the one used
before for calibration. The reason is simple: Testing with the same benchmark used for calibration
would lead to biased results. We wuse 28 different problem sizes nXxXm , where
n=30,50,70,90,110,130,150, and m=5,10,15,20. For each nXxm combination, 10 different instances
are randomly generated. As a result, the benchmark has 280 instances. The related data for the

instances is given by the discrete uniform distributions as follows: I(j)UU[L6], p(k,j)UU[1,31]
and s(k,j', j)OU[L,31]. All the algorithms were coded in Visual C++ and executed on the same

cluster of machines employed for the calibration. For the EDA, we adopt the parameters and operators
calibrated in section 5, whereas for the other algorithms, the parameters are fixed to those given in the
literature. Note that calibration is a fine-tuning process and algorithms are not expected to behave
entirely different after calibrations.

To make a fair comparison, all the compared algorithms adopt the same maximum elapsed CPU time
limit of + =nx(m/2)x 0 milliseconds as a termination criterion, where 0 has been tested at three
values: 100, 200, and 300. For each of the 280 instances, 5 independent replications are carried out and
for each replication, the RPI is calculated. In addition, the average RPI (ARPI) over each problem size
and the overall mean ARPI is also calculated as statistics for the solution quality.

Note that there are 13 algorithms, 280 instances and 5 replications for a total of 18,200 results for

19

each value of O (54,600 results in total). The comparisons are carried out both for the idling as well

as for the no-idling cases.
6.1. Comparison under the no-idling case

The computational results are reported in Tables 1-3. Note that each cell contains the averages of the
5 replicates for each one of the 10 instances of each nXxXm combination (50 values averaged at each
cell).

Table 1 Comparison of algorithms at no-idling case (0 =100).

nxm | EDA EDA,s EDA; EDA; DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.11 079 232 434 140 182 165 301 329 472 417 567 150
30x10 | 027 085 273 406 133 205 144 352 377 510 488 584 152
30x15 | 0.16 060 2771 3.81 1.17 217 133 332 397 484 533 635 130
30x20 | 0.16 057 263 344 101 200 1.12 3.14 343 481 444 580 095
50x5 | 021 1.81 3.62 699 211 283 416 385 361 478 437 577 198
50x10 | 0.32 191 3.65 661 213 275 411 429 407 515 527 624 2.14
50x15| 033 176 354 662 218 259 426 478 450 570 542 684 2.12
50x20 | 034 1.81 3.86 6.9 191 226 3.66 421 434 542 554 639 2.18
70x5 | 029 223 420 832 245 324 630 335 322 439 385 499 224
70x10 | 0.31 251 448 7.80 246 3.2 615 431 400 492 469 622 257
70x15 | 033 235 424 752 232 315 579 453 413 492 556 651 252
70x20 | 034 244 424 746 238 313 602 452 430 536 556 644 272
90x5 | 023 2.16 3.88 858 240 338 812 334 266 398 365 450 2.61
90x10 | 022 221 411 818 233 301 731 3.62 293 424 379 511 243
90x15 | 0.30 235 397 799 225 3.02 7.02 406 3.61 461 465 547 2.73
90x20 | 032 237 4.00 7.65 246 3.17 694 428 366 481 483 570 3.06
110x5 | 0.19 192 379 869 228 327 9.16 440 223 341 297 405 3.02
110x10| 028 236 3.79 823 237 341 849 378 299 398 399 477 298
110x15| 029 229 348 816 235 323 810 371 292 432 428 525 333
110x20| 029 230 3.61 797 230 321 7.66 3.86 326 433 435 545 321
130x5 | 0.17 199 356 871 241 331 980 580 222 323 298 396 434
130x10| 024 2.19 344 893 232 340 896 445 260 387 377 438 389
130x15] 025 2.19 332 796 234 3.3 861 396 278 386 4.03 475 3.64
130x20| 026 2.19 297 807 213 293 828 364 275 367 396 484 325
150x5 | 0.15 1.82 322 891 218 3.0 1031 730 175 293 259 349 638
150x10| 0.15 199 287 814 214 327 904 512 209 329 323 394 430
150x15| 024 2.07 283 821 221 332 907 479 260 350 370 448 421
150x20| 0.21 1.81 253 791 206 3.04 847 420 255 355 3.85 445 3.6l
Average| 025 192 348 734 212 294 648 4.18 322 435 427 527 288

It can be easily seen from Table 1 that, for the shortest elapsed CPU time of o =100, the proposed

EDA is the best performer with the lowest ARPI of just 0.25%, which is significantly smaller than all
other results. More interestingly, the EDA achieves the best ARPI values for all 28 problem sizes as
well. Compared with the EDA, the EDA,5 yields much worse ARPI values for all the 28 problem sizes
and a much larger overall ARPI value, which suggests that taking advantage of the speed-up method in
the proposed EDA is very beneficial. However, EDAg is still better than all other methods. On the
other hand, both EDA and EDA,g significantly improve each ARPI value generated by the EDA,,
which demonstrates the effectiveness of incorporating a local search into the EDA variant. In other
words, the superiority of the proposed EDA should be attributed to the combination of global search
and local search with an appropriate balance between exploration and exploitation.

The computational results with =200 and p =300 are reported in Tables 2 and 3, respectively. It

is clear from these tables that the results are again favorable.

The presented EDA makes extensive use of some advanced techniques such as an efficient

20

population initialization, a newly designed probabilistic model, a diversity controlling mechanism, and
hybridization with local search. These techniques are in favor of the EDA transferring the building
blocks of jobs in parents to offspring, maintaining diversity of population, having higher local
exploitation ability. In addition, the presented speed-up technology makes the EDA much more
effective. Thus the EDA can achieve better performance than the other algorithms at several different
levels. Note that in the comprehensive experiments, EDA is compared against other EDA methods
(EDA)) and other GAs. Basically, the differences in efficiency and effectiveness cannot be solely
attributed to the fact that we are presenting an EDA method but more precisely to the efficient and
effective instantiation of the EDA method for the considered problem.

Table 2 Comparison of algorithms, no-idling case (o =200).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.12 062 230 371 120 179 137 292 335 479 424 574 138
30x10 | 020 061 256 340 1.06 207 1.8 334 379 512 489 58 1.29
30x15| 0.11 043 252 343 098 215 092 3.14 397 484 533 635 112
30x20 | 0.17 044 253 3.6 088 203 084 298 348 486 449 585 092
50x5 | 0.18 1.55 350 6.6 1.87 243 328 384 371 489 447 588 1.86
50x10 | 0.31 1.67 3.65 6.02 186 257 334 432 420 528 540 637 193
50x15| 033 143 353 596 1.89 253 356 467 461 582 553 696 1.84
50x20 | 039 155 398 574 1.81 238 320 433 457 565 577 662 204
70x5 | 023 207 413 771 214 306 478 346 337 454 400 514 1.95
70x10 | 031 225 4.60 726 224 297 514 445 423 516 493 646 250
70x15 | 033 208 432 686 211 284 497 462 437 516 580 675 230
70x20 | 037 217 436 7.05 223 295 536 465 455 561 581 6.69 256
90x5 | 022 203 399 814 211 336 623 327 286 4.18 385 470 2.08
90x10 | 026 2.11 432 7.67 207 289 594 386 322 454 408 541 227
90x15 | 034 228 426 771 209 294 599 438 396 496 499 581 2.56
90x20 | 031 226 4.18 7.1 228 296 588 450 390 505 507 594 285
110x5 | 0.19 193 4.04 839 203 334 729 313 248 3.67 322 431 221
110x10| 0.32 231 4.09 794 214 331 720 3.84 329 429 430 509 2.6l
110x15| 027 2.19 373 776 213 3.1 706 392 3.8 458 455 552 3.03
110x20| 030 222 3.89 7.60 208 3.01 670 4.09 3.55 463 465 575 283
130x5 | 0.16 1.88 377 836 208 334 823 384 242 344 318 417 274
130x10| 022 2.13 3.65 861 205 323 7.69 341 280 408 398 459 275
130x15| 026 2.13 358 7.64 212 294 723 371 304 412 429 502 286
130x20| 028 2.17 327 7.65 190 265 7.04 352 304 396 425 5.14 288
150x5 | 020 1.89 349 865 206 326 906 500 201 321 28 376 3.76
150x10| 021 2.02 3.16 791 202 320 793 3.60 238 358 353 424 3.8
150x15| 022 194 305 7.82 198 3.10 810 3.60 282 373 392 470 3.17
150x20| 0.21 190 2.81 755 191 293 748 347 284 383 413 474 265
Average] 025 180 3.62 689 190 283 546 3.85 343 456 448 548 236

Table 3 Comparison of algorithms, no-idling case (o =300).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.11 051 224 339 109 178 1.12 278 336 480 425 575 134
30x10 | 0.19 046 249 312 092 205 091 325 379 512 490 586 122
30x15| 0.12 038 248 327 084 217 076 299 399 486 536 637 1.09
30x20 | 0.17 042 252 296 079 204 068 284 350 4.88 451 587 093
50x5 | 021 142 344 586 1.86 235 3.07 3.8 384 502 460 601 1.90
50x10 | 0.32 148 3.64 562 1.79 254 303 429 426 534 547 644 1.86
50x15| 033 122 350 558 1.73 248 3.8 453 466 586 558 7.00 1.75
50x20 | 037 137 398 538 1.67 235 283 433 462 570 582 667 2.03
70x5 | 021 194 408 7.27 201 297 428 348 347 464 409 524 1.90
70x10 | 026 2.07 459 691 212 284 475 447 430 523 500 654 227
70x15 | 033 191 432 639 197 265 470 465 446 525 589 6.84 198
70x20 | 036 2.00 441 6.62 213 284 502 471 464 571 591 679 235
90x5 | 022 1.94 409 7.88 193 333 551 335 3.00 432 399 484 203
90x10 | 024 2.05 439 739 197 290 533 400 338 470 424 558 1.96
90x15 | 0.28 212 433 733 202 283 552 443 406 506 510 592 237
90x20 | 036 2.14 434 6586 224 291 566 461 409 524 527 614 273

21

110x5| 0.19 192 416 816 187 334 642 308 261 380 335 444 188
110x10| 0.28 2.17 421 7.57 202 317 639 395 341 441 442 520 235
110x15| 032 221 394 758 213 312 651 412 340 481 477 575 283
110x20| 0.27 2.14 401 736 198 289 6.11 420 3.68 476 477 588 2.65

130x5 | 021 2.02 396 823 195 338 739 323 261 363 338 436 245
130x10{ 023 215 3775 826 190 3.12 690 340 291 419 408 470 2.23
130x15| 023 2.13 3.67 739 195 282 6.66 378 3.14 421 439 511 231
130x20| 0.23 222 339 746 182 252 654 3.64 317 409 438 526 2.56

150x5 | 0.15 1.78 3,57 851 1.83 327 843 370 208 328 294 384 287
150x10{ 0.16 193 326 7.69 178 3.13 7.13 325 247 368 362 433 273
150x15| 0.27 199 324 767 189 3.07 764 3.64 302 392 412 490 272
150x20| 0.21 190 291 732 176 287 698 356 295 394 425 485 236
Average| 0.24 171 368 6.61 178 278 498 379 353 466 459 559 213

6.2. Comparison under theidling case

Results for the three different stopping times are given in Tables 4-6. It is clear from the these results
that the proposed EDA outperforms the existing methods of the comparison by a considerable margin
for the lot-streaming flow shop scheduling problem with setup times to minimize makespan under the
idling case. Quite interestingly, the additional elapsed CPU time does not seem to affect the proposed
EDA method. The conclusion is that the presented EDA is capable of reaching good solutions very

quickly and stagnates around very good solutions that are probably close to optimal.

Table 4 Comparison of algorithms, idling case (© =100).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.14 137 260 542 207 207 261 363 322 450 441 562 1.88
30x10 | 024 132 264 495 183 226 235 369 380 486 485 580 1.85
30x15| 024 1.19 3.04 466 1.67 214 210 371 394 479 548 575 146
30x20 | 025 1.03 299 415 140 225 196 340 3.60 451 497 540 1.59
50x5 | 021 260 372 798 296 357 696 3.68 351 476 433 577 3.16
50x10 | 032 266 390 740 2.89 344 585 440 426 521 539 620 3.10
50x15| 033 257 394 690 281 3.13 567 449 425 503 554 617 2.85
50x20 | 034 263 426 671 267 264 524 467 423 501 543 596 2.73
70x5 | 0.19 263 413 827 3.00 342 896 452 285 401 3.68 4.67 3.64
70x10 | 037 3.14 475 835 328 3.69 864 464 380 484 458 605 348
70x15 | 032 3.04 460 7.80 3.01 348 814 421 361 478 519 572 339
70x20 | 036 292 439 743 293 341 723 418 384 448 507 562 321
90x5 | 020 2.69 430 8.84 323 3.69 1171 652 289 408 343 454 535
90x10 | 020 295 399 862 3.5 355 994 493 294 399 378 473 3.62
90x15 | 0.23 270 4.19 7.93 3.8 346 928 439 350 423 478 504 3.68
90x20 | 036 3.0l 434 758 3.7 350 847 422 344 428 474 515 351
110x5 | 0.16 273 4.07 9.01 3.03 348 13.13 858 231 340 3.04 38 756
110x10| 024 253 3.64 835 298 3.8 1082 6.68 288 371 4.04 476 5.64
110x15]| 024 2.65 3.79 818 294 370 1005 555 296 392 4.14 484 489
110x20| 027 273 3.63 7.86 289 3.61 922 492 299 392 420 498 437
130x5 | 022 232 381 926 3.09 347 1351 1020 242 346 295 3.80 1024
130x10| 024 2.61 353 887 296 3.78 1142 796 254 339 376 434 7132
130x15| 023 252 347 824 299 356 1039 7.56 259 351 372 432 597
13020 0.21 248 330 812 290 355 995 679 250 349 403 454 541
150x5 | 022 206 325 9.12 290 342 1346 1172 221 320 290 355 1220
150x10| 0.21 2.12 291 859 268 3.74 1201 898 237 3.8 329 409 877
150x15| 027 231 3.07 827 277 394 1098 8.11 252 338 3.66 442 743
150x20| 020 228 3.00 7.89 274 3.62 1021 7.07 236 320 3.57 410 6.2
Average| 025 242 369 767 279 334 858 584 3.15 411 425 499 482

22

Table 5 Comparison of algorithms, idling case (0 =200).

nxm | EDA EDA,s EDA,; EDA;, DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.15 099 248 4.74 1.67 190 203 348 328 456 447 5.68 1.76
30x10 | 0.19 095 256 4.27 149 214 190 358 383 489 489 584 1.43
30x15| 024 093 294 398 1.37 2.15 1.62 362 399 484 554 580 1.43
30x20 | 0.23 0.82 290 3.59 1.19 2.28 149 327 364 456 5.01 5.45 1.37
50%x5 | 0.20 2.28 362 734 2.64 3.31 4.93 3.73 3.64 490 447 590 2.64
50x10 | 0.31 2.30 3.77 6.63 2.55 3.08 4770 439 4738 5.34 5.51 6.33 2.42
50x15 | 0.26 2.09 3.82 6.25 234 271 4.45 4.38 4.30 5.08 5.59 6.23 2.09
50x20 | 0.43 2.25 4.33 6.12 242 250 441 4.78 4.44 5.23 5.65 6.19 2.33
70x5 | 020 252 425 785 2.73 333 7.14 376 3.11 4.27 394 494 272
70x10 | 0.33 289 483 792 296 346 680 4.69 402 506 479 627 3.15
70x15 | 0.30 292 4.71 736 277 321 638 434 387 505 546 599 290
70x20 | 0.33 267 439 683 264 310 6.01 435 405 470 529 584 2.81
90x5 | 0.21 264 454 857 295 380 943 477 316 436 370 4381 3.54
90x10 | 0.18 2.78 4.22 8.15 2.85 3.38 8.32 3.78 3.18 4.23 4.02 498 2.65
90x15 | 0.21 2.71 4.39 744 2.77 330 792 3.96 372 445 5.01 526 2.66
90x20 | 0.35 292 460 7.21 2.80 3.31 7.28 4.11 3.73 4.57 5.03 5.44 3.18
110x5 | 0.18 2.53 4.31 8.65 2.86 3.58 10.17 6.15 2.49 3.63 3.25 4.13 4.77
110x10| 0.22 256 391 799 290 389 941 473 3.14 398 431 5.03 3.95
110x15| 024 262 404 783 274 3.48 8.56 4.07 3.21 417 439 509 3.84
110x20| 024 2.68 393 754 2.5 3.38 8.17 4.00 329 422 451 528 346
130x5| 0.19 246 399 892 290 3.61 11.12 7.71 242 3.63 3.08 398 6.90
130x10| 0.23 2.78 3.81 8.51 2.90 3.80 9.83 5.99 2.79 364 402 462 5.04
130x15| 0.30 2.75 3.79 790 2.83 3.44 9.55 4.88 291 3.83 4.04 4.64 4.25
130x20| 0.24 2.64 3.55 7.71 2.76 3.30 8.88 4.34 2.75 374 429 480 4.04
150x5 | 0.17 2.16 3.40 8.80 2.72 343 11.65 9.32 2.11 3.23 2.86 3.67 9.01
150x10| 0.17 222 3.11 8.14 2.61 3770 1020 6.60 248 339 346 430 6.02
150x15| 025 240 328 797 2.5 372 979 6.01 270 359 387 463 5.10
150x20| 0.15 240 325 7.60 2.75 3.53 9.21 524 258 345 383 436 4.61
Average| 0.24 2.32 3.81 7.21 2.56 3.21 7.19 4.79 3.33 4.31 444 5.20 3.57
Table 6 Comparison of algorithms, idling case (0 =300).
nxm | EDA EDA,s EDA,; EDA;, DABC ACO DPSO HGA SA, SA, TA, TA, TS
30x5 | 0.15 0.85 239 443 1.49 1.82 1.73 329 330 459 450 5.71 1.61
30x10| 0.18 0.77 247 392 1.29 214 1.63 3.51 383 489 489 584 1.33
30x15| 022 0.77 287 3.68 1.20 2.16 1.34 339 400 485 555 5.81 1.36
30%x20 | 0.21 0.68 280 3.26 1.08 2.27 1.29 326 3.66 457 503 546 1.27
50x5 | 0.21 206 353 682 238 3.08 436 372 3.68 494 451 595 249
50x10 | 0.29 2.03 3.64 6.25 2.38 294 4.17 4.38 4.42 5.37 5.55 636 220
50x15 | 0.33 1.88 3.85 6.04 227 264 402 446 445 5.23 5.73 6.37 2.19
50x20 | 0.41 192 420 582 216 2.38 3.92 471 4.47 5.26 5.68 6.21 1.95
70x5 | 0.19 2.37 4.27 7.60 2.56 3.33 6.11 3.82 322 4.38 4.05 5.05 2.36
70x10 | 0.32 274 487 758 271 322 597 462 412 516 490 638 290
70x15 | 026 262 463 705 254 3.02 555 438 393 510 551 6.04 2.66
70x20 | 0.33 250 442 659 256 298 558 449 420 485 543 599 262
90x5 | 0.30 2.61 472 838 278 386 822 395 337 4.57 391 5.03 3.04
90x10 | 0.20 2.63 4.33 7.91 2.67 324 741 3.81 332 436 4.15 5.11 2.53
90x15 | 0.24 262 456 731 2.61 3.24 6.91 4.08 3.93 4.66 5.21 5.47 2.58
90x20 | 0.34 284 473 699 268 3.13 6.59 4.16 388 472 518 559 3.08
110x5 | 0.18 250 445 8.37 2.79 3.64 941 4.90 2.62 3.77 339 427 4.00
11010 022 258 405 7.85 267 3.83 875 4.05 329 413 446 518 334
110x15| 026 2.67 423 7.66 2.65 340 774 391 339 436 458 529 343
110x20| 0.27 267 407 733 2.53 329 726 397 344 437 4.66 543 3.13
130x5 | 0.16 232 4.05 8.66 276 359 10.05 6.29 246 3.69 3.14 404 521
130x10| 0.22 2.58 3.95 822 275 3.77 9.06 4.87 2.93 3.78 4.16 476 4.23
130x15| 0.26 2.51 3.88 770 2.66 3.25 8.48 4.06 2.99 392 412 473 3.45
130x20| 0.25 2.54 3.71 7.59 2.60 3.12 8.15 3.84 291 390 445 4.95 3.60
150x5 | 0.15 2.18 3.49 8.65 2.58 3,52 1056 7.83 2.16 3.33 2.96 3.77 7.14
150%x10| 0.21 2.25 3.27 8.01 258 370 937 544 263 354 362 446 457
150x15| 0.19 241 337 772 2,60 3.53 9.09 490 2.78 3.68 396 472 3.93
150x20| 0.18 2.45 342 740 2.61 3.47 845 443 276 363 400 454 387
Average| 024 220 387 696 240 3.13 6.47 438 343 441 455 530 3.07

23

6.3. Statistical assessment of results

While the results in all previous tables show strong differences between the proposed EDA and all
the considered methods, it is still necessary to carry out a statistical experiment to attest if the observed
differences are indeed statistically significant. We have carried out a full factorial ANOVA where n, m,

instance number, replicate, o, the type of algorithm and idling/no-idling factors are considered. There

are important statistically significant differences. Fig. 6 shows a three-way interaction between the type

of algorithm, the maximum elapsed CPU time factor o and idling and no-idling cases. We are now

employing a 95% confidence level and we are using Tukey HSD confidence intervals. Note that
overlapping intervals denote a statistically insignificant difference in the plotted means. From the figure
it is clear that the proposed EDA produces results that are statistically better than all the considered
algorithms. It is also shown that the EDA shows statistically insignificant differences with more

allotted CPU time. ie., p=200 or p=300 result in no additional gains. Most other methods

improve results with additional elapsed CPU time.
As a result, we can safely conclude that the proposed EDA is a new effective algorithm for the
lot-streaming flow shop scheduling problem with sequence-dependent setup times and makespan

criterion in both the idling and no-idling cases.

ARPI No-idling No-idling
10— — P —
F F — 100 4
gL L —— 200 i
6 - i
4 L L —
2+ - |
0
EDA DABC ACO EDA,. TA; TA, EDA; EDA DABC ACO EDA,. TA; TA, EDA,
EDA,s TS SA; HGA SA DPSO EDA,s TS SA; HGA SA DPSO

Fig. 6 Means plot and 95% Tukey HSD confidence intervals for the interaction between the algorithms,
the maximum elapsed CPU time p and the no-idling/idling cases.

7. Conclusions

This paper studies the flow shop scheduling problem under the lot-streaming generalization and with
sequence-dependent setup times. The studied objective is makespan minimization. This problem has
important applications in textile, plastic, chemical, semiconductor, and many other industries where
jobs are actually batches of many identical products to be manufactured. A novel estimation of
distribution algorithm (EDA) has been proposed for the problem under both the idling and no-idling
cases. To the best of our knowledge, this is the first attempt at solving the problem considered, and this
is also the first reported application of EDA for solving lot-streaming flow shop scheduling problems.
An extensive comparison has been carried out for the proposed EDA against the best existing

metaheuristics developed for lot-streaming flow shop problems, as well as against a recently presented

24

EDA for the traditional flow shop problem with total flow time criterion. According to the
computational results and statistical analyses, the proposed EDA clearly outperforms all the other
considered algorithms by a considerable margin for the lot-streaming flow shop problem with setup
times to minimize makespan.

The superiority of the presented EDA is mainly due to the fact that it extensively uses some
advanced techniques such as an efficient population initialization, a newly designed probabilistic model,
a diversity controlling mechanism, hybridization with local search, and a speed-up procedure. The
population initialization mechanism provides an initial population with a high level of quality and
diversity. The presented probabilistic model helps in transferring the building blocks of jobs in parents
to offspring. The diversity controlling mechanism aims at maintaining the diversity of the population
and without it the algorithm stalled after just a few iterations. The hybridization with local search not
only enhances the algorithm’s local exploitation ability, but also provides an appropriate balance
between exploration of the global search and exploitation of the local search. The presented speed-up
method improves the search efficiency by a significant margin.

The proposed EDA can be extended to take into account more realistic aspects of the lot-streaming
problem, such as the existence of due dates, machine eligibility, parallel machines, multiple objectives,
and many others. Late work criteria are being actively studied nowadays, as the study of Sterna (2011)
attests. The proposed EDA can also be generalized to solve other combinatorial optimization problems
including the hybrid flow shop, job shop, the traveling salesman or complex scheduling problems as
those studied in Manaa and Chu (2010), Ruiz-Torres et al. (2011) or Gribkovskaia et al. (2011).
Specific hybrid flowshops as the ones approached in Samarghandi and EIMekkawy (2011) or in Besbes
et al. (2011) are equally interesting. Some other single machine problems with many added constraints,
as the one studied in Valente and Schaller (2010) seem a promising venue of research for the
application of the techniques studied in this paper. Of course, each problem would need special

tailoring and experimentation and this is the basis for future research.

Acknowledgements

This research is partially supported by the National Science Foundation of China (60874075,
70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and
Postdoctoral Science Foundation of China under Grant 20100480897. Rubén Ruiz is partially funded
by the Spanish Ministry of Science and Innovation, under the project “SMPA - Advanced Parallel
Multiobjective Sequencing: Practical and Theoretical Advances” with reference DPI2008-03511/DPI
and by the IMPIVA - Institute for the Small and Medium Valencian Enterprise, for the project OSC
with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.

REFERENCES
Allahverdi, A., Gupta, J. N. D. and Aldowaisan, T. (1999). "A review of scheduling research involving

setup considerations”, Omega-International Journal of Management Science, 27 (2):219-239.

Allahverdi, A., Ng, C. T., Cheng, T. C. E. and Kovalyov, M. Y. (2008). "A survey of scheduling

problems with setup times or costs", European Journal of Operational Research, 187 (3):985-1032.

25

Allahverdi, A. and Soroush, H. M. (2008). "The significance of reducing setup times/setup costs",
European Journal of Operational Research, 187 (3):978-984.

Baker, K. R. and Jia, D. (1993). "A Comparative-Study of Lot Streaming Procedures",
Omega-International Journal of Management Science, 21 (5):561-566.

Besbes, W., Teghem, J. and Loukil, T. (2010). " Scheduling hybrid flow shop problem with non-fixed

availability constraints", European Journal of Industrial Engineering, 4 (4):413-433.

Bukchin, J., Tzur, M. and Jaffe, M. (2002). "Lot splitting to minimize average flow-time in
two-machine flow-shop", IIE Transactions, 34 (11):953-970.

Cetinkaya, F. C. (1994). "Lot Streaming in A Two-Stage Flow Shop with Set-Up, Processing and
Removal Times Separated”, Journal of the Operational Research Society, 45 (12):1445-1455.

Chang, J. H. and Chiu, H. N. (2005). "A comprehensive review of lot streaming", International Journal
of Production Research, 43 (8):1515-1536.

Edis, R. S. and Ornek, M. A. (2009). "A tabu search-based heuristic for single-product lot streaming
problems in flow shops", International Journal of Advanced Manufacturing Technology, 43
(11-12):1202-1213.

Feldmann, M. and Biskup, D. (2008). "Lot streaming in a multiple product permutation flow shop with

intermingling”, International Journal of Production Research, 46 (1):197-216.

Framinan, J. M., Leisten, R. and Rajendran, C. (2003). "Different initial sequences for the heuristic of
Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation

flowshop sequencing problem", International Journal of Production Research, 41 (1):121-148.

Garey, M. R., Johnson, D. S. and Sethi, R. (1976). "The Complexity of Flowshop and Jobshop
Scheduling", Mathematics of Operations Research, 1 (2):117-129.

Gribkovskaia, I. V., Kovalev, S. and Werner, F. (2011). "Batching for work and rework processes on
dedicated facilities to minimize the makespan", Omega-International Journal of Management Science,
38 (6):522-527.

Huang, R. H. and Yang, C. L. (2009). "Solving a multi-objective overlapping flow-shop scheduling",
International Journal of Advanced Manufacturing Technology, 42 (9-10):955-962.

Jarboui, B., Eddaly, M. and Siarry, P. (2009). "An estimation of distribution algorithm for minimizing
the total flowtime in permutation flowshop scheduling problems", Computers & Operations Research,
36 (9):2638-2646.

Kalir, A. A. and Sarin, S. C. (2001). "A near-optimal heuristic for the sequencing problem in
multiple-batch flow-shops with small equal sublots", Omega-International Journal of Management
Science, 29 (6):577-584.

Kalir, A. A. and Sarin, S. C. (2003). "Constructing near optimal schedules for the flow-shop lot

streaming problem with sublot-attached setups", Journal of Combinatorial Optimization, 7 (1):23-44.

Kim, K. and Jeong, I. J. (2009). "Flow shop scheduling with no-wait flexible lot streaming using an
adaptive genetic algorithm", International Journal of Advanced Manufacturing Technology, 44
(11-12):1181-1190.

Kropp, D. H. and Smunt, T. L. (1990). "Optimal and Heuristic Models for Lot Splitting in A
Flow-Shop", Decision Sciences, 21 (4):691-709.

26

Kumar, S., Bagchi, T. P. and Sriskandarajah, C. (2000). "Lot streaming and scheduling heuristics for

m-machine no-wait flowshops", Computers & Industrial Engineering, 38 (1):149-172.

Larrafiaga, P. and Lozano, J. A. (2002). Estimation of distribution algorithms. A new tool for

evolutionary computation Kluwer Academic Publishers, Boston.

Liu, J. Y. (2008). "Single-job lot streaming in m-1 two-stage hybrid flowshops", European Journal of
Operational Research, 187 (3):1171-1183.

Liu, S. C. (2003). "A heuristic method for discrete lot streaming with variable sublots in a flow shop",

International Journal of Advanced Manufacturing Technology, 22 (9-10):662-668.
Liu, S.-C., Chen, E.-C. and Liu, H. T. (2006). "A heuristic method for multi-product variable lot

streaming in a flow shop", Journal of the Chinese Institute of Industrial Engineers, 23 (1):65-79.

Manaa, A. and Chu, C. (2010). "Scheduling multiprocessor tasks to minimise the makespan on two

dedicated processors", European Journal of Industrial Engineering, 4 (3):265-279.

Marimuthu, S. and Ponnambalam, S. G. (2005). "Heuristic search algorithms for lot streaming in a
two-machine flowshop", International Journal of Advanced Manufacturing Technology, 27
(1-2):174-180.

Marimuthu, S., Ponnambalam, S. G. and Jawahar, N. (2007). "Tabu search and simulated annealing

algorithms for scheduling in flow shops with lot streaming"”, Proceedings of the Institution of

Mechanical Engineers Part B-Journal of Engineering Manufacture, 221 (2):317-331.

Marimuthu, S., Ponnambalam, S. G. and Jawahar, N. (2008). "Evolutionary algorithms for scheduling
m-machine flow shop with lot streaming”, Robotics and Computer-Integrated Manufacturing, 24
(1):125-139.

Marimuthu, S., Ponnambalam, S. G. and Jawahar, N. (2009). "Threshold accepting and Ant-colony
optimization algorithms for scheduling m-machine flow shops with lot streaming", Journal of Materials
Processing Technology, 209 (2):1026-1041.

Martin, C. H. (2009). "A hybrid genetic algorithm/mathematical programming approach to the
multi-family flowshop scheduling problem with lot streaming", Omega-International Journal of
Management Science, 37 (1):126-137.

Miihlenbein, H. and Paass, G. (1996). "From recombination of genes to the estimation of distributions I
Binary parameters,” In Proceedings of the 4th International Conference on Parallel Problem Solving
from Nature, vol. 1141 H.-M. Voignt et al., eds., Springer, Berlin, pp. 178-187.

Nawaz, M., Enscore, Jr. E. E. and Ham, 1. (1983). "A Heuristic Algorithm for the m Machine, n Job
Flowshop Sequencing Problem", Omega-International Journal of Management Science, 11 (1):91-95.
Pan, Q.-K., Suganhan, P. N., Tasgetiren, M. F. and Chua, T. J. (2010). "A novel artificial bee colony
algorithm for a lot-streaming flow shop scheduling problem", In press at Information Sciences.

Pan, Q.-K., Tasgetiren, M. F. and Liang, Y. C. (2008). "A discrete differential evolution algorithm for
the permutation flowshop scheduling problem", Computers & Industrial Engineering, 55 (4):795-816.
Pan, Q.-K. and Wang, L. (2008). "A novel differential evolution algorithm for no-idle permutation

flow-shop scheduling problems", European Journal of Industrial Engineering, 2 (3):279-297.

Pan, Q.-K., Wang, L. and Qian, B. (2009). "A novel differential evolution algorithm for bi-criteria
no-wait flow shop scheduling problems", Computers & Operations Research, 36 (8):2498-2511.

27

Potts, C. N. and Baker, K. R. (1989). "Flow-Shop Scheduling with Lot Streaming", Operations
Research Letters, 8 (6):297-303.
Rad, S. F, Ruiz, R. and Boroojerdian, N. (2009). "New high performing heuristics for minimizing

makespan in permutation flowshops"”, Omega-International Journal of Management Science, 37
(2):331-345.

Rajendran, C. and Ziegler, H. (2005). "Two ant-colony algorithms for minimizing total flowtime in
permutation flowshops", Computers & Industrial Engineering, 48 (4):789-797.

Reiter, S. (1966). "System for Managing Job-Shop Production", Journal of Business, 39 (3):371-393.

Rios-Mercado, R. Z. and Bard, J. F. (1998). "Heuristics for the flow line problem with setup costs",
European Journal of Operational Research, 110 (1):76-98.

Ribas, I., Companys R. and Tort-Martorell X (2011). “An iterated greedy algorithm for the flowshop
scheduling with blocking”, Omega-The international Journal of Management Science, 39 (3): 293-301.
Ruiz, R. and Allahverdi, A. (2007). "Some effective heuristics for no-wait flowshops with setup times
to minimize total completion time", Annals of Operations Research, 156 (1):143-171.

Ruiz, R. and Maroto, C. (2005). "A comprehensive review and evaluation of permutation flowshop
heuristics", European Journal of Operational Research, 165 (2):479-494.

Ruiz, R., Maroto, C. and Alcaraz, J. (2006). "Two new robust genetic algorithms for the flowshop
scheduling problem", Omega-International Journal of Management Science, 34 (5):461-476.

Ruiz, R. and Stutzle, T. (2007). "A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem", European Journal of Operational Research, 177 (3):2033-2049.
Ruiz-Torres, A. J., Ho, J. H. and Ablanedo-Rosas, J. H. (2011). "Makespan and workstation utilization

minimization in a flowshop with operations flexibility", Omega-International Journal of Management
Science, 39 (3):273-282.

Salhi A., Vazquez Rodriguez, J. A. and Zhang, Q. (2010). "An estimation of distribution algorithm with
guided mutation for a complex flow shop scheduling problem", In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, vol. 1 D. Thierens, ed., The Association for

Computing Machinery, New York, pp. 570-576.
Samarghandi, H. and ElMekkawy, T. Y. (2011). "An efficient hybrid algorithm for the two-machine

no-wait flow shop problem with separable setup times and single server", European Journal of

Industrial Engineering, 5 (2):111-131.
Sarin, S. C. and Jaiprakash, P. (2007). Flow shop lot streaming Springer, New York.

Sriskandarajah, C. and Wagneur, E. (1999). "Lot streaming and scheduling multiple products in
two-machine no-wait flowshops", IIE Transactions, 31 (8):695-707.

Sterna, M. (2011). "A survey of scheduling problems with late work criteria”, Omega-International
Journal of Management Science, 39 (2):120-129.

Taillard, E. (1990). "Some Efficient Heuristic Methods for the Flow-Shop Sequencing Problem",
European Journal of Operational Research, 47 (1):65-74.

Trietsch, D. and Baker, K. R. (1993). "Basic Techniques for Lot Streaming", Operations Research, 41
(6):1065-1076.

Truscott, W. G. (1986). "Production scheduling with capacity-constrained transportation activities",

28

Journal of Operations Management, 6 (3-4):333-348.

Tseng, C. T. and Liao, C. J. (2008). "A discrete particle swarm optimization for lot-streaming flowshop

scheduling problem", European Journal of Operational Research, 191 (2):360-373.
Valente, J. M. S. and Schaller, J. E. (2010). "Improved heuristics for the single machine scheduling

problem with linear early and quadratic tardy penalties", European Journal of Industrial Engineering, 4
(1):99-129.
Vallada, E. and Ruiz, R. (2010). "Genetic algorithms with path relinking for the minimum tardiness

permutation flowshop problem", Omega-International Journal of Management Science, 38 (1-2):57-67.

Vickson, R. G. (1995). "Optimal Lot Streaming for Multiple Products in A Two-Machine Flow Shop",
European Journal of Operational Research, 85 (3):556-575.

Vickson, R. G. and Alfredsson, B. E. (1992). "Two-Machine and Three-Machine Flow Shop
Scheduling Problems with Equal Sized Transfer Batches", International Journal of Production Research,
30 (7):1551-1574.

Wang, L., Pan, Q. K., Suganthan, P. N., Wang, W. H. and Wang, Y. M. (2010). "A novel hybrid discrete
differential evolution algorithm for blocking flow shop scheduling problems”, Computers & Operations
Research, 37 (3):509-520.

Yoon, S. H. and Ventura, J. A. (2002a). "An application of genetic algorithms to lot-streaming flow
shop scheduling", IIE Transactions, 34 (9):779-787.

Yoon, S. H. and Ventura, J. A. (2002b). "Minimizing the mean weighted absolute deviation from due
dates in lot-streaming flow shop scheduling”, Computers & Operations Research, 29 (10):1301-1315.

Zhang, W., Yin, C. Y., Liu, J. Y. and Linn, R. J. (2005). "Multi-job lot streaming to minimize the mean
completion time in m-1 hybrid flowshops", International Journal of Production Economics, 96
(2):189-200.

29

