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SUMMARY
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event

(e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates
are generally observed intermittently and with error. For a single time-dependent covariate, a popular
approach is to assume a joint longitudinal data–survival model, where the time-dependent covariate
follows a linear mixed effects model and the hazard of failure depends on random effects and time-
independent covariates via a proportional hazards relationship. Regression calibration and likelihood or
Bayesian methods have been advocated for implementation; however, generalization to more than one
time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and
Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption
on the distribution of the random effects. This technique may be generalized to multiple, possibly
correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and
by application to data from an HIV clinical trial.

Keywords: Conditional score; Measurement error; Mixed effects model; Proportional hazards model; Semiparametric;
Surrogate marker.

1. INTRODUCTION

In longitudinal studies, information is collected on a time-to-event (e.g. ‘survival’) and time-dependent
and time-independent covariates. A routine objective is to model the association between these covariates
and survival, usually in the framework of the proportional hazards model (Cox, 1972). True values of the
time-dependent covariates at each unique failure time are required for implementation; however, these are
collected intermittently and are subject to error.

Such modeling is often carried out to identify time-independent and -dependent covariates associated
with prognosis. An additional goal may be to assess the value of time-dependent covariates as potential
surrogate markers (Prentice, 1989), often accomplished by examining the interrelationship between time-
dependent covariates and treatment effect. These objectives are common in the analysis of HIV clinical
trials. An example is AIDS Clinical Trials Group (ACTG) 175, a randomized clinical trial to compare
zidovudine alone, zidovudine plus didanosine, zidovudine plus zalcitabine, or didanosine alone, in HIV-
infected subjects (Hammeret al., 1996). Between December 1991 and October 1992, 2467 subjects were
recruited and followed until November 1994. CD4 and CD8 counts, both reflections of immune status,
were measured for each participant about every 12 weeks after randomization, and the time-to-event
endpoint was time to progression to AIDS or death. The focus of the study was to carry out treatment
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512 X. SONG ET AL.

comparisons; subsequently, an objective was to elucidate the relationship between prognosis and CD4
and CD8 and to investigate these measures as potential surrogate markers.

Because of the complication of intermittent, error-prone time-dependent covariates, early approaches
imputed their values at each failure time by what are now regarded as naive methods. These include
‘last value carried forward’, which substitutes the last covariate value prior to the failure time, and
‘naive regression’, where least-squares estimates based on each subject’s entire longitudinal profile are
substituted. Such methods may perform adequately in some situations (e.g. Raboudet al., 1993), but
can lead to biased and misleading inference on the Cox model parameters (Prentice, 1982; Tsiatis and
Davidian, 2001) and biased estimates of treatment effects and thus erroneous conclusions on surrogacy
(Dafni and Tsiatis, 1998).

A popular approach for a single time-dependent covariate assumes that the longitudinal covariate data
follow a linear mixed-effects model and that the hazard depends both on the random effects and other
time-independent covariates through a proportional hazards relationship. One strategy for implementation
of these ‘joint models’ is a two-stage, ‘regression calibration’ technique (Carrollet al., 1995), where
the mixed model is fitted to data at each risk set under normality assumptions and ensuing best linear
unbiased predictors are used to impute covariate values at each failure time (e.g. Pawitan and Self, 1993;
Tsiatiset al., 1995; Bycott and Taylor, 1998; Dafni and Tsiatis, 1998). This method reduces bias relative
to naive approaches but may still give erroneous results (Tsiatis and Davidian, 2001). An alternative
approach yielding sound inferences is to base estimation on the joint likelihood of the survival and
longitudinal data under parametric (normal) assumptions on the random effects (e.g. DeGruttola and Tu,
1994; Wulfsohn and Tsiatis, 1997; Faucett and Thomas, 1996; Hendersonet al., 2000; Xu and Zeger,
2001a). Generalization to multiple time-dependent covariates is complicated by the need to model the
joint relationship among all covariates and the computational burden of potentially high-dimensional
integration for likelihood and Bayesian approaches. Moreover, these methods rely on normality or other
parametric assumptions for the random effects. Huet al. (1998) proposed likelihood methods under
weakening of this assumption for a single error-prone time-independent covariate, but adaptation to
multiple time-dependent covariates would suffer the same drawbacks as above.

Tsiatis and Davidian (2001) proposed for such joint models a semiparametric conditional score
estimator for the parameters in the hazard relationship in the case of a single time-dependent covariate and
time-independent covariates. The random effects are treated as nuisance parameters for which a sufficient
statistic may be derived, and a set of estimating equations based on conditioning on the sufficient statistic
may be deduced that remove the dependence on the random effects. The estimators are consistent and
asymptotically normal and yield unbiased and reliable inferences on the parameters of the Cox model in
finite samples. No assumption need be made on the distribution of the random effects, and the estimator
is fast and simple to compute.

These features make generalization to multiple covariates an attractive alternative. This is not trivial,
however, as different covariates may be recorded on different schedules by happenstance or design and
may be subject to errors that are correlated. In Section 2, we define a joint longitudinal-survival model with
multiple time-dependent and time-independent covariates. The generalization of the conditional score
approach is derived in Section 3, and in Section 4 we remark on large-sample properties. Section 5 presents
an analysis of the ACTG 175 data, showing the utility of this method in the evaluation of several potential
surrogate markers. Section 6 demonstrates the performance of the method via simulation.

2. MODEL DEFINITION

For each subjecti , i = 1, . . . , n, let Ti denote failure time andCi denote censoring time. The observed
survival data areVi = min(Ti , Ci ) and�i = I (Ti � Ci ), whereI (·) is the indicator function; these and all
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An estimator for the proportional hazards model 513

other variables are independent acrossi . Let Xik(u), k = 1, . . . , K , denoteK time-dependent covariates
at time u, and let ther -dimensional vectorZi denoter time-independent covariates for subjecti . We
assume each covariate processXik(u) satisfies

Xik(u) = αT
ik fk(u), (1)

where fk(u) is a (qk × 1) vector of functions ofu, αik is a (qk × 1) random effect, andfk and αik

may be different for eachk. This allows flexibility in representing the time trajectory of each covariate via
polynomial or spline models, e.g.αT

ik fk(u) = αik0+αik1u+· · ·+αik(qk−1)uqk−1. The covariate processes
Xik(u) are not observed directly; rather, longitudinal measurementsWik(tik j ) on thekth covariate are
taken at timestik j , j = 1, 2, . . . , mik , for eachi , where

Wik(tik j ) = Xik(tik j ) + eik j , (2)

andeik j are normally distributed mean-zero ‘errors’ with varianceσkk that may reflect both biological
variation and measurement error. Thus, (2) with (1) is a linear mixed-effects model, andXik(u) may be
regarded as the ‘inherent’ trajectory for subjecti and covariatek.

We assume that the available measurements are sufficiently separated in time that serial correlation
associated with within-subject biological variation is negligible; however, for the hazard formulation
given below, this could be relaxed. We allow measurements on different covariates at the same time to
be correlated. More formally, noting thatj indexes measurement times separately for eachk, we may
write for k, k′ = 1, . . . , K , j = 1, . . . , mik , and j ′ = 1, . . . , mik′ , cov(eik j , eik′ j ′) = σkk′ I (tik j = tik′ j ′).
Hereσkk′ is the covariance between errors from covariatesk and k′ measured at the same time point,
reflecting correlation of components of within-subject biological variation, the measurement error, or
both; this formulation subsumes the caseσkk′ = 0 for all k �= k′. Ordinarily, measurement errors acrossk
might be thought of as uncorrelated; however, we allow the possibility that some covariate measurements
may be derived from a common blood sample or measuring technique, e.g. CD4 and CD8.

Let ei = (eT
i1, . . . , eT

i K )T , whereeik = (eik1, . . . , eikmik )
T ; tik = (tik1, . . . , tikmik )

T be the ordered
times for subjecti , covariatek, andti = (t T

i1, . . . , t T
i K )T be the set of time points where observations on

all K covariates are available;mi = (mi1, . . . , mi K )T ; andαi = (αT
i1, . . . , αT

i K )T (q × 1), q = ∑
k qk .

We assume that the conditional distribution ofei given (Ti , Ci , αi , Zi , ti , mi ) is normal with covariance
matrix depending only onmi and the parametersσkk′ . Theαik may be correlated acrossk; however, this
will be of no consequence in the sequel. Likewise, no distributional assumption is placed on theαi , nor is
one needed.

A proportional hazards regression model is assumed for the relationship between the hazard of failure
and the covariates; that is, the hazard for subjecti is

λi (u) = lim
du→0

du−1pr{u � Ti < u + du|Ti � u, αi , Zi , Ci , ei (u), ti (u)}
= λ0(u) exp{γ T G(u, αi ) + ηT Zi }. (3)

Here,λ0(u) is an unspecified baseline hazard function;G(u, αi ) is a (s × 1) vector whose elements are
functions ofu andαi ; γ andη are(s × 1) and(r × 1), respectively;ti (u) = (tik j � u; k = 1, . . . , K )

denotes the observation times up to and includingu; and ei (u) = (eik j : tik j � u; k = 1, . . . , K ).
Equation (3) makes explicit the assumption that censoring, timing of measurements, and covariate errors
are noninformative. Interest focuses on estimation ofγ andη.

The vectorG(u, αi ) allows flexibility in modeling the hazard relationship. For example, for

Xi1(u) = αi10 + αi11u + αi12u2, Xi2(u) = αi20 + αi21u + αi22u2, K = 2, (4)
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if G(u, αi ) = G(u)αi ,

G(u) =
[
1 u u2 0 0 0
0 0 0 1 u u2

]
, αi = (αi10, αi11, αi12, αi20, αi21, αi22)

T , γ = (γ1, γ2)
T (s = 2),

thenγ T G(u, αi ) = γ1Xi1(u) + γ2Xi2(u). Here, dependence of the hazard onαi is linear. Alternatively,
the dependence could be nonlinear; forXi1(u) and Xi2(u) in (4) and γ = (γ1, γ2)

T , G(u, αi ) =
(αi10 + αi11u + αi12u2, α2

i20)
T yieldsγ T G(u, αi ) = γ1Xi1(u) + γ2α

2
i20. The representation in (3) also

accommodates models involving interactions between covariates and time, which are useful for assessing
the relevance of the proportional hazards assumption as suggested by Fleming and Harrington (1991,
p. 173) and demonstrated in Section 5. To illustrate, for the representations of covariates in (4), the hazard
relationship linear in theαi given by

γ1Xi1(u) + γ2Xi2(u) + γ3Xi2(u)u (5)

may be expressed asγ T G(u)αi , with γ = (γ1, γ2, γ3)
T , s = 3 and

G(u) =

1 u u2 0 0 0 0 0 0

0 0 0 1 u u2 0 0 0
0 0 0 0 0 0 u u2 u3


 .

The hazard formulation in (3) assumes that the survival distribution depends on the time-dependent
covariates only through random effects that characterize the individual ‘inherent trajectories’. An
alternative modeling strategy would be to decompose the ‘error’ in (2) into components associated with
serially correlated biological variation and measurement error and to assume the hazard depends both on
random effects and biological variation (e.g. Hendersonet al., 2000). Specification of the hazard would
be guided by subject-matter considerations.

3. CONDITIONAL SCOREESTIMATOR

Assume initially thatG(u, αi ) = G(u)αi . The derivation of the proposed estimator follows the same
reasoning as in Tsiatis and Davidian (2001), motivated by the conditional score method of Stefanski and
Carroll (1987), but is complicated by multiple covariates measured at possibly different times. Letα̂ik(u)

be the ordinary least-squares estimator ofαik based on all the longitudinal data measured before timeu
for thekth covariate for subjecti , that is, based ontik(u) = (tik j � u). In order to obtain̂αik(u) for eachk,
i must have at leastqk measurements on thekth covariate; thus, lettingmik(u) denote the number of time
points intik(u), to ensure estimation ofαik at u is possible for allk = 1, . . . , K , we requiremik(u) � qk

for eachk. Let the counting process increment be dNi (u) = I (u � Vi < u + du, �i = 1, mik(u) �
qk, k = 1, . . . , K ); let Yi (u) = I (Vi � u, mik(u) � qk, k = 1, . . . , K ) denote the ‘at risk’ process;
and defineω = {σkk′ : k � k′}, the distinct parameters characterizing the variances and covariances
of the errors. Fork = 1, . . . , K , defineFik(u) = [ fk(tik1), . . . , fk(tikmik (u))]T , {mik(u) × qk}, and let
Iikk′(u) be the{mik(u) × mik′(u)} matrix whose( j, j ′) entry is I (tik j = tik′ j ′), for j = 1, . . . , mik(u),
j ′ = 1, . . . , mik′(u). BecauseG(u, αi ) = G(u)αi is linear inαi , it follows that, conditional on{Yi (u) =
1, αi , Zi , ti (u)}, G(u)α̂i (u), i = 1, . . . , n, are independently distributed asN {G(u)αi , �i (u, ω)}, where
�i (u, ω) = G(u)	i (u, ω)GT (u) (s × s). Here,

	i (u, ω) =




	i11(u, ω) 	i12(u, ω) · · · 	i1K (u, ω)

	i21(u, ω) 	i22(u, ω) · · · 	i1K (u, ω)
...

...
. . .

...

	i K 1(u, ω) 	i K 2(u, ω) · · · 	i K K (u, ω)


 , (q × q),
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where	ikk′(u, ω) = σkk′ {FT
ik (u)Fik(u)}−1FT

ik (u)Iikk′(u)Fik′(u){FT
ik′(u)Fik′(u)}−1 (qk × qk′).

For now, assume thatω is known. Conditional on{Yi (u) = 1, αi , Zi , ti (u)}, dNi (u) is distributed as
Bernoulli with probabilityλ0(u)du exp{γ T G(u)αi +ηT Zi }, and dNi (u) andG(u)α̂i (u) are conditionally
independent, from whence it may be shown that the conditional likelihood of{dNi (u), G(u)α̂i (u)} given
{Yi (u) = 1, αi , Zi , ti (u)} up to order du is equal to

exp
{

ST
i (u, γ, ω)�−1

i (u, ω)G(u)αi

} {λ0(u)du exp(ηT Zi )}dNi (u)

(2π)s/2|�i (u, ω)|1/2

× exp

{
− α̂T

i (u)GT (u)�−1
i (u, ω)G(u)α̂i (u) + αT

i GT (u)�−1
i (u, ω)G(u)αi

2

}
, (6)

whereSi (u, γ, ω) = G(u)α̂i (u) + dNi (u)�i (u, ω)γ . From (6), conditional onYi (u) = 1, Si (u, γ, ω)

is a complete sufficient statistic forαi , which suggests that conditioning onSi (u, γ, ω) would remove
the dependence onαi . Hence, the conditional hazardλi {u|Si (u, γ, ω)} = limdu→0 du−1Pr{dNi (u) =
1|Si (u, γ, ω), Zi , ti (u), Yi (u)} may be shown to be equal to

λ0(u) exp
{
γ T Si (u, γ, ω) − γ T �i (u, ω)γ /2 + ηT Zi

}
Yi (u).

From these developments, we may apply the same reasoning as in Tsiatis and Davidian (2001) to
deduce the conditional score estimating equations forγ andη, given by

n∑
i=1

∫ [
{ST

i (u, γ, ω), Z T
i }T − E1(u, γ, η, ω)

E0(u, γ, η, ω)

]
dNi (u) = 0, (7)

where E0(u, γ, η, ω) = ∑n
i=1 E0i (u, γ, η, ω), E0i (u, γ, η, ω) = exp{γ T Si (u, γ, ω) −

γ T �i (u, ω)γ /2 + ηT Zi }Yi (u), E1(u, γ, η, ω) = ∑n
i=1 E1i (u, γ, η, ω), E1i (u, γ, η, ω) =

{ST
i (u, γ, ω), Z T

i }T E0i (u, γ, η, ω). When none of theK covariates is error-prone, (7) reduces to
the usual score equations for the maximum partial likelihood estimator of Cox (1975).

The above developments rely onG(u, αi ) = G(u)αi , so that the predictor in the hazard depends
linearly onαi andG(u)α̂i (u) is exactly normally distributed. ForG(u, αi ) that may be nonlinear inαi ,
we propose invoking a linear approximation. By the delta method,G{u, α̂i (u)} is asymptotically normally
distributed with meanG(u, αi ) and variance�i (u, αi , ω) = Ġ(u, αi )	i (u, ω)ĠT (u, αi ) (s × s), where
Ġ(u, αi ) = ∂G(u, αi )/∂αi

T . This suggests substitutinġG{u, α̂i (u)} for G(u) and�i {u, α̂i (u), ω} for
�i (u, ω) in (7) to obtain estimating equations for generalG(u, αi ). We evaluate the performance of this
approximation in Section 6.

4. LARGE-SAMPLE PROPERTIES

Generallyω is unknown; however, under our assumptions, it may be estimated based on least-squares
fits to all the data on each covariate for each subject when possible (i.e.mik > qk). It is shown in the
Appendix that an unbiased estimator forω is ω̂, with elementσkk′ estimated by

σ̂kk′ =
∑n

i=1 I (mik > qk, mik′ > qk′ , mikk′ > 0)RT
ik A∗

ikk′ Rik′∑n
i=1 I (mik > qk, mik′ > qk′ , mikk′ > 0)tr{Pik A∗

ikk′ Pik′ A∗T
ikk′ } , (8)

whereRik , A∗
ikk′ , Pik , andmikk′ are defined in the Appendix.
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Let S∗
i (u, γ, ω) = {ST

i (u, γ, ω), Z T
i }T and S̄∗(u, γ, η, ω) = E1(u, γ, η, ω)/E0(u, γ, η, ω). The

combined centered estimating equations forτ = (γ T , ηT , ωT )T are
∑n

i=1 φi (γ, η, ω) = 0, where

φi (γ, η, ω) =

 ∫ {S∗

i (u, γ, ω) − S̄∗(u, γ, η, ω)}
{

dNi (u) − E0i (u, γ, η, ω)

E0(u, γ, η, ω)
dN (u)

}
ψi (ω)


 ,

and ψi (ω) is a vector with the elementsI (mik > qk, mik′ > qk′ , mikk′ > 0)[RT
ik A∗

ikk′ Rik′ −
σkk′ tr{Pik A∗

ikk′ Pik′ A∗T
ikk′ }], k � k′. By arguments similar to those in Tsiatis and Davidian (2001), the esti-

matorτ̂ = (γ̂ T , η̂T , ω̂T )T solving these equations is consistent and asymptotically normal. An estimator
for the variance of̂τ is the sandwich matrixn−1A−1B(A−1)T , whereA = n−1 ∑n

i=1 ∂/∂τ T {φi (γ̂ , η̂, ω̂)},
andB = n−1 ∑n

i=1 φi (γ̂ , η̂, ω̂)φT
i (γ̂ , η̂, ω̂).

5. APPLICATION TO AIDS CLINICAL TRIALS GROUP175

To demonstrate the utility of the methods for investigating associations among multiple time-
dependent covariates and clinical endpoint and for elucidating the joint role of multiple covariates as
potential surrogate markers, we apply the methods to the ACTG 175 data. As discussed by Xu and Zeger
(2001b), there is scientific rationale for considering several time-dependent covariates simultaneously.
The association between covariates and endpoint may reflect underlying mechanisms whose elucidation
may enhance understanding of the disease and allow better prediction. Moreover, it may be fruitful to
consider several covariates in evaluating surrogacy. Because of time and cost issues, interest has focused
on identifying surrogate markers that could be substituted for the clinical endpoint in evaluation of
treatment efficacy. According to Prentice (1989), (i) a surrogate marker should be prognostic for clinical
outcome and (ii) the risk of progression given the marker should be independent of treatment. As Xu and
Zeger (2001b) point out, associations with several covariates may reflect multiple biological pathways of
treatment action. Even in the case where there is a single, predominant pathway, it may be characterized
more effectively with more than one covariate.

These considerations suggest it would be advantageous to be able to entertain different models for
the relationship between several time-dependent covariates and prognosis. An appealing feature of the
conditional score approach is computational ease and speed, even for a large data set such as that for
ACTG 175. The fit of each model in the analyses below took only a few minutes, demonstrating the
feasibility of screening numerous, complex models in practice.

For the ACTG 175 data, we focus on features of the time trajectories of CD4 and CD8 (count per
cubic millimeter) in combination and their association with the clinical endpoint (progression to AIDS
or death) and their potential combined surrogacy. There were 308 events, with on average, 8.2 CD4
and 8.1 CD8 measurements per subject. CD4 was available with CD8 in all but two cases. The original
analysis (Hammeret al., 1996) found zidovudine alone to be inferior to the other three therapies; thus,
for simplicity, we consider two treatment groups, zidovudine alone and the combination of the other three
therapies, and letZi = I (treatment�= zidovudine). Figure 1 presents CD4 and CD8 profiles for 10
randomly selected subjects and shows an apparent initial increase in both measures, with a peak at week
12, followed by a decline. Because only nine events occurred before week 12, for simplicity, we consider
the data including and after week 12.

To achieve approximate within-subject normality and constant variance of CD4 and CD8 measure-
ments, it is customary to transform these measures. We investigated several transformations, including
square-, cube-, fourth-root, and logarithmic. Here, we report on results using base-10 logarithmic
transformation for CD4 and CD8; use of base-10 logarithm is standard in the medical literature. The
results for other transformations are qualitatively similar to those reported below.
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Fig. 1. Trajectories of log CD4 and log CD8 for 10 randomly selected subjects. The same type line is used for each
subject in each panel.

Here, K = 2. From Figure 1, both log CD4, with inherent trajectoryXi1(u) and log CD8, with
inherent trajectoryXi2(u), seem to follow approximate straight-line relationshipsXik(u) = αik0 +αik1u,

k = 1, 2, after week 12. To assess if such simple linear mixed-effects models suffice to represent inherent
log CD4 and log CD8, we investigated formally whether a quadratic relationship as in (4) provides a better
characterization using a conditionalF-test, which is in the spirit of leaving the distribution of theαik ,
k = 1, 2, unspecified. That is, for eachk, letting Wik denote the vector of log-transformed measurements
for subjecti , we regarded theαik , i = 1, . . . , n, as fixed parameters in an overall model forWik, i =
1, . . . , n, and fitted the linear (‘reduced’) and quadratic (‘full’) versions of the model by ordinary least
squares using the data for subjects withmik > 3 observations. We then constructed the usualF-statistic
based on the error sums of squares for the ‘full’ and ‘reduced’ models. As discussed in the Appendix,
under our assumption on the conditional distribution ofei given(Ti , Ci , αi , ti , mi ), the estimators for the
varianceσkk for eachk will be unbiased. Thus, because the usual F-statistic is a function of this estimator
for eachk, the resulting test should have the usual properties. In particular, lettingNk andnk denote the
total number of observations and total number of subjects withmik > 3, the test statistic under the null
hypothesis (‘reduced’ model) and normal errors has anF distribution with (nk, Nk − 3nk) degrees of
freedom. BecauseNk andnk are large, the appropriate critical value is virtually 1. For log CD4 (k = 1)
and log CD8 (k = 2), the statistics are 2.576 and 1.854, respectively, suggesting that the quadratic model
(4) provides a better characterization for each, leading us to adopt this model for both log CD4 and log
CD8.
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Fig. 2. Q–Q plots for studentized residuals for log CD4 and log CD8.

Figure 2 shows Q–Q plots of studentized residuals for each quadratic model fit. Under our assumptions
on the conditional distribution ofei , these residuals should have the usual linear model properties for each
k, so should reflect deviation from normality in the conventional manner. The plots suggest that the error
distribution may be short-tailed relative to the normal but symmetric. Although the derivation of Section 3
requires the errorseik j to be normally distributed, evidence in Section 6 shows that the conditional score
method is not affected by short-tailed error distributions. The sample correlation coefficient for studentized
residuals of log CD4 and log CD8 is 0.58, indicating that it would be inappropriate to assume that the
covarianceσ12 = 0.

To assess the association of log CD4 and log CD8 with prognosis and their role as surrogate markers,
we carried out several analyses.

1. We fitted the model with treatment only,λi (u) = λ0(u) exp{ηZi }, by usual partial likelihood
methods (model 1).

2. We investigated various combinations of features of the inherent trajectories of log CD4 and
log CD8 to determine which combination(s) are most strongly associated with the endpoint. In
particular, we considered a series of models of the general formλi (u) = λ0(u) exp[γ T {G(u)αT

i }],
whereG(u)αT

i was chosen to represent different linear combinations of current value and intercept
of log CD4 and log CD8, and fitted them using the conditional score method.
Because the conditional score approach is not likelihood-based, we used the Wald statistic for the
null hypothesisγ = 0 for each model, which has approximately aχ2

dim(γ ) distribution, to reflect
strength of association. The estimates and Wald statistics for several models are shown in Table 1
(models 2.1–2.8). The table excludes models that resulted in unstable estimation, gauged by a very
large ratio of largest to smallest eigenvalues of the estimated covariance matrix forγ̂ . With the
exception of model 2.8, this occurred only for models with dim(γ ) > 2. Among models with
dim(γ ) > 2, none showed appreciable improvement in the Wald statistic over those in the table.
In all models except 2.8, the sign of the coefficients for current value and intercept of log CD4
and log CD8 is consistent with scientific understanding; as both measures reflect status of the
body’s immune response, the higher the better, decrease of the hazard with increased CD4/CD8
is biologically plausible.
Among all the models, model 2.5 withλi (u) = λ0(u) exp{γ1Xi1(u) + γ2Xi2(u)} involving the
combination of current values of log CD4 and log CD8 leads to the largest Wald statistic. From
Table 1, model 2.1 with log CD4 alone yields the second-largest Wald statistic; adding intercept of
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log CD8 to this model (model 2.6) results in virtually no improvement, while adding current value
as in model 2.5 yields a considerably larger statistic. Models 2.3 and 2.4 indicate that features of
log CD8 may be associated with prognosis on their own.
All of the models considered embody the assumption of proportional hazards. We assessed the
adequacy of this assumption using the following approach, which we illustrate using model 2.5.
Following a suggestion of Fleming and Harrington (1991, p. 173), we re-fitted the model separately
for the data in two time intervals, corresponding roughly to the events occurring before and after
the median event time. According to these authors, under proportional hazards, we would expect
the estimates forγ to be comparable in each interval. The results in the first part of Table 2
indicate that the proportional hazards assumption may be reasonable, but there is some suggestion
of possible deviation from it. To investigate further, we followed Fleming and Harrington (1991,
p. 173) and considered two additional models, model 2.5∗, which includes log CD4, log CD8,
and the interaction of time and log CD4, and model 2.5∗∗, including the terms in model 2.5 plus
an additional interaction of time and log CD8. Evidence that the coefficient of an interaction
term is non-zero may reflect a deviation from the proportional hazards assumption; thus, unlike
the diagnostic above, this approach allows formal significance testing. As noted in Section 2,
fitting these models may be implemented straightforwardly in our framework, and the interaction
parameters may be estimated and tested using the conditional score method with no additional
difficulty, as in (5). The second part of Table 2 shows the results. The fit of model 2.5∗∗ is entirely
similar to that of model 2.5, with no evidence of an interaction of log CD8 with time (p-value
= 0.908), indicating no deviation from proportional hazards. The fit of model 2.5∗ suggests a
decreasing hazard relationship to log CD4 over time (p-value for the interaction term = 0.016).
Although the interaction effect of log CD4 and time is significant at level 0.05, the practical
implication is modest. From the fit of model 2.5∗, predicted log hazard ratios for log CD4 at the
10th, 50th, and 90th percentiles of the observed distribution of failure times are−2.620,−1.972,
and−1.514, respectively, compared with the constant estimate of−1.838 from model 2.5. Thus,
whether the interaction term is included or not, the relationship with log CD4 is qualitatively similar.
Results for other models in Table 2 resemble those here.
Different data analysts may make different subjective judgments over whether ease of interpretation
of a proportional hazards outweighs the importance of the possible, practically modest departure
from this assumption in gauging the association of the covariates with prognosis. In the sequel, we
focus for illustration on proportional hazards models but also indicate results for models including
interaction terms.

3. We fitted several of the models showing evidence of strong associations in step 2 augmented by
an additive effect of treatment in the hazard. For example, for model 2.5, we consideredλi (u) =
λ0(u) exp{γ1Xi1(u) + γ2Xi2(u) + ηZi }. (These models are denoted as model 3.X below.)

Models for step 2 were used to deduce the most productive combination for describing the association
between covariates and prognosis. The results for models 2.5 suggest that, although current value of
log CD4 is strongly prognostic on its own, consideration of current value of log CD8 offers additional
explanatory value.

Models from step 2 also were used to verify Prentice’s condition (i), which would be indicated by
γ = (γ1, γ2)

T �= 0. Model 1 and those in step 3 were used to investigate condition (ii);η �= 0 in model
1 butη = 0 in models in step 3 would suggest that the treatment effect is mediated through the relevant
combination of features of log CD4 and log CD8. The estimate of the parameters of the error covariance
matrix,ωT = (σ11, σ12, σ22), is (0.009 28, 0.005 58, 0.010 09). For comparison, models from step 2 and
3 were also fitted using the naive regression method.
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Table 1.Results for several models fitted to the ACTG 175 data. Entries are the estimate and its estimated
standard error in parentheses. The fit of model 2.8 is suspect, as the Wald statistic decreases relative
to that for model 2.2 and the coefficient of intercept of log CD8 is positive. This model yielded a large

eigenvalue ratio, suggesting instability

Current Intercept of Current Intercept of Wald statistic
log CD4 log CD4 log CD8 log CD8

Model 2.1 −2.033 (0.146) 193.577
Model 2.2 −1.568 (0.405) 22.095
Model 2.3 −1.722 (0.593) 8.440
Model 2.4 −0.994 (0.342) 8.442
Model 2.5 −1.838 (0.147) −0.982 (0.215) 312.370
Model 2.6 −2.034 (0.150) 0.037 (0.668) 193.598
Model 2.7 −1.842 (0.324) −1.532 (0.321) 43.490
Model 2.8 −1.819 (0.452) 0.209 (0.055) 18.529�

Table 2. Diagnostic checks of the proportional hazards assumption in model 2.5

Fits of model 2.5 using data from the first and second time intervals
γ̂1 SE(γ̂1) γ̂2 SE(γ̂2)

Using first half events −2.072 0.233 −0.897 0.318
Using second half events −1.533 0.179 −1.362 0.275

Fits of models 2.5∗ and 2.5∗∗
log CD4 log CD8 log CD4×time log CD8×time Wald

statistic
Model 2.5∗ −3.030 (0.552) −1.073 (0.250) 0.012 (0.005) 327.178
Model 2.5∗∗ −1.844 (0.169) −1.032 (0.435) 0.001 (0.006) 312.133

To illustrate, results for models 1, 2.5, and 3.5, and involving current values of log CD4 and log
CD8 in combination, are shown in Table 3;p-values are for the corresponding Wald statistic for the null
hypothesis that each entry is equal to zero. Treatment alone (model 1) yields ap-value of 0.003, indicating
astrong effect, as deduced by Hammeret al. (1996). For model 2.5, the results from the conditional score
and naive regression methods differ considerably; the naive regression analysis suggests no association
with current log CD8, while the conditional score shows strong association with both covariates. The
model 3.5 conditional score results show that the treatment effect is not significant after adjustment for log
CD4 and log CD8, which supports Prentice’s condition (ii) that the treatment effect is mediated through a
combination of log CD4 and log CD8. These results are in marked contrast to the conclusion that would
be reached from the naive regression fit, which shows a significant treatment effect even after adjustment.
Table 3 also includes results for models 2.5∗ and 3.5∗, which yield the same qualitative conclusions.

The conditional score results suggest that some combination of current values of log CD4 and log CD8
is a surrogate for the treatment considered in ACTG 175. We carried out similar analyses (not shown) for
models 2.1 (current log CD4 alone) and 2.3 (current log CD8 alone) and the augmented versions of
these models including a treatment effect (models 3.1 and 3.3, respectively). In model 3.1, the estimate
of the treatment effect is insignificant, indicating that current value of log CD4 on its own represents a
potential surrogate marker. As with model 3.5, the naive regression analysis of this model yields a highly
significant treatment effect. In contrast, the conditional score estimate of treatment effect in model 3.3 is
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Table 3.Fits of models 1, 2.5 and 2.5∗, and 3.5 and 3.5∗ for the ACTG 175 data

Model 1
Terms included Est. SE p-value
Treatment −0.375 0.128 0.003

Models 2.5 and 2.5∗
Conditional score

Terms included Est. SE p-value Est. SE p-value
Current log CD4 −1.838 0.147 0.000 −3.030 0.552 0.000
Current log CD8 −0.982 0.215 0.000 −1.073 0.250 0.000
log CD4× time 0.012 0.005 0.016

Naive regression
Terms included Est. SE p-value Est. SE p-value
Current log CD4 −0.116 0.013 0.000 −0.801 0.107 0.000
Current log CD8 −0.008 0.008 0.308 0.006 0.009 0.490
log CD4× time 0.006 0.001 0.000

Models 3.5 and 3.5∗
Conditional score

Terms included Est. SE p-value Est. SE p-value
Current log CD4 −1.831 0.150 0.000 −3.003 0.551 0.000
Current log CD8 −0.999 0.212 0.000 −1.077 0.247 0.000
log CD4× time 0.012 0.005 0.019
Treatment −0.190 0.194 0.326 −0.066 0.207 0.749

Naive regression
Terms included Est. SE p-value Est. SE p-value
Current log CD4 −0.119 0.014 0.000 −0.816 0.110 0.000
Current log CD8 −0.009 0.008 0.274 0.006 0.009 0.518
log CD4× time 0.006 0.001 0.000
Treatment −0.408 0.138 0.003 −0.416 0.139 0.003

highly significant (p-value= 0.006), indicating that current log CD8 on its own may not be a plausible
surrogate.

Given these results, we investigated whether there is added benefit to considering both measures as
a surrogate relative to current log CD4 only. Following a procedure similar to that of Xu and Zeger
(2001b, p. 83), we inspected point estimates and 95% Wald confidence intervals for the treatment effect
in models 3.1 and 3.5,−0.074 (−0.514, 0.366) and−0.194 (−0.570, 0.189), respectively. The intervals
overlap considerably, and the estimated treatment effect is greater in magnitude for model 3.5, suggesting
that adding current log CD8 offers little benefit. Analyses using models incorporating interaction terms
yield similar qualitative conclusions.

Summarizing, the results of competing model fits imply that while the combination of current log CD4
and log CD8 is highly associated with prognosis, the strength of the combination of current log CD4 and
log CD8 as a surrogate is derived primarily through log CD4. Use of the naive approach to carry out these
analyses would potentially result in erroneous inferences on both association and surrogacy. Although in
this example there was no benefit to considering more than one covariate as a surrogate, the availability
of accessible methods for fitting multiple-covariate models allowed this possibility to be considered. Had
log CD4 and log CD8 considered separately not shown evidence of surrogacy, consideration of their joint
association would permit evaluation of their potential surrogacy in combination.
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6. SIMULATION STUDIES

We conducted several simulation experiments, based roughly on the situation of the ACTG 175 data.
For each ofn subjects, the treatment indicatorZi was generated according to Bernoulli distribution
with probability 0.5. For simplicity, we took log CD4 and log CD8 to follow a linear mixed-effects
model, i.e. Xi1(u) = αi10 + αi11u for log CD4 and Xi2(u) = αi20 + αi21u for log CD8, with
ti jk = 0, 12, 24, 36, . . . , 168 weeks. The true hazard relationship wasλi (u) = λ0(u) exp{γ1Xi1(u) +
γ2Xi2(u)+ ηZi }, with γ1 = −2.0, γ2 = −1.0, andη = 0. The baseline hazardλ0(u) = 2 for u > 12 and
0 otherwise. To mimic the censoring of the ACTG 175 data, censoring was generated from an exponential
distribution with mean 250, leading to 86.3% and 87.1% censoring, respectively, for the normal and
bimodal random effects distributions described below. To represent missed visits that are often seen in
practice, after week 12, (CD4,CD8) pairs were missing with probability 0.1 at each time point for all
subjects.

We considered several scenarios representing different magnitudes of error and distributions for the
random effects as follows. True values for the variances of the errorsei1 j and ei2 j and covariance
matrices ofαi1 andαi2 were specified from separate linear mixed-effects model fits to the ACTG 175
data for log CD4 and log CD8. We added correlation between errors at the same time using the value
observed for the correlation among least-squares residuals, and chose arbitrary but non-negligible values
for cross-correlations among elements ofαi1 andαi2. The errorsei j = (ei1 j , ei2 j )

T were initially taken
to be independent and identically normally distributed with covariance matrixD such that vech(D) =
(0.010 89, 0.006 28, 0.011 14)T . The random effectsαi were initially taken to be jointly normal with
mean (2.5915, −0.003 15, 2.9329, −0.000 48)T for Zi = 0 and mean(2.5915, −0.001 98, 2.9329,
−0.000 38)T for Zi = 1 and covariance matrix


0.024 08 −0.000 08 0.010 36 −0.000 06

−0.000 08 0.0000 14 −0.000 21 6.113× 10−6

0.010 36 −0.000 21 0.035 40 −0.000 11
−0.000 06 6.113× 10−6 −0.000 11 3.451× 10−6


 . (9)

We carried out simulations for the scenario assumingD and (9) forn = 250 and 500; results for larger
sample sizes are similar to those forn = 500. For eachn, we also considered the cases of a fourfold
increase in measurement error, i.e. taking the covariance matrix ofei j to be four timesD, replacing the
normal specification forαi by a bimodal mixture of normals described below, and both of these together.
For the bimodal specification,αi1 andαi2 were taken to be independently distributed, each following a
bimodal mixture of normals as described in Davidian and Gallant (1993) with mixing proportionp = 0.5
and sep= 4 for αi1 and p = 0.3 and sep= 3 for αi2 with same means and covariance matrices as in the
normal case above.

For each scenario, 1000 Monte Carlo data sets were simulated. For each data set, we fitted the model
above in four ways: (i) using the ‘ideal’ approach in which the true values ofXi1(u) and Xi2(u) at each
failure time were used (fitting using the usual partial likelihood method); (ii) using the conditional score
estimator, (iii) using naive regression; (iv) using LVCF. For (i), (iii), and (iv), we estimated standard errors
as for the usual time-dependent Cox model and used the approach in Section 4 for the conditional score.
For all methods, 95% Wald confidence intervals forγ1, γ2, andη were constructed.

The results are given in Tables 4 and 5. In all cases and for both sample sizes, the conditional score
estimator shows negligible bias close to that of the unachievable ‘ideal’ estimator. Forn = 500, coverage
probabilities are close to or achieve the nominal level. Forn = 250 and fourfold error, the coverage is a
little below the nominal level. This is not surprising; with such large censoring rates,n = 250 corresponds
to a case with roughly 33 events. That the conditional score estimator yields reasonable results under these
difficult conditions is encouraging. For all sample sizes, the conditional score estimator provides unbiased
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Table 4.Simulation results for sample size n = 250. ‘1-fold’ and ‘4-fold’ refer to error according to D
and 4D, as described in the text

Error 1-fold 4-fold
Method I CS N LV CS N LV

Normal αi

γ̂1 −2.047 −2.055 −2.029 −2.060 −2.080 −1.971 −1.748
SD(γ̂1) 0.588 0.615 0.592 0.573 0.712 0.599 0.494
SE(γ̂1) 0.565 0.581 0.560 0.558 0.674 0.543 0.496
CP(γ̂1) 0.954 0.944 0.946 0.954 0.942 0.932 0.920

γ̂2 −1.056 −1.065 −0.972 −0.667 −1.136 −0.753 −0.193
SD(γ̂2) 0.958 1.081 0.994 0.831 1.717 1.035 0.653
SE(γ̂2) 0.940 1.025 0.917 0.848 1.335 0.854 0.673
CP(γ̂2) 0.944 0.934 0.919 0.941 0.928 0.876 0.782

η̂ 0.004 0.005 0.002 −0.012 0.004 −0.004 −0.041
SD(η̂) 0.377 0.381 0.377 0.371 0.397 0.376 0.366
SE(η̂) 0.362 0.363 0.362 0.361 0.378 0.362 0.358
CP(η̂) 0.949 0.947 0.953 0.958 0.953 0.953 0.953

Bimodal αi

γ̂1 −2.070 −2.074 −2.021 −1.956 −2.108 −1.904 −1.580
SD(γ̂1) 0.496 0.524 0.498 0.483 0.630 0.507 0.435
SE(γ̂1) 0.492 0.509 0.487 0.491 0.597 0.472 0.441
CP(γ̂1) 0.962 0.945 0.954 0.961 0.935 0.929 0.833

γ̂2 −1.016 −1.029 −0.910 −0.604 −1.089 −0.663 −0.077
SD(γ̂2) 0.852 0.958 0.884 0.766 1.271 0.918 0.617
SE(γ̂2) 0.824 0.910 0.801 0.748 1.170 0.744 0.598
CP(γ̂2) 0.951 0.940 0.926 0.910 0.921 0.869 0.652

η̂ −0.008 −0.008 −0.013 −0.037 −0.004 −0.026 −0.076
SD(η̂) 0.387 0.390 0.386 0.381 0.403 0.385 0.376
SE(η̂) 0.373 0.374 0.373 0.371 0.387 0.372 0.370
CP(η̂) 0.955 0.952 0.957 0.953 0.954 0.957 0.953

I, ‘ideal’ method; CS, Conditional Score; N, naive regression; LV, last value carried forward; SD, Monte
Carlo standard deviation; SE, average of estimated standard errors; CP, coverage probability of 95%
Wald confidence interval.

estimation regardless of the distribution ofαi . In contrast, the naive regression and LVCF approaches
can yield biased estimates and coverage probabilities well below the nominal level. For onefold error,
the results for conditional score and naive regression are similar to the ideal, but LVCF performance is
degraded. For fourfold error, differences among the methods are more dramatic.

To assess the performance of conditional score method when the error distribution is short-tailed
compared with the normal, as in the ACTG 175 analysis, we conducted simulations taking the error
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Table 5.Simulation results for sample size n = 500. ‘1-fold’ and ‘4-fold’ refer to error according to D
and 4D, as described in the text

Error 1-fold 4-fold
Method I CS N LV CS N LV

Normal αi

γ̂1 −2.052 −2.054 −2.034 −2.061 −2.065 −1.978 −1.756
SD(γ̂1) 0.406 0.429 0.413 0.389 0.492 0.422 0.339
SE(γ̂1) 0.388 0.398 0.384 0.384 0.452 0.373 0.343
CP(γ̂1) 0.945 0.936 0.934 0.944 0.944 0.921 0.891

γ̂2 −0.978 −0.991 −0.900 −0.630 −1.042 −0.696 −0.181
SD(γ̂2) 0.684 0.757 0.711 0.611 0.994 0.748 0.483
SE(γ̂2) 0.653 0.717 0.638 0.592 0.929 0.597 0.472
CP(γ̂2) 0.939 0.938 0.923 0.895 0.941 0.850 0.596

η̂ 0.005 0.006 0.003 −0.012 0.008 −0.003 −0.042
SD(η̂) 0.256 0.258 0.256 0.253 0.264 0.255 0.250
SE(η̂) 0.252 0.252 0.252 0.251 0.259 0.251 0.250
CP(η̂) 0.946 0.947 0.948 0.946 0.945 0.951 0.949

Bimodal αi

γ̂1 −2.029 −2.032 −1.987 −1.929 −2.058 −1.878 −1.567
SD(γ̂1) 0.348 0.365 0.348 0.338 0.432 0.349 0.302
SE(γ̂1) 0.336 0.347 0.333 0.338 0.408 0.323 0.306
CP(γ̂1) 0.950 0.942 0.937 0.938 0.939 0.906 0.684

γ̂2 −1.050 −1.068 −0.964 −0.651 −1.142 −0.738 −0.119
SD(γ̂2) 0.592 0.660 0.607 0.519 0.876 0.622 0.410
SE(γ̂2) 0.570 0.625 0.555 0.520 0.825 0.518 0.417
CP(γ̂2) 0.944 0.944 0.930 0.900 0.930 0.871 0.426

η̂ 0.004 0.003 −0.001 −0.024 0.004 −0.013 −0.061
SD(η̂) 0.261 0.263 0.261 0.258 0.270 0.260 0.255
SE(η̂) 0.258 0.259 0.258 0.257 0.265 0.258 0.257
CP(η̂) 0.950 0.947 0.951 0.951 0.947 0.954 0.945

I, ‘ideal’ method; CS, Conditional Score; N, naive regression; LV, last value carried forward; SD, Monte
Carlo standard deviation; SE, average of estimated standard errors; CP, coverage probability of 95% Wald
confidence interval.

distribution as the normal truncated at three standard deviations. The results forn = 500 and fourfold
error are shown in Table 6. The conditional score performs well, while the naive methods are subject to
bias. ForG(u, αi ) nonlinear inαi , we also carried out simulations to investigate the performance of the
linear approximation in Section 3, using the same scenarios as above except that the true hazard was taken
to beλi (u) = λ0(u) exp{γ1Xi1(u) + γ2α

2
i20 + ηZi }, with γ1 = −2.0, γ2 = −0.2 andη = 0. Results
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Table 6.Simulation results with n = 500 and ‘4-fold’ error according to 4D as described in the text:
short-tailed (truncated normal) error

αi Normal Bimodal
Method I CS N LV I CS N LV

γ̂1 −2.039 −2.057 −1.971 −1.762 −2.039 −2.073 −1.890 −1.578
SD(γ̂1) 0.408 0.490 0.416 0.336 0.357 0.452 0.362 0.302
SE(γ̂1) 0.388 0.450 0.374 0.345 0.337 0.410 0.324 0.306
CP(γ̂1) 0.946 0.937 0.920 0.883 0.934 0.936 0.902 0.706

γ̂2 −0.976 −1.028 −0.698 −0.192 −1.008 −1.080 −0.695 −0.106
SD(γ̂2) 0.687 0.943 0.722 0.472 0.568 0.839 0.601 0.405
SE(γ̂2) 0.651 0.914 0.597 0.474 0.566 0.815 0.516 0.419
CP(γ̂2) 0.934 0.940 0.857 0.599 0.948 0.950 0.848 0.411

η̂ 0.013 0.017 0.008 −0.029 0.009 0.014 −0.008 −0.058
SD(η̂) 0.248 0.258 0.248 0.242 0.249 0.261 0.250 0.244
SE(η̂) 0.251 0.258 0.251 0.250 0.257 0.265 0.257 0.256
CP(η̂) 0.956 0.955 0.959 0.958 0.959 0.958 0.955 0.955

I, ‘ideal’ method; CS, Conditional Score; N, naive regression; LV, last value carried forward; SD, Monte
Carlo standard deviation; SE, average of estimated standard errors; CP, coverage probability of 95% Wald
confidence interval.

for the ‘ideal’, conditional score and naive regression methods withn = 500 and fourfold error are in
Table 7, and show that the linear approximation yields good performance. The estimates of the parameter
ω containing the error variancesσ11 andσ22 and the covarianceσ12 for all simulations are given in Table 8
and demonstrate that the proposed estimator for this parameter given in Section 4 is unbiased.

Overall, the simulation evidence suggests that the conditional score estimator yields reliable inferences
under a broad range of conditions.

7. DISCUSSION

We have proposed an estimator for a joint model for survival and longitudinal data for which the
hazard relationship may depend on multiple time-dependent covariates measured at potentially different
time points whose observation is subject to error. The method offers a feasible approach to a problem that
entails considerable computational complexity otherwise. The estimator is easy to compute and does not
require an assumption on the distribution of underlying random effects nor the need to model or identify
this distribution. Application of the method and simulation evidence show that it is accessible for routine
use and leads to reliable inference.

We implemented the conditional score method in the C++ language using Newton–Raphson to solve
the conditional score estimating equations; code is available upon request.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/3/4/511/294606 by guest on 20 August 2022



526 X. SONG ET AL.

Table 7.Simulation results with n = 500 and ‘4-fold’ error according to 4D as described in the text:
nonlinear G(u, αi )

αi Normal Bimodal
Method I CS N I CS N

γ̂1 −2.020 −2.033 −1.816 −2.023 −2.050 −1.850
SD(γ̂1) 0.240 0.315 0.250 0.242 0.311 0.242
SE(γ̂1) 0.243 0.303 0.230 0.243 0.305 0.230
CP(γ̂1) 0.951 0.941 0.849 0.946 0.949 0.871

γ̂2 −0.203 −0.211 −0.130 −0.206 −0.213 −0.134
SD(γ̂2) 0.076 0.103 0.065 0.078 0.111 0.069
SE(γ̂2) 0.076 0.103 0.063 0.077 0.106 0.063
CP(γ̂2) 0.950 0.954 0.791 0.946 0.953 0.780

η̂ −0.002 −0.001 −0.018 0.006 0.010 −0.006
SD(η̂) 0.165 0.169 0.163 0.166 0.170 0.165
SE(η̂) 0.165 0.169 0.164 0.164 0.169 0.164
CP(η̂) 0.956 0.962 0.964 0.946 0.943 0.948

I, ‘ideal’ method; CS, Conditional Score; N, naive regression; SD, Monte Carlo stan-
dard deviation; SE, average of estimated standard errors; CP, coverage probability of
95% Wald confidence interval.
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APPENDIX. DERIVATION OF (8)

For subjecti , let Wik = {Wik(tik1), . . . , Wik(tikmik )}T be the full set of observations on thekth
covariate. For eachk, Wik = Fikαik + eik , whereFik = [ fk(tik1), . . . , fk(tikmik ) ]T , (mik × qk). Assume
that rank(Fik) = qk if mik > qk , as would ordinarily be the case with longitudinal modeling. The residuals
from a least-squares fit of this model to all the data on covariatek for subjecti may be written asRik =
Pik Wik = Pikeik , wherePik = Imik − Fik(FT

ik Fik)
−1FT

ik , and Imik is amik-dimensional identity matrix.
Suppose covariatesk andk′ are observed in common atmikk′ > 0 time points. LetAik be the(mikk′ ×mik)

matrix of zeros and ones that identifies the residuals for covariatek at the common time points, so that
Aik Rik is the (mikk′ × 1) vector of least-squares residuals at the common time points, and defineAik′
similarly. Then the sum of the product of residuals for covariatesk and k′ over the common times is
RT

ik AT
ik Aik′ Rik′ = eT

ik Pik A∗
ikk′ Pik′eik′ , whereA∗

ikk′ = AT
ik Aik′ (mik × mik′), which has expectation equal

to tr{Pik A∗
ikk′ Pik′ E(eik′eT

ik)} = σkk′ tr{Pik A∗
ikk′ Pik′ A∗T

ikk′ }; note thatA∗
ikk′ = Iikk′(∞). The estimator in (8)

follows.
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Table 8. Simulation results for the estimation of ωT = (σ11, σ12, σ22)

n αi Error Mean(̂ωT × 103) SD(ω̂T × 103)

250 normal 1-fold (10.877, 6.268, 11.121) (0.012, 0.010, 0.012)
250 bimodal 1-fold (10.897, 6.285, 11.145) (0.011, 0.009, 0.011)
250 normal 4-fold (43.509, 25.071, 44.484) (0.047, 0.039, 0.047)
250 bimodal 4-fold (43.587, 25.141, 44.581) (0.044, 0.037, 0.046)

500 normal 1-fold (10.891, 6.273, 11.135) (0.008, 0.007, 0.008)
500 bimodal 1-fold (10.894, 6.280, 11.146) (0.008, 0.006, 0.008)
500 normal 4-fold (43.565, 25.093, 44.541) (0.033, 0.027, 0.033)
500 bimodal 4-fold (43.575, 25.120, 44.584) (0.032, 0.026, 0.033)

500 normal truncated 4-fold (42.186, 23.865, 43.035) (0.031, 0.026, 0.031)
500 bimodal truncated 4-fold (42.135, 23.863, 43.060) (0.030, 0.024, 0.030)

Nonlinear
500 normal 4-fold (43.608, 25.161, 44.597) (0.034, 0.028, 0.036)
500 bimodal 4-fold (43.631, 25.132, 44.583) (0.033, 0.028, 0.035)

For 1-fold normal error, the true value ofωT = (σ11, σ12, σ22) =
(10.89, 6.28, 11.14) × 10−3. For 4-fold normal error, the true value ofωT =
(43.56, 25.12, 44.56) × 10−3. For 4-fold normal error truncated at 3 standard
deviations, the true value ofωT = (42.13, 23.89, 43.09) × 10−3. Mean(ω̂T × 103)
and SD(̂ωT × 103) are the Monte Carlo mean and standard deviation ofω̂T × 103,
respectively.
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