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An EstiInation-Theoretic Fra111eWork for lInage-Flow C0111plltation 

Abstract 

Image-flow is a major source of three-dimensional information. This paper describes ;\ new framework 

for computing image-flow from time-varying imagery. In this fr<lll1ework, image-flow information is classified 

into two categories - conservation information and neighborhood information. Each type of information is 

recovered in the form of an estimate accompanied by a covariance-matrLx. Image-flow is then computed 

by fusing the two estimates using estimation-theoretic techniques. This framework offers the following 

principal advantages. Firstly, it allows estimation of certain types of discontinuous flow-fields without any 

a-priori knowledge about the location of discontinuities. The flow-fields thus recovered are not blurred 

at motion-boundaries. Secondly, covariance matrices (or alternatively, confidence-measures) are associated 

with the estimate of image-flow at each stage of computation. The estimation-theoretic nature of the 

framework and its ability to provide covarianc~ matrices make it very useful in the context of applications 

such as incremental estimation of scene-depth using techniques based on Kalman filtering. In this paper. an 

algorithm based on this framework is used to recover image-flow from two image-sequences. To illustrate an 

application. the image-flow estimates and their covariance matrices thus obtained are also used to recover 

scene-depth. 

1 Introduction 

Image-fiow is a commonly used representation for visual-motion. It assigns to each point on the visual-field. 

a two-dimensional velocity vector that depicts the projection of the instantaneous three-dimensional \,('!ocity 

of the corresponding point in the scene. Typically, all the information that is available about a dYll<1mic 

scene is an image-sequence. The image-flow field must be computed from the image-seqllence. FllrlIJl'I'!:lnrp
• 

the process of image-fiow computation must make use of local spatial and temporal n('ig!Jb()rlto()d~. Tlli, 

restriction is generally imposed for reasons of computational efficiency as well as physiological plalJ-il,ili;\. 

Tlus paper describes a new estimation-theoretic framework for image-flow computation. TIJl' prill"ipal 

ad\'antages offered by this framework are as follows. (i) Covariance matrices (or alternatively. r"r:li.j. Ii'·'" 

measures) are associated \\lith the estimate of image-flow at each stage of computation. (ii) II i' !".··ild,' 

to estimate certain types of discontinuous flow-fields without any a-priori knowledge about the I,,,., I;, III I d 

discontinuities. The flow-fields thus recovered are not blurred at motion-boundaries. (iii) Ber;!'!,,· ,,1 ::-

estimation-theoretic nature, the framework lends itself natnrally to incremental estimation of .'1"'11" d.,;" 11 

from image-flow using techniques based on Kalman filtering. A contribution of this framework tbott :- no[ 

discussed in this paper because of space limitations lS that it serw's to unify a very wide cla~s of .,\;. r i)l~ 
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techlliques for image-How computa.tion. TIll' issue of unification will he discllssed in a seq1lel paper. Defore 

~i\'ing an over\"iew of this framework, a brief re\"iew of the state of the art will be in order. 

It is well understood [~. IS] that by using local measurements alone, the true \"eloeity can j,p recowrpd 

only in those image regions that have sufficient. local intensity variation. such as intensity corners. textured­

regions. etc. This constitut('s the well known aperture problem. Velocity must be propagated from n'gions of 

full information. such as corners etc .. to regions of partial or no information. This implies that any approach 

to local computation of image-flow must incorporate two functional steps. In the first step, local information 

about velocity is recovered llsing the image-intensity distribution in small spatiotemporal neighborhoods. In 

the second step, the local information is propagated into neighboring regions to recover the correct image­

flow. The past research is summarized below in light of these two steps. A detailed review can be seen 

in [2. 19J. ~lost of the current frameworks for image-flow computation use one of the following three basic 

approaches for the first step mentioned above: (i) correlation-based approach [4. 18J. (ii) gradient-based 

:l.pproach [7, 8, 11, 15. 22J alld (iii) spatiotemporal energy based approach [1. 9]. The output of the first step 

is in the form of initial-estimates that are updated iteratively in the second step. For the second step, the 

current frameworks use either a smoothness constraint [4. 10. 11, 15] or the analytical structure of image-flow 

[14,21J. 

In the framework described here, the image-flow information available in time-varying imagery is classified 

into two categories - consert'ation information and neighborhood information. In terms of the two-step solution 

suggested above. conservation information is extracted in the first-step. I caU it conservation information 

because it is derived from the imagery by using the assumption of conservation of some image-property OH'r 

time. TypicaUy, this property is intensity [S. 1 L 1.5]. some spatiotemporal derivative of intensity [J] or intensity 

distribution in a small spatial neighborhood [4, 18] etc. Other choices are possible. e.g .. color. Similarly. 

neighborhood information corresponds to the second step. I call it neighborhood informat.ion because it is 

derived by using the knowledge of velocity distribution in small spatial neighborhoods in the visual-ftdd. Each 

type of information is recovered in the form of all estimate accompanied by a co\'ariance-matrix. Image-flow 

is then computed by fusing the two estimates on the basis of tlwil' covariance-matrices. 

The organization of this paper is as follows. In section 2. I show how to reCO\'er conservation information. 

For simplicity of presentation, I use a correlation-based approach. In the sequel paper. I show that one could 

use anyone of the three basic approaches to recover conservation information. In section 3. I disc1lss the 



procedure for reco\"f'ring neighborlluod information. I also show that image-flow compntation can be posf'd 

as a problem of combining conservation information and neighborhood information optimally (in a statistical 

.:;ense). I present an iterative soilition to this problem. I show an algorithm based on this framework In 

.section -! and describe the results of applying this algorithm to a vaxiety of image sequenc(·s in section .'j. 

In order to pu t this framework in context of an application, I also show the results of using the image-flow 

estimates to recover scene-depth using a variant of the Kalman filtering-based technique proposed by ~latthies 

et. al [13J. Finally, I give concluding remarks in section 6. 

2 Step I: Conservation inforll1ation 

An implicit assumption on which most image-flow computation techniques are based is that some image­

property is conserved over time. In other words. in each image of a sequence, the projection of a given moving 

point in the scene will have the same value of the conserved property. Factors that affect the robustness of the 

choice of conserved property are ill umina tion. type of motion (rotational/ translational). noise and digi tiza tion 

effects etc. [4. 19]. For reasons of computational simplicity. I use the Laplacian of intensity (computed by the 

difference-of-Gaussians operation using the masks suggested by Burt [6].) as the conserved property. T refer 

to the Laplacian image as just '~image" for sake of brevity. 

Based on the assumption of conservation. estimating image-flow using a correlation-based approach [4] 

amounts to an explicit search for the best match for a given pixel of an image in a search-area in subsequent 

images of the sequence. The extent of the search-area can be decided Oil t he basis of a-priori knowh'd~e about 

t he maximum possible displacement between two images or by Ilsing a hierarchical strategy [4]. Correlation 

g,ives a reSjxmse. i.e .. a matching-strength. at each pixel in the search area. Thus, the search arf':t C,tn be 

visualized as covered with a "response-distribution". Anandan [.1] had shown that using the sum-of·squared­

differences (SSD) offers several computational advantages over correlation. Using SSD, which is a measure 

of mismatch, one obtains an "error-distribution" over the search area. The procedure for obtailliIl'o!, f'rror 

distribution and converting it into response-distribution is disc1\ssed below. 

for each pixel P(x, y) at location (x. y) in the first image II. a correlation-window H..'p of size /:211 + 1) x 

(2n + 1) is formed around the pixel. A search-\vinc!mv }V~ of size (2.S + 1) x (2N + 1) is establish!''' :lfollnd 

the pixel at location (x. y) in the second image I 2 • The (2X + 1) x (2N + 1) sample of error-distribution is 
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COlllputpd using sllm-of-squared-dilferences as: 

n n 

t e ( II. l') L L(Idx+i.y+j) -I2(.r+u+i.Y+l.'+j))2 
.=-n ]=-n 

( 1 ) 

The (2.V + 1) X (2S + 1) sample of response-distribution is computed as follO\v5: 

-x ~ II.V ~ +.Y (2) 

The choice of an exponential function for converting error-distribution into response-distribution is based 

primarily on computational reasons. Firstly. it is well behaved when error approaches zero. Secondly, the 

response 'obtained with an exponential function varies continuously between zero and unity over the entire 

range of error. 

I suggest that response-distribution be interpreted as follows. Each point in the search area is a candidate 

for the ,·true match". However. a point with a small response is less likely to be the true match. as compared 

to a point \vith a high response. Assuming that the time elapsed between two successive images is unity. each 

point in the search area represents a point in u - v space. In estimation-theoretic terms. each of these points 

can be thought of as a measurement of the true velocity. Further, the response at the point can be thought 

of as a weight that reflects OHr faith in the measurement. One cOllld compute an f'stinwte of \·elocit.\' Il.~ing. 

for instance. a weighted-least-squares approach. Under the assumption of additive and z(~rO-rneall errors. one 

could also associate a covariance-matrix with this estimate. Quantitatively, the weighted-least-sf)lIaw,: kl5pd 

estimate. denoted by Uee = (lice. Vee), is given by: 

liee = 
L" Lv Re( Il. t')1l 

Lu Lv Re( Il. v) 

Lu Lv Re( u. !J )1' 

L« Lv Re( li, v) 

and the covariance-matrix associated with this estimate is given by: 

( :3) 

,I) 

where the summation is carried out over -.v ~ It, V ~ +N. It is known [.s] t.hat reciprocals of the pig.·tJ \;r!ll i ',: Ill' 

the covariance-matrix serve as confidence-measures associated with the estimate, along the direction,; !!i\PII h!' 
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(a) In a unifonn region (b) Near an edge (c) Near a comer 

Figure 1: Response-distribution over the search-window for some representatiYe examples - darker the pixeL 

higher the response. The labels "high" and "low" refer to the confidence measures associated with the 

eigenvectors. 

the corresponding eigenvectors. Figure 1 shm\ls the eigenvectors and the corresponding confidence measures for 

some typical response distributions. Further, these eigenvectors correspond to the principal a.xes of response 

distribution. Principal axes have been used to represent velocity earlier by Scott [18]. 

Summarizing, there are three essential steps underlying the computation of conservation information. 

They are: (i) selecting the consen'ed quantity and deriving it from intensity imagery. (ii) computing error-

distribution and response-distribution over the search-area in the velocity-space and (iii) interpreting response 

distribution, i.e .. computing an estimate of velocity along with a covariance-matrix. The estimate. Cce • can be 

thought of as the "initial estimate" that serves as input (along \\lith the co\'ariance See) to the velocity propa-

gation procedure. As mentioned earlier, velocity propagation is accomplished using neighborhood information, 

Before discussing neighborhood information. the following clarification would be in order. In interpreting the 

response-distribution, I have assumed that it is unimodal. This assumption does get violated in thl' presencp 

of texture, specially if the size of the search-window is greater than the scale of intensity variation'. The 

weighted-least-squares approach used above "aveJ'ages out'· the va.rious peaks. giving an incorrect est imate of 

velocity. Howe\'er, since the "spread" of the distribution is large in this case (as compared to thp "ituatio!l 

where the response-distribution has a single well defined peak). the confidence associated \vith th(' estimate 

will be low. In essence. although the procedure for interpreting the response-distribution gives an illcorr('ct 

estimate if the distribution is not unimodal. it does associate a low confidence with the (incorrect) ""tilllat(', 

Further. the problem of multiple peaks call be alleviated. at least partly, by using three images to comp1JI" 

conservation information. This is done by computing two response-distri butions - one bet ween til" Cllrrl'lI t 

image and the previous image and other between the current image and the next image - and adding the t\~·o 
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(a) Uniform region (b) Region boundary (c) Gradual depth change 

Figure 2: Velocity distribution for some representative neighborhoods. 

appropriately. 

3 Step 2: Neighborhood infornlation 

The objective of the second step in image-flow recovery is to propagate velocity by using neighborhood 

information. Assume for a moment that the velocity of each pixel in a small neighborhood around the pixel 

under consideration is known. One could plot these velocities as points in u - v space giving a neighborhood 

velocity distribution. SOlle typical distributions are ~hown in figure 2. What can one say about tIll' velocity 

of the central pixel (which is unknO\vn)? Barring the case where the central pixel lies in the vicinity of a 

motion-boundary, it is rea.sonable to assume that it is "similar" to velocities of the neighboring pixPls. III 

statistical terms, the velocity of each point in the neighborhood can be thought of as a mUl.'lIn'11lrnl of the 

velocity of the central pixel. It is reasonable to assume that all of these measurements are not equalh- ["i·liable 

- they must be weighted differently if used to compute an estimate of velocity of the central pix,,!. I \\i·igltt 

the velocities of various pixels in the neighborhood according to their distance from the central pix.-l - i;lr~.'r 

the distance, smaller the weight. Specifically, I use a Gaussian mask. Based on this information. a-\,·i!.!]:t.·d­

least-squares estimate of velocity. II, can be computed. Further, assuming additive and zero 1111'<1 II '-ITII["', 

a covariance-matrix. Sn can be associated with this estimate. The estimate and the covariance-m;t I rix • LI!" 

obtained serve as the "opinion-' of the neighborhood regarding the velocity of the central pixel (.1- "i'j"""d 

to those obtained from conservation information that reflect the central pixers own opinion). 

Quantitatively, if the neighborhood size is (2m + 1) X (2w + 1 ), the velocities of these (2u' + 1)2 pi \0'1- III;'!) 

to the points (Uj. rj) in u - t' space (where 1 ::; i ::; (2w + 1 )2) and the weight assigned to the point 1'1,. '-, I j.; 
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R.,( lLi, t'j), the weighted-least-squares based estimate l' = (iT, i'), of \'elocity of the central pixel is !,;i\'~n by: 

La Lv R,,( u, 11 )ll 

Lu ~t. R,,( U. 1.') 

Lu Lt. Rn( u, l')l' 

L1I Lt: R,,( 11. t') 

and the cm-ariance-matrix associated with this ('stimate is given by: 

L. R,,(U •• l',)(u,-il)(t·,-v) ) 

L. Rn(u,.t',) 

2:, R n (U"V,)(Vi-V}2 

L. R,,(u,.u,) 

where the summation is carried out over 1 ::; i::; (2w+ 1)2. 

( 6) 

At this point, we have two estimates of velocity, Uee and U - from conservation and neighborhood in-

formation respectively, each with a covariance-matrix. An estimate of velocity that takes both conservation 

information and neighborhood information into account can now be computed as follows. Since this estimate 

is a point in lL - V space, its distance from U, weighted appropriately by the corresponding covariance matrix. 

represents the error in satisfying neighborhood information. I refer to this error as neighborhood error. Simi-

larly. the distance of this point from Uee • weighted appropriately, ['epresents the error in satisfying conservation 

information. I refer to this error as consermtion error. Computing the velocity estimate, therefore. amounts 

to finding a point in u - v space that minimizes t he sum of neighborhood error and conservation error. 

In quantitative terms. neighborhood error is a. quadratic form commonly used in estimation theory [5] 

and is given by: 

( /) 

Similarly, consen'ation error is the following quadratic form: 

(8) 

and the sum of conservation error and neighborhood error represents the squared error in the \'elocity estimate 

U. Statistically speaking, the optimal ('stimate of velocity is the one that minimizes the mean squared error 

over the visual field. That is: 

Calculus of variations can be used to deri\'e the optimal estimate. Let vu be defined as follows: 

(10) 
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The condition for minim1lm mean squ:lred error can be \\"fitten as: 

( 11 ) 

which gives [.5J: 

(12) 

In this equation, Ucc and S:c are derived directly from the underlying intensity pattern in the image. 

Therefore. they are known (and fixed) for a each pixeL U and Sn. on the other hand. are derived on the 

assumption that velocity of each pixel in the neighborhood is knO\vn in ad vance from an independent source. 

This assumption is invalid in practice. Hence, U and Sn are unknown and the velocity U cannot be derived 

directly from equation 12. However. equation 12 is available at all the pixels in any given neighborhood in the 

image. If the conditions discussed belO\\' are satisfied. we essentially have a system of coupled linear equations 

that can be solved by an iterative technique such as Gauss-Siedel relaxation algorithm [16]. The iterative 

solution can be written as [16]: 

[S-I + S-I]-I [-;-1[1 + -;-17?] 
cc n '- cc . cc '- n 

(13) 

and the covariance matrix associated with the final estimate of velocity is given by [S';/ + S~l]-l. where 

S~l is computed from the final iteration. The eigenvalues of this matrix depict the confidence measures 

corresponding to the final estimate. The notion of final (post-propagation) covariance matrix is novel and 

unique to this framework. It serves several purposes. Qualitatively. it indicates what regions in the ima!!:e 

ha.ve the most reliable image-flow estimates frolll the viewpoint of applicability to high-level interpr(3t;ltion. 

Quantitatively. it serves as an essential input to procedures for incremental scene-depth computation that 

use estimation theoretic techniques such as Kalman filtering. This is discussed in appendix A and ns('d in 

depth-estimation experiments reported in the next section. 

The two conditions that must be satisfied for t he iterative solution to conwrge are discussed below. Firs I Iy. 

for equation 12 to represent a system of coupled linear equations. Sn mllst be a constant and must bp known 

in ad\"ance. Such is not the case here. In the current implementation. I obtain Sn from the neighborhood 

\'elocity distribution corresponding to the previous iteration. However. I ha\'e found empirically that eilliN of 

the eigen\'alues of Sn does not change by more than about 1.::'% from the beginning to the end of the iterative 

procedure. This holds true particularly for the pixels that do not lie on a motion boundary. Secondly. for the 
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it"rati\"e procedure to COIl\wge irrespecti\"e of the value of initial pstimate Co, bOfh Sc~l and S,;l must Op 

positive definite .. \5 discussed in [:!O], this criterion is generally satisfied in real imagery except in pathological 

cases such as absolutely flat regions. 

So far, I ha\"e assumed that the pixel under consideration does not lie on a motion-boundary and that 

neighborhood \"elocity distribution forms a single cluster in II - 1.' space. In the following discussion, I will 

analyze the performance of the framework at motion-boundaries. Specifically. I will show that (i) the procedure 

discussed above for using neighborhood information is still justified and (ii) in absence of texture, it does a 

better job of preserving the step-discontinuities in the flow-field as compared to conventional smoothing-based 

procedures. For this purpose, recall that each of the two estimates Uee and U maps to a point in II - V space. 

Similarly, each of the two covariance matrices See and Sn maps to an ellipse that has its center at the respecth"e 

estimate and that has its major and minor axes equal to the eigenvalues of the covariance-matrix. Therefore. 

each iteration amounts to finding a point in II - I) space that has the minimum weighted sum of squared 

perpendicular distances from the axes of the t\VO ellipses - the eigenvalues serving as weights. 

The behavior of this procedure ill the vicinity of a motion-boundary is depicted in figure 3a. For the 

conservation-ellipse Ece , only the major axis is shown because the minor axis will be very small in this region. 

In other words. all that consen"ation information tells (with high confidence) about the Yelocity of the central 

pixel is that it lies somewhere along the major axis of the ellipse Ecc. Velocities of neighboring points are 

also plotted from the previous iteration. Given that there is no texture in vicinity of the boundary (i.e .. 

conservation information is reliable) and that the boundary corresponds to a step-discontifillity ill the tlow­

field. the velocities of neighboring points form two clusters in It - L' space. As a result. the millor axi" of 

the neighborhood-ellipse En will be very small. In other words, all that neighborhood information tpl!,; (with 

high confidence) about the velocity of the central pixel is that it lies somewherp along the major axis of the 

ellipse En. Since the "correct" velocity will lie in one of the two clusters. this opinion of neighborh()od is 

correct. In other \vords. the iterative update procedure developed for the non-boundary pixels i,., j'l..;titied 

even for pixels that lie on a motion-boundary. Furt.hermore. since the velocities of the neighborilll!. pi\,.J~ <tr~ 

derived from conservation information (at the begillning of the iterative procedure). one of the two ,lll" .. r~ 

will be very close to the conservation-constraint for the central pixel. This is depicted in fi~l![l' :Lt. .\.; a 

result, the updated velocity for the central pixel. which is given by the intersection of the two lll;,j, ,I' d \('~ 

(if the minor a.xes are also used. the updated velocity will be slightly offset), will be very close to O1l" ,If I he 
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(a) (b) 

Figure 3: Performance at motion-boundaries. 

clusters. This cluster corresponds to that side of motion boundary (in the image) \\rith \vhich the velocity of 

the central pixel is more consistent. Effectively, the pixel under consideration is binned to the correct side 

of the motion boundary. For purpose of comparison. the result of conventional smoothing [-L 11] is shown in 

figure 3b. Clearly. the updated velocity lies somewhere in the middle of the two clusters. effecti\'ely blurring 

the flow-field at the boundary. 

4 An Algorithu1 and its implementation 

An algorithm based on the new framework is given below followed by the details of its implemenlation. The 

algorithm uses three images as its input. It recovers conservation information only once at the onset (..;rl'ps 1 

through 3) and neighborhood information once for each iteration (steps ·1 through 6). 

Algorithm: 

(1) Convolve each image \vith a Laplacian. (2) Form a (2n + 1) x (2n + 1) correlation-window arollild the 

pixel in consideration in the central image. Also. form a (2.Y + 1) x (2.V + 1) search-window in arollild th~ 

corresponding location in the other two images. ('ompute the error-distributions o\'('r the two search windows 

and transform them to the corresponding response-distributions. R-;! and Rtl respectively. finillly. rotal., 

R-;1 about both vertical and horizontal axes and add it to Rtl to compute the resultant response dist rihlltioll 

Re. (3) Compute the estimate Fcc and the covariance-matrix Sec' from response-dist.riblltion using eqllati ons:3 
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and -I respecli\·ely. (I) Form ,1 (2w + 1) X (211~ + 1) \\'indow around the pixel in consideration. Denote 

each pixel by a distinct index i. where 1 ~ i ~ (2w + If. Denote the current estimate of the velocity of 

i
1h 

pixel by (Ili. t'i). (For the first iteration. the vplocity cree computed in step :3 call be used as the current 

estimate) .. \ssign weights "Rn(Uj, vil to these velocities. Compllte the mean U and the co\'ariance-matrix Sri 

using equations ·5 and 6 and respectively. (.5) Update the velocity at the pixel under consideration using 

equation 13. (6) Repeat steps -l and .'j until the change in vdocit), O\'er two successi\'e iterations is less 

than a threshold, (i) Compute the confidence measures associated with the final estimate of velocity as the 

eigenvalues of the matrix given by 5;;/ + 5;;-1. These confidence measures are associated with the directions 

of maximum and minimum confidence. i.e .. along the eigen\'ectors. 

Implementation Details: 

Firstly, one has to establish the parameters N. n, wand k in order to compute response-distribution. The 

choice of lY depends on the ma.ximum possible displacement of a pixel between two frames. If the displacement 

is small (of the order of one to two pixels per frame). N = 2 (i.e., a 5 x 5 search window) is appropriate. If 

the displacement is large, one can still use JV = 2 along with a hierarchical search strategy [4]. The values 

of nand ware decided on the basis of how many neighbors should contribute their opinion in estimation 

of velocity of the point under consideration. Too small a neighborhood leads to noisy estimates. Too large 

a neighborhood tends to smooth Ollt the £'stimates. Empirically, n_ IV = 1 (Le .. ?- 3 x 3 winuo\\i) appears 

appropriate. The parameter " is essentially a normalization factor. In the implementation used hNe. k is 

chosen in in such a way that the maximum response in the search-window is a fixed number (close to Ilnity). 

Secondly. inversion of various matrices poses problems when one or morc of the eigenvalues are Zf'ro Ilr \'pry 

small. For this reason. singular '-alue decomposition is used for matrix-inversion. Thirdly, the choice of f'" ;k 

the starting velocity for the iterative procedure is justified because it denotes the estimate that can III' d;or:';".! 

from conservation information alone. This ties well with the two-step a pproac h to image- flow reco\-" ry - til£' 

output of the first step. [icc. serves as an input to the second step. Finally. some criteria has to he ,·-t.,hli-:lI'.1 

to stop the iterative update process. In the experiments reported in this paper. iteration is StOPl""] ','. ;,"11 

the magnitude of each component of velocity. when rounded to t he second decimal place, does !I'" , ':.1 ,,~ .. 

auJ .... vhere in the image. 
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5 Experilnents 

The experiments described in this section can be divided into two categories - qualitative ~nd quantitative. for 

sake of brevity, only one experiment from each cat{'gory is described. A detailed description of the objectives, 

methodology and results of each catC'g;ory of experiments is given below. 

Qualitative experiments: The objecti\-e of this category is to judge the qualitative correctness of flow-fields 

recovered by the algorithJll, specially in terms of preservation of Illotion-boundaries. The experiment described 

here uses a toy truck on a flat (and mostly dark) table. Three images are shot as the truck rolls forward. 

The motion is largely translational, except for in the vicinity of the wheels where it has a small rotational 

component. Furthermore, the motion-boundaries are expected to show up primarily as step-discontinuities in 

the flow-field. The images are 2.56 X 242 in resolution and the maximum image-motion is about three pixels 

per frame. For image-flo\\! computations. the images are low-pass filtered and subsampled to get a resolution 

of 128 X 121. At this level of resolution. the maximum image-flow is expected to be between 1 and 1..5 pixels 

per frame. In the various flow-field images that follow~ the velocity vector for only e\'ery fourth pixel (in both 

horizontal and vertical directions) is shown for sake of clarity. Further. the magnitude of velocity is multiplied 

by a scale-factor of four in order to make the velocity \'ector clearly \·isible. 

Figures 4 through 7 show various flow-fields and confidence measures. Figure 4a shows the central frame 

of the original sequence. Figures 4b and 4c show the two confidence measures associated with conservation 

information at each point in the visual-field. It is clear that the one of the confidence measures is high both 

at edges and corners of the intensity illlage whereas the other one is high only at corners. Figure ·Id shows the 

initial estimate of the flow-field (i.e., the velocity lIcc). Figure.5 shows the flow-field after iterati\'e \'{'Iocity 

propagation (10 iterations). superimposed on the wire-frame of the truck. For sake of comparison. fi~ure (j 

shO\vs the flow-field after 10 iterations of conventional smoothing [4, 11] (with the smoothing factor () set to 

0.5), also superimposed on the wire-frame. For this purpose, the conservation-based estimate C.,,, is fed into 

the smoothing procedure in the manner shown by Anandan [4]. A comparison of figure .:> and 6 clearly shows 

that the new propagation procedure does an excellent job of preserving motion boundaries. It is appar"nt that 

there is very little "bleeding" of velocity from the truck illto the background in figure S. On the other hand. 

there is considerable blurring of motion-boundaries in figure 6. Figures 7a and 7b sho\\! the two confiliPllce 

measures after propagation. A.s expected. the confidence has propagated outwards from the pre-propag,ation 

high-confidence regions. 
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(a) (b) 

(c) (d) 

Figure 4: The toy-truck experiment: (a) central frame of the image-sequ£>nce. (b).(c) confidence !Il";lSllrp S 

associated with conservation information. i.e .. the reciprocals of the eigenvalues of the covariance matrix S. 

and (d) initial estimate of velocity. i.e'., Le. 
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Figure 5: The toy-truck experiment: flow-field after velocity propagation, superimposed on the wire-frame of 

the truck. 

Figure 6: The toy-truck experiment: flo\v-fieJd after 10 iterations of conventional smoothing. sllpt'ri:Jl ;,. ,.;"d 

on the wire-frame of the truck. 
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(a) (b) 

Figure 7: The toy-truck experiment: (a) and (b) confidence measures associated with the fio\',:-fieJd after 

velocity propagation. 

The estimation-theoretic nature of the framework and its ability to provide covariance matrices make 

it very useful in the context of applications such as incremental estimation of scene-depth using techniques 

based on Kalman filtering. One such technique was shown by ~Iatthies. Szeliski and Kanade [13] . .-\ variant of 

their scheme that uses the image-flow estimates and the covariance matrices produced by the new framework 

is briefly described in appendix A and is used below to recover scene-depth. For this purpose, the toy-trud: 

experiment is repeated with the truck stationary, the camera looking from top (about i.:> inches above the 

truck) and undergoing a one-dimensional translation in a plane perpendicular to its optical axis. EleW'll 

frames are shot at regular intervals as the camera translates horizontally by 1..5 inches. The true d.';>t1l-:11:1/) 

(obtained with a laser range-finder) is shown in figure 8. The depth-map obtained after elewn fr<tIIlI'S i~ 

plotted in figure 9. It is apparent that the depth-estimates arC' very good. For sake of compari,,)rl. tit,· 

depth-map obtained after cleven frames Ilsing the image-flow estimates obtained from the smootllill!!,-hasl'd 

implementation described earlier is plotted in figure 10. It is apparent that t.he blurring ofdepth-discnntinllilif>~ 

is much more prominent in figure 10. It must be emphasized that the objective of this exerci"p I "f ':"pt!t-

estimation) is to put the new-framework ill the context of an application, rather than to make illl,\' ('him.; 

about the performance of a specific depth-estimation scheme. 

Quanti tative experiments: The general objective of this category of experiments is to judge t hI' Ii 1!~1 n Tit:t-

tive correctness of the flow-fields. In order to accomplish this, the ';ground-truth" flow-field must lH' know II, 
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Figure 8: The toy-true\< e~perinte"t: the true depth-m'P obtained with a laser range-linder-

figure 9: The toy _ truck exp.ri",en t: a plot o[ the d ep t h- map , [ter ele«" [ra ",es using oS t i In' t I,'"~ d,· d": i, 

i1l1age-ftow c01l1putatio
n

. 



Figure 10: The toy-truck experiment: a plot of the depth-map after eleven frames using conventional 

smoothing-based image-flow computation. 

Typically it is possible to know (or compute) the ground-truth flo\l1·field only if (i) the motion is synthetically 

generated. e.g .. by warping a given image in some known fashion or (ii) the camera motion and the depth of 

each point in the scene is exactly known. The second scenario is considered in the experiment that follows. 

The imagery for this experiement is selected in sHch a way that the flow-field does not ha\'(~ any discontinuities. 

simply because it is very difficult to come up with the ground-truth flow field in the presence of discontinllitiE's. 

Specifically. the scene is comprised of a textured poster rigidly mounted on a precision translation table. 

A 512 X 512 camera is mounted on the table as well. but its (translational) mot ion can be accurately rOil trolled. 

The poster is placed facing the camera and slanted in such a way that (i) the optical axis is not perpendicular 

to the plane of the poster and (ii) the distance between the camera an the poster is very small (about 12 

inches). Both these arrangements help to make the resulting flow-field interesting even when the campra is 

undergoing a pure translation. The camera is made to translate in a plane perpendicular to its optical axis 

50 that the image displacement is roughly 6 pixels where the poster is closest to the camera and rOllghly :3 

pixels where the poster is the farthest from t he camera. The exact amollnt of camera translation as \\"(~ll as 

the distance of the lens from the rigid mount is recorded. The camera is then calibrated and its focal length 
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(a) (b) 

Figure l1: The poster experiment: (a) central frame of the image-sequence and (b) correct flow-field. 

is determined. The "correct"· flow-field is determined using the theory developed by Waxman and Wohn [21j. 

The images are low-pass filtered and sub-sampled to get a resolution of 128 x 128 IJsing Burfs technique (6]. 

Both components of image-\'elocity at each point are divided by four to get the correct flow-field corresponding 

to the reduced image size'. The central image and the correct flow-field are shown in Figures 11a alld l1b 

res pee t i vely. 

Two experiments are conducted. with correlation-window size set to 5 x 5 and 3 x 3 respecti\"E'I~·. In each 

case. the percentage of pixels t hat haw both components of veloci ty (a) wi thin .:>7c (of the true vallJp I ( h) \\'it hin 

10% and (c) within 2'=-}X" hefore and after propagation (15 iterations). is determined. The resulls ar" ,.,hn'.'.lI 

in table 1. :\s expected. larger size of the correlation window (.:> X 5) gives more accurate result:,. all hOljdl 

reasonable results are obtained with a :3 x :3 correlation window also - specially after velocity propa'!::t t ;Ul!. 

Figures 12 through 14 show \'arious flow-fields and confidence measures obtained with the 3x:J u)rrpiatioll 

window. Figure 12a shows one frame of the original sequence. Figures 12b and 12c shm\! the two cllldid"Il("p 

measures associated with conservation information (i.e .. the "initial"' estimate of velocity) at each i1"il,r ill r :1" 

\·isual-field. These confidence measures are the inverses of the small and the large eigel1\alue. f""lloC: i", ". 

of the covariance matrix Sec. It is apparent that the one of the confidence-measures is high botll ;.t ·',k··· 

I.-\ctually, the reduced-size imagery will correo'pond to image-flow that is not exactly equal to the original image-II,,\\" [·0111'-' ,I 

in magnitude by a factor of four. This is because of the intensity changes that accompany low-pass filtering and 'l1h"llIl1,jlll~ 

Due to lack of a quantitative characterization of these changes, I do not account for them. 
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Percentage of Percentage of Percentage of 
WINDOW pixels with vector pixels with vector pixels with vector 

SIZES error less than error less than error less than ! 
5% 10% 25% 

V \Vithout With Without With \Vithout \Vith 
Prop. Prop. Prop. Prop. Prop. Prop. 

5 X 5 Search 

3 X 3 Correl. 
53.0% 56.1% 66.4% 77.5% 71.3% 83.1% 

5 X 5 Search 

56.2% 61.2% 68.6% 81.6% 73.2% 86.4% 
5 X 5 Correl. 

Table 1: Error statistics for the poster experiment. The two rows correspond to two different sizes of the 

correlation window. For each ro\'1. the first and the second columns indicate the percentage of total pixels for 

which the error in both components of velocity is less than 5% of the correct value, before and after velocity 

propagation respectively. The third and the fourth columns give the corresponding percentage of pixels with 

error less than 10%. Finally, the fifth and the sixth columns give the corresponding percentage of pixels with 

error less than 25%. 

and corners of the intensity image whereas the other one is high only at corners. Figure 12d shows the 

initial estimate of the flow-field (i.e .. the velocity Ucc ). Figure 13 shows the flow-field after iteratin' velociry 

propagation (10 iterations). It is apparent that the flow- field is q ualitati vely correct almost everywherf' in the 

image, except at a few randomly placed points. The velocity-estimate at these few points is incorrflct \weallse 

ora \'ery high confidence associated with a wrong initial estimate (Fcc). As discussed earlier. such a ~itllali,)!l 

can arise in some textured regions. Figures 14a and 1-tb show the two confidence measures after propa!.!.at ion. 

Once again, in order to view the image-flO\\I estimates obtained above in the context of deptb-p~1 illl;)! i,llL 

the procedure shown in appendix .\ is used to recover depth-maps. Eleven frames (shot at regular illt"I'\';d,; 

as the camera translate horizontally by O •. ~ inch. starting from the initial configuration describl.'d 1 .. ,1', 'r". ill 

a plane perpendicular to its optical axjs) are used. Figure 15 shO\\ls the correct depth-map. Figllr,'" Iii. Ii 

and 18 show the depth-map recO\'ered by the procedure after three. seven and eleven frames r.'~ I"'" i \.·1·;. 

Qualitatively. it is apparent that the depth estimates improve with time. Quantitati\'ely, the p".t 111,,;,1:-

square error in depth (over th(' entire image) is 11.2%. 4.3% and 2.8% after three, seven alld el"\'''11 fi;, "l"~ 

res pee ti \·ely. 

In each of the two categories. the experiments reported here have small inter-frame Illation. III •• r.I,·r t.) 
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Figure 12: The poster experiment: (a) central frame of the image-sequence. (b).(c) confidencl' Ill'>;L'ilF~ 

associated with conservation information. i.e .. the reciprocals of the eigenvalues of the co\-ariancp 11l;\'rix S . 

and (d) initial estimate of velocity. i.p .. Le" 
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Figure 1 T: The poster experiment: depth-map after seven frames. 
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Figure 18: The poster experiment: depth-map after eleven frames. 

handle the cases where motion can range from very small to very large. a hierarchical version of the algorithm 

has been developed based on the scheme proposed by Anandan [4]. The algorithm has been tested on a wide 

variety of scenes (including the famous dinosanr sequence used by Anandan. where velocity is of the order of 

eight pixels per frame) and it works very well. The results are not included here because of space limitations. 

6 Conclusion 

In this paper. I have shown a new framework for recovering image-flow from time-varying imagery. This 

framework recognizes the fact that velocity information a\'ailable in small spatiotemporal neighborhoods in 

the imagery is not exact - there is uncertainty associated with it. It classifies the available information into 

t\,'O categories - consen'ation information and neighborhood information - and models each one of them using 

techniques that are common in estimation theory, It recovers the image-flow field by performing an optimal 

combination of the two types of information. Some of the distinctive features of the framework are summarized 

below. 

1. It quantifies the velocit~' information contained in each of the two local sources - conser\'atiolJ and 

neighborhood - by an estimate and a covariance matrix. A similar approach has been used bfC'rore by 

Anandan [4] for conservation informal iOIl. However. as far as neighborhood information is concerned. 

this approach is novel. In essence. the current formulation accounts for the "spread" (ill velocity space) 
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of neighborhood velocities in addition to their "average" that has been llsed in earlier formulations 

[10, 11]. 

2. It formulates the problem of estimating image-fiow as that of performing a statistical combination 

of velocity estimates obtained from the two sources. on the basis of their covariance-matrices. The 

solu tion to this problem is i tera tive and amounts to propagating velocity information from regions of 

low uncertainty to regions of high uncertainty. 

3. Because of the statistical nature of the pJ"ocedure used to represent and propagate velocity, there is 

an explicit notion of confidence measures associated with the velocity estimate at each pixel. both 

before and after propagation. The idea of pre-propagation confidence measures has been used before 

[-t] but that of post-propagation confidence measures is novel. The experiments shown in the previous 

section reveal that the iterative propagation proccd ure used in this framework does actually enhance 

the confidence during each iteration. The post-propagation confidence measure refiects the reliability 

of the final estimate of image-flow and it can be a valuable input to a system that uses image-ftow to 

recover three-dimensional information. In the Kalman filtering-based depth estimation procedure used 

in this paper. the post-propagation variance (reciprocal of the confidence measure) serves as one of the 

inputs to the "prediction" stage. 

-to The propagation procedure does a much better job of preserving the step-discontinuities in the ftow­

field. specially in the absence of texture in the vicinity of such discontinuities. as compared to t he classic 

smoothing based propagation procedllres [.1, 11J. I have demonstrated this for t.he toy-truck SE'fjIlPJlU' and 

the tori sequence in the previous section. Propagation procedures used in several frameworks proposed 

in the recent past [3. 10, 12, 1.5, 11, 21] are capable of preserving motion boundaries. Howewr. the 

propagation procedure used in this framework is different from them in the following respects: (i) it gin>s 

image-flow in the entire visual-field, not just at the edges, (ii) it does not require any a-priori knowledge 

about the location of the boundaries. (iii) it does not assume that all intensity edges corr,,;;ponJ to 

motion boundaries and \'ice \'ersa. (iv) it does not use high order derivatives of the intensit~· fllnction 

and (v) it is computationally simple. 

There are several ways in which this framework can be extended and improved, Firstly. the hl?ha,vior 

of response-distribution needs to be analyzed in greater detail. specially for the multimodal case. Secondly, 
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in the current \'ersion of the framework. the velocity-propagation procedure utilizes only the estimate of 

\'elocity at neighboring pixels. It does not utilize the covariance-matrix associated with the estimate. It 

appears plausible that the knowledge of covariance-matrix might :J.ssist in identifying motion discontinuities. 

thus making the velocity-propagation procedure even more robust at discontinuities. Finally. the formulation 

of optimization problem assumes that conservation-error and neighborhood error are independent. In the 

current implementation. however. neighborhood information is derived from conservation information. This 

makes the two errors dependent. An in\'estigation of the effects of this dependence will certainly be very 

useful in predicting the performance of the framework \\'ith respect to any given imagery. Also. efforts could 

be made to ensure that the two errors are. in fact. independent. 
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A Kahllan filtering-based depth estimation from hllage-ftow 

~Iatthies, Szeliski and E:anade [1:lJ had reported a Kalman filtering-based algorithm to recover dense 

depth maps from image-flow in the case of a stationary scene and known one-dimensional camera motion. 

This algorithm requires that an estimate of image-flow be produced along with its covariance for each new 

frame acquired (in a time-sequence) and be used to update the ('xisting estimate of disparity (reciprocal of 

depth) and its variance. The principal advantage of such a scheme is that the uncertainty in depth f':-;rimates 

decreases with time. !vlatthies, et. al. had llsed .\nandan's [4J smoothing-based algorilhm to pstimate 

image-flow and had performed error-analysis on the SSD surface to compute its \'ariance. I have adapted 

their algorithm to use the framework for image-flo\\! estimation discussed in this paper instead of .\nandan·s. 

Since this framework has an explicit covariance-matrix at each stage of computation, it fits into tllP Kalman 

filtering-based mechanism very naturally. Secondly. because of the discontinuity-preserving nature of the new 

framework. the discontinuities in the dppth-field are better defined, This makes three-dimensional feature 

extraction (for interpretation of Jepth-fil'lds) more reliable. Since the only modification to the original scheme 

of )'Iatthies, et. al. is the way in wldch image-flow and its variance is estimated. the reader is ["f'f.'rr .. d to 

their original paper [13J for details of the procedure and its implementation. A. block diagram of the modified 
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Figure 19: A block-diagram of the Kalman filtering-based depth estimation scheme. 

scheme is shown in figure 19. The blocks 1 and 3 in this diagram depict the two steps of image-flow estimation 

and have been discussed in detail in this paper. The blocks 2 and 4 depict the "updating" and "prediction" 

steps of Kalman-filtering and are exactly the same as in [13]. 
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