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An EV Charging Management System Concerning

Drivers’ Trip Duration and Mobility Uncertainty
Yue Cao, Member, IEEE, Tong Wang, Omprakash Kaiwartya, Member, IEEE, Geyong Min, Member, IEEE,

Naveed Ahmad and Abdul Hanan Abdullah, Member, IEEE

Abstract—With continually increased attention on Electric
Vehicles (EVs) due to environment impact, public Charging
Stations (CSs) for EVs will become common. However, due to
the limited electricity of battery, EV drivers may experience
discomfort for long charging waiting time during their journeys.
This often happens when a large number of (on-the-move) EVs
are planning to charge at the same CS, but it has been heavily
overloaded. With this concern, in an EV charging management
system, we focus on CS-selection decision making and propose a
scheme to manage EVs’ charging plans, to minimize drivers’ trip
duration through intermediate charging at CSs. The proposed
scheme jointly considers EVs’ anticipated charging reservations
(including arrival time, expected charging time) and parking
duration at CSs. Furthermore, by tackling mobility uncertainty
that EVs may not reach their planned CSs on time (due to traffic
jams on the road), a periodical reservation updating mechanism
is designed to adjust their charging plans. Results under the
Helsinki city scenario with realistic EV and CS characteristics
show the advantage of our proposal, in terms of minimized
drivers’ trip duration, as well as charging performance at the
EV and CS sides.

Index Terms—Electric Vehicle, Charging System, CS-Selection
Decision Making, Driver’s Trip Duration, Mobility Uncertainty.

I. INTRODUCTION

IN SmartGrid [1], the application of Electric Vehicles (EVs)

[2] is promising compared to traditional petrol based vehi-

cles in many developed countries. Such introduction on EVs

concerns the increasing long-term energy cost and attention on

environmental impact. However, for many big cities where ma-

jority of trip is with long distance, on-the-move EV charging

may take place during journey. In this context, the flexibility

of charging infrastructure as well as the appropriate decision

making to manage charging are vital to the success and long-

term viability of EV industry.

Majority of previous works investigate charging scheduling

[3] for the use case (concerning when/whether to charge EVs)

where EVs have already been parking at homes/Charging
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Stations (CSs). In contrary, our research interest addresses

another use case (concerning where/which CS to charge)

that has not received much attention, in order to manage

the charging plans for on-the-move EVs. In general, these

public CSs are typically deployed at places where there is

high concentration of EVs, such as shopping mall parking

places. It is highlighted that due to the relatively long time to

charge an EV battery, to optimally manage where to charge has

become a critical issue in recent years. This use case cannot

be overlooked as it is the most important feature of EV in

future smart city [4], especially for fast charging.

We refer to the charging system widely adopted by pre-

vious works, which utilize Global Aggregator (GA) or other

third party who is interested in EVs charging management.

By monitoring CSs’ condition, the GA as system controller

implements the charging management whenever it receives

a charging request from an on-the-move EV. It is worthy

mentioning that based on existing fast charging technology,

the charging time of an EV typically exceeds tens of minutes

[5]. Therefore, a CS would be congested due to serving a large

number of charging demands from parking EVs.

A few previous works [6]–[9] have addressed CS-selection

decision making to minimize the EVs’ charging waiting time,

by monitoring the local status of CSs. Basically, the CS with

the highest availability (e.g., minimum queuing time [9]) will

be selected as the best choice. Inevitably, a potential charging

hotspot may happen, if many on-the-move EVs travel towards

the same CS for charging. If further bringing an anticipated

EV charging reservation [10] (including when the EV will

arrive at selected CS for charging, and how long its charging

time will be upon the arrival), the congestion at CS could be

alleviated. This is because that at what time and which CS will

be heavily loaded can be identified, so as to avoid selecting

that CS as the charging plan.

To the best of our awareness, no previous works has

considered the influence of traffic condition on the charging

management. Such traffic condition (referred as traffic jams

on the road) results in EVs’ mobility uncertainty. In some

highly congested area, EVs may stop for certain periods until

traffic jams disappear. Therefore, EVs may not guarantee

their reported reservations accurately (meaning they may not

arrive at selected CSs on time), and particularly the GA is

unaware of this condition change timely. Since to continually

obtain the updated EVs’ reservation information improves

the accuracy of CS-selection, the changed CS-selection using

updated information is appropriate to improve EV drivers’

Quality of Experience (QoE).
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Indeed, EV drivers also have their individual journeys and

certain parking duration. However, an inappropriate charging

taking place during journey may degrade users’ QoE, as they

prefer to reach trip destination as soon as possible. On the one

hand, drivers may not be willing to wait for a quite long time

to charge their EVs. On the other hand, selecting a CS that

is far away from the trip destination is not suggested as well.

To summarize above, in spite that the parking duration has

been addressed in the use case concerning when/whether to

charge EVs, a joint consideration on parking duration and trip

destination has not been addressed in the use case concerning

where/which CS to charge.

In order to minimize the trip duration for on-the-move EVs

need charging services, we jointly consider the time to travel

towards the selected CS, that taken from certain CS to the trip

destination, as well as the time parking at that intermediate CS.

It is worthy highlighting this article focuses on the impact of

charging management on the EVs trip duration, and not on

the power grid (i.e., valley filling [11], [12]). Technically:

• Concerning a city scenario, the CS-selection decision

making is based on the reported EVs’ reservation in-

formation as well as parking duration at selected CSs.

This anticipated information is recorded by the GA to

estimate the expected charging waiting time at CSs. The

EV’s trip destination is concerned, so as to find the CS

through which an EV deserves charging will experience

the shortest trip duration. Compared to previous works on

CS-selection, the novelty of this estimation jointly con-

siders the parallel charging process via multiple charging

slots and the EV parking duration for reservation making,

where the EV may depart from a CS before being fully

recharged.

• Since the problem of mobility uncertainty has not been

addressed in literature, we advertise that EVs are further

capable of sending reservation update requests, so that

they would be informed by the GA to change their

charging plans and experience a shorter time trip duration.

This updating process is run periodically, and applicable

under the scenario that EV speed is fluctuated due to the

traffic jams.

The rest of the article is organized as follows. In Section

II we present the related work, followed by Section III in

which we introduce the preliminary including network enti-

ties definition, assumption, overview of charging system. In

Section IV, we introduce our proposed CS-selection decision

making scheme. Results are evaluated in Section V, followed

by conclusion made in Section VI.

II. RELATED WORK

A most recent survey [13] has identified two EV charging

use cases. On the one hand, majority of works in literature

[3] address the problem of regulating the EV charging, such

as minimizing peak load/cost, flattening aggregated demands

or reducing frequency fluctuations. On the other hand, a

few works are more concerned with minimizing the charging

waiting time of EVs.

In the latter branch, the works in [6], [9] estimate the

queuing time at CSs, such that the one with the minimum

queueing time is ranked as the best charging option. The work

in [7] compares the schemes to select CS based either on the

closest distance or minimum waiting time, where results show

that the latter performs better given high EVs density under

city scenario. In [8], the CS with a higher capability to accept

charging requests from on-the-move EVs, will propose this

service with a higher frequency, while EVs sense this service

with a decreasing function of their current battery levels.

The CS-selection scheme in [14] adopts a pricing strategy

to minimize congestion and maximize profit, by adapting the

price depending on the number of EVs charging at each time

point. Note that previous works on CS-selection can usually

be integrated with route planning, such as the work in [15]

predicts congestion at charging stations and suggests the most

efficient route to its user. Besides, reservation based schemes

have been proposed to enhance the CS-selection intelligence

using anticipated EVs mobility information, such as the works

proposed under highway scenario [10] and city scenario [16],

[17].

Regarding reservation charging aspect, an essential differ-

ence between our work and [10] is that the latter assumes

highway scenario where the EV will pass through all CSs.

Its expected charging waiting time is calculated for the EV

passing through the entire highway, by jointly considering the

charging waiting time at a CS where the EV needs charging

for the first time and that time spent at subsequent CSs, before

exiting the highway. In sharp contrast, under our city scenario

the EV will head to a single geographically distributed CS

for charging, where the expected charging waiting time is

associated to that certain CS. Different from our previous work

[16], [17], we further tackle the limited parking duration at CS

(EVs may depart before being fully charged) and the entire trip

duration (through an intermediate charging) for CS-selection

decision making. Concerning the mobility uncertainty due

to traffic jams, a periodical reservation updating is further

executed to adjust EVs’ charging plans.

Indeed, it is difficult to coordinate the charging plans for

all EVs in a large scale range. Using centralized charging

management keeps the edge devices (EV side) simple, and

favors more sophisticated centralized optimizations from the

GA side based on the aggregated global information. Last

but not least, the price [18]–[21] differences between CSs

concerning business model, and battery exchange service [22]

concerning a super fast service provision could be easily

integrated into our proposed CS-selection decision making.

III. SYSTEM MODEL

A. Definition of Network Entities

Electric Vehicle (EV): Each EV is with a Status Of Charge

(SOC) threshold. If the ratio between its current energy and

maximum energy is below the SOC threshold, the EV starts to

negotiate with the GA to find an appropriate CS for charging.

Further to this, the EV also reports its charging reservation to

the GA, including “what time it will arrive at decided CS”

and “how long its expected charging time will be at that CS”.

Charging Station (CS): Each CS is located at a certain

location to charge EVs in parallel, based on multiple charg-

ing slots. Its condition information (number of EVs already
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parking at the CS and their charging time) is monitored by

the GA.

Global Aggregator (GA): It is a centralized entity to

manage charging. Here, the CSs’ condition information as well

as EVs’ charging reservations are needed to make CS-selection

decision.

B. Assumption

In this article, we consider a city scenario where CSs are

geographically deployed in a city, the GA globally manages

the charging plans for all EVs in the network. Without loss

of generality, EVs are equipped with wireless communication

devices such as 3G/Long Term Evolution (LTE), which allows

them to communicate with the GA for request/reply charging

services. Each CS is with multiple charging slots such that a

number of EVs can be charged in parallel.

If with a low electricity stage, an on-the-move EV (with

its certain trip destination) has to firstly head to a selected

CS (decided by the GA) for charging. The underlying EV

charging scheduling (concerning when/whether to charge EVs)

at the CS side, is based on the First Come First Serve (FCFS)

order, as widely used for the branch related to EV charging

management. This means that the parking EV with an earlier

arrival time will be scheduled with a higher charging priority.

If a CS is fully occupied (meaning all its charging slots

are currently being used), incoming EVs need to wait until

one of its charging slots is free. Particularly, each EV has its

individual parking duration at the CS, thus EV may depart

from the CS before being fully charged. Upon departure from

the CS, the EV will start to travel towards its trip destination

again, with an initial maximum moving speed (e.g., speed

acceleration).

C. Introduction on Mobility Uncertainty

Partially based on [23], the uncertainty of EV mobility

presented in this article is mainly due to several traffic jams

happen in a city. Any EV within a certain range of traffic jam

will slow down its speed, while it will accelerate the speed

once leaving from the range of that traffic jam. In particular,

the EV has to temporarily stop, if with a close proximity to

the central of traffic jam. In such case, the EV only resumes

its movement once the closest traffic jam disappears.

Due to this reason, the variation of moving speed will

affect the arrival time at the CS, as well as the electricity

consumption for travelling towards that CS. These are included

as the charging reservation reported to the GA. If without

reservation updating, an on-the-move EV may not reach a

CS at the time it previously reserved, whereas the GA still

has an obsolete knowledge that EV will reach on time. As

such, the estimation on how long an incoming EV will wait

for charging, is affected by the accuracy of the reservation

information due to mobility uncertainty. Further to this, the

mobility uncertainty also affects the travelling time taken from

a CS and EV’s trip destination.
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Fig. 1. System Cycle of Proposed EV Charging Management

D. System Cycle of Proposed EV Charging Management

Fig.1 describes the cycle of EV charging management:

Driving Phase: The EV is travelling towards its trip des-

tination. If with a low energy status, that EV then requires a

charging service allocated from the GA.

Charging Reservation Phase: Here, once the EV is notified

by the GA in terms of CS-selection decision, the EV further

reports its charging reservation to the GA.

• Reservation Updating Phase: The EV also periodi-

cally updates its charging reservation to the GA, due to

mobility uncertainty. The updated CS-selection possibly

triggers a charging reservation at newly decided CSs.

Charging Scheduling Phase: The EV will wait to be

scheduled for charging, upon its arrival at the selected CS.

Battery Charging Phase: The EV is currently being

charged within a period of its parking duration. Upon departure

(fully/not fully charged), the EV turns to Driving Phase.

1 2 3

CS2

EVr

EV4 CS1CS3 GA

EV2

EV1

2 Parking EVs Under Charging

Moving Towards Decided CS1

5

EVr
4
6

EV3
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EVr

EV1 is Heading to CS1

Make Updating to GA

Fig. 2. Overview of Proposed EV Charging Management

Based on Fig.2, a typical procedure for our proposed EV

charging management scheme is listed as follows:

1) When one on-the-move EV needs charging service,

namely EVr, it informs the GA about its charging

request (including location, trip destination).
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2) The GA then compiles a list of CSs and ranks the most

appropriate one (in terms of the minimized trip duration

through an intermediate charging), and the decision is

sent back to EVr.

3) EVr reports its charging reservation in relation to this

selected CS, including its arrival time, expected charging

time and parking duration at this CS.

4) When travelling towards the selected CS, EVr periodi-

cally checks whether that currently selected CS is still

the best choice, by sending a reservation update request

to the GA.

5) The GA then compares a cost in relation to the newly

selected CS as well as that of previously selected CS. If

charging at the previously selected CS cannot contribute

to the minimized trip duration, the GA will inform EVr

about an updated arrangement with the new CS-selection

decision.

6) EVr thus cancels its reservation at the previously se-

lected CS, and reports the updated reservation in relation

to the newly selected CS. Finally, EVr changes its

movement towards the location of that newly selected

CS.

Steps 4 to 6 are repeated until EVr reaches the newly selected

CS for charging. Note that such new arrangement may change

for several times, depending on the frequency of reservation

updating request which triggers computing logic shown in

Fig.3.

IV. SYSTEM DESIGN
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Fig. 3. Flow Chart of Computation Logic

Referred to Fig.3, the total EV trip duration through an

intermediate charging, is estimated following three steps.

Step 1: The available time for charging per each charging

slot at the CS is estimated based on its local condition.

Step 2: The output of Step 1 and other incoming EVs’

charging reservations are jointly used to estimate the future

status of CS. Here, we refer to expected charging waiting time,

and take the influence of mobility uncertainty into account.

Step 3: The trip duration for EVr (The EV needs charging)

is estimated, by jointly considering its trip destination, the

output from Step 2 as well as the influence of mobility

uncertainty.

TABLE I
LIST OF NOMENCLATURES

LIST Output including available time per charging slot at CS

Tarr
ev EV’s arrival time at CS

T tra
ev EV’s travelling time to reach CS

T cha
ev Expected charging time upon arrival of EV

Tcur Current time in network

Sev Moving speed of EV

α Electric energy consumed per meter

Dev Parking duration of EV at CS

Tpark
ev Time slot that EV starts to park at CS

β Charging power at CS

NC Number of EVs under charging at CS

NW Number of EVs waiting for charging at CS

δ Number of charging slots at CS

Emax
ev Full volume of EV battery

Ecur
ev Current volume of EV battery

T fin
ev Charging finish time of EV

Njam Number of traffic jams

ljam Location of a traffic jam

ℓ {ev, ljam} Distance between EV and ljam

ℜ Range of traffic jam

Smin
ev Minimum Moving speed of EV

Smax
ev Maximum Moving speed of EV

NR Number of EVs reserved for charging at CS

ECWTcs Expected charging waiting time at CS

Ncs Number of CSs

lcs Location of a CS

Tmin
cs,d Travelling time from a CS to EV’s trip destination

T cs,d
ev(r)

Trip duration of EVr through charging at a CS

A. Available Time for Charging Estimation

Before considering those EVs have made reservations and

are travelling towards their selected CSs, it is vital to esti-

mate the available time for each charging slot, based on the

knowledge of those EVs currently parking at these CSs. Given

the parallel charging procedure via multiple charging slots, we

define two types of queues respectively. Here, those EVs under

charging are characterized in the queue of NC , while those still

waiting for charging are characterized in the queue of NW .

In special case, the current time in network, as denoted

by Tcur, is estimated as the available charging time for each

charging slot, only if all charging slots are unoccupied. As

such, the LIST including these time slots is returned, after the

process at line 2 in Algorithm 1.

Alternatively, as the operations presented between lines 5

and 11, the time duration

(

Emax
ev(i)

−Ecur
ev(i)

β

)

to fully recharge the

battery of each EVi (in the queue of NC), will be compared

with its parking duration Dev(i) .

• In one case, the condition
((

Tcur − T park
ev(i)

+
Emax

ev(i)
−Ecur

ev(i)

β

)

≤ Dev(i)

)

implies

this EVi can be fully recharged before departure, where
(

Tcur − T park
ev(i)

)

is the time duration since the arrival of
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EVi. As such, the charging finish time (about when the

charging of EVi will finish) T fin
ev(i)

of EVi is given by
(

Emax
ev(i)

−Ecur
ev(i)

β
+ Tcur

)

only.

• In another case, T fin
ev(i)

is given by
(

T park
ev(i)

+Dev(i)

)

instead, as the deadline that EVi will park at this CS.

This is because that EVi can not be fully recharged.

Upon above processing for those EVs under charging, the

presentation between lines 12 and 16 implies that all charging

slots have not been fully occupied, as there are still (δ −NC)
slots free for charging. Here, Tcur is then estimated as the

available charging time for these unoccupied charging slots.

Algorithm 1 Available Time For Charging Estimation

1: if no EV is under charging then
2: add Tcur in LIST with δ times
3: return LIST
4: end if
5: for (i = 1; i ≤ NC ; i++) do

6: if

((

Tcur − T
park
ev(i)

+
Emax

ev(i)
−Ecur

ev(i)

β

)

≤ Dev(i)

)

then

7: LIST.ADD

(

Emax
ev(i)

−Ecur
ev(i)

β
+ Tcur

)

8: else

9: LIST.ADD
(

T
park
ev(i)

+Dev(i)

)

10: end if

11: end for
12: if (NC < δ) then

13: for (j = 1; j ≤ (δ −NC); j ++) do
14: LIST.ADD(Tcur)
15: end for

16: end if
17: if no EV is waiting for charging then

18: return LIST
19: else
20: sort the queue of NW according to FCFS
21: sort LIST with ascending order
22: for (k = 1; k ≤ NW ; k ++) do

23: if
((

LIST.GET(0)− T
park
ev(k)

)

< Dev(k)

)

then

24: if

((

LIST.GET(0)− T
park
ev(k)

+
Emax

ev(k)
−Ecur

ev(k)

β

)

≤ Dev(k)

)

then

25: T
fin
ev(k)

=

(

LIST.GET(0) +
Emax

ev(k)
−Ecur

ev(k)

β

)

26: else

27: T
fin
ev(k)

=
(

T
park
ev(k)

+Dev(k)

)

28: end if
29: replace LIST.GET(0) with T

fin
ev(k)

in LIST

30: sort LIST with ascending order
31: end if

32: end for
33: return LIST
34: end if

Then, Algorithm 1 will return that LIST including the

available time for each charging slot, either if there is no

EV waiting for charging as the condition stated at line

17, or a loop operation for each EVk waiting for charging

(in the queue of NW ) has been processed as stated from line

22.

In the latter case, the loop operation starts from sorting the

queue of NW based on FCFS order, following the underly-

ing charging scheduling priority in Section II. Meanwhile,

the LIST in relation to those EVs under charging is sorted

with ascending order, where the earliest available time for

charging considering all charging slots at a CS, as denoted

by LIST.GET(0) is at the head of LIST.

In detail, to calculate the charging finish time T fin
ev(k)

of

each EVk waiting for charging, needs to consider the earliest

available time of charging slots. Note that only the EVk can be

charged during its parking duration will involve calculation, as

the condition given by
((

LIST.GET(0) − T park
ev(k)

)

< Dev(k)

)

at line 23.

• As presented at lines 25 and 27, either
(

LIST.GET(0) +
Emax

ev(k)
−Ecur

ev(k)

β

)

or
(

T park
ev(k)

+Dev(k)

)

is estimated as T fin
ev(k)

, where
(

LIST.GET(0) − T park
ev(k)

)

is the waiting time for EVk to start charging.

• Furthermore, the LIST.GET(0) will be replaced with

T fin
ev(k)

, while LIST will be sorted with ascending order

upon processing each EVk in the loop.

The above loop operation ends when all EVk have been

processed, and an updated LIST is returned.

B. Detail of Mobility Uncertainty

Algorithm 2 Mobility Uncertainty

1: Randomly generate Njam traffic jams
2: for each EV in network do

3: for ∀ljam ∈ Njam do

4: calculate (ℓ {ev, ljam} , ℓ {ev, ljam} < ℜ)
5: end for

6: lmin
jam ← argmin (ℓ {ev, ljam} , ℓ {ev, ljam} < ℜ)

7: if
(

lmin
jam ̸= null

)

then

8: if
(

ℓ
{

ev, lmin
jam

}

< ℜ
)

then

9: if
(

ℓ
{

ev, lmin
jam

}

< ℜ

10

)

then

10: Sev → 0
11: else
12: Sev → Sev −

((

Sev − Smin
ev

)

× λ
)

, λ ∈ [0, 1]
13: end if

14: else
15: Sev → Sev + ((Smax

ev − Sev)× λ) , λ ∈ [0, 1]
16: end if
17: end if

18: end for

In Algorithm 2, we detail the implementation of mobility

uncertainty due to traffic jams. Here, a number of Njam traffic

jams periodically happen in city. The locations ljam of those

traffic jams are randomly chosen from the city topology.

For each on-the-move EV, its moving speed is varied

depends on the most closest traffic jam. Finding the location of

closest traffic jam lmin
jam is determined by operations between

lines 3 and 6. Here, ℜ is the range of traffic jam. The speed

is fluctuated only if the lmin
jam is found. This means that there

is the closest traffic jam from which the distance to EV is

smaller than ℜ.

• If the distance between EV and its closest traffic jam

ℓ
{

ev, lmin
jam

}

is smaller than ℜ, the EV speed Sev is

reduced with a random value λ at line 12.

• Particularly, Sev turns to 0 if
(

ℓ
{

ev, lmin
jam

}

< ℜ
10

)

, pre-

sented between lines 9 and 10. This implies that EV is

close to the centra of lmin
jam, and thus temporarily stops.

• At line 15, if ℓ
{

ev, lmin
jam

}

is larger than ℜ, the EV speed

is accelerated with a random value λ. This implies that

the EV is out of the range of the closest traffic jam lmin
jam.
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C. Reporting Reservation Information

Whenever a CS-selection decision is made and returned to

the EVr (the EV needs charging service) which sent charging

request, the following three items together with its ID and

the selected CS’s ID will be reported to the GA, as the EV’s

reservation information.

Arrival Time: We denote T arr
ev as the time slot an EV will

arrive at the selected CS, following:

Tarr
ev = Tcur + T tra

ev (1)

Here, T tra
ev is the travelling time measured from the current

location of EV to the selected CS, via the shortest road path.

Besides, Tcur is the current time in network.

Expected Charging Time: We denote T cha
ev as the expected

charging time upon that arrival, where:

T cha
ev =

Emax
ev − Ecur

ev + Sev × T tra
ev × α

β
(2)

Here, (Sev × T tra
ev × α) is the energy consumed for the move-

ment travelling to the selected CS, based on a constant α (de-

pending on a certain type EV) measuring the energy consump-

tion per meter. Therefore, (Emax
ev − Ecur

ev + Sev × T tra
ev × α)

is the expected electricity that an EV needs to be recharged,

depending on the charging power β provided by CS.

Parking Duration: We denote Dev as the parking duration

at a CS, meaning how long an EV will park. Note that an EV

may depart from a CS due to a short parking duration, even

if the EV battery has not been fully recharged.

The assumption that the reservation information is trustwor-

thy, is vulnerable without ensuring the integrity of messages

from EVs to the GA on end-to-end aspects. E.g., forged or

wrong reservation information are continuously delivered by

the GA to compute quite imprecise estimation for charging

waiting time. The general secured vehicular communication

framework in [24] can be applied to enable secured delivery

of EVs’ reservation requests towards the GA.

D. Expected Charging Waiting Time Estimation

At the GA side, the decision making on estimating the

expected charging waiting time at a CS, further considers those

reported EVs’ reservation information. Upon this anticipated

information, the expected charging waiting time ECWTcs at a

CS can be estimated. In this context, the GA will keep track

of the charging time of EVs locally parking at a CS, as well

as other EVs (with an earlier arrival time than EVr) heading

to this CS.

The detail regarding this is presented in Algorithm 3, where

NR stands for the number of EVs have reserved for charging at

a CS. The Algorithm 3 sorts the queue of NR following FCFS

order, which is same as the charging scheduling priority. In

this case, EVi stands for the ith EV in the queue of NR.

As highlighted at line 4, for each T arr
ev(i)

which is earlier

than T arr
ev(r)

, the former will involve the dynamic update of the

LIST as returned by Algorithm 3. This means only those EVs

(in the queue of NR) with an earlier arrival time than EVr,

are considered for calculating the expected charging waiting

time. Here, the purpose of such updating is to estimate when

a charging slot will be available upon the arrival of EVr.

Note that the LIST is initially sorted according to the as-

cending order, such that the earliest available time for charging

is at the head of LIST for the following loop operation:

Algorithm 3 Expected Charging Waiting Time Estimation

1: sort the queue of NR according to FCFS
2: sort LIST returned by Algorithm 1, with ascending order
3: for (i = 1; i ≤ NR; i++) do

4: if
(

Tarr
ev(i)

< Tarr
ev(r)

)

then

5: if
(

LIST.GET(0) > Tarr
ev(i)

)

then

6: if
((

LIST.GET(0)− Tarr
ev(i)

)

< Dev(i)

)

then

7: if
((

LIST.GET(0)− Tarr
ev(i)

+ T cha
ev(i)

)

≤ Dev(i)

)

then

8: T
fin
ev(i)

=
(

LIST.GET(0) + T cha
ev(i)

)

9: else

10: T
fin
ev(i)

=
(

Tarr
ev(i)

+Dev(i)

)

11: end if

12: end if
13: else

14: if
(

T cha
ev(i)

≤ Dev(i)

)

then

15: T
fin
ev(i)

=
(

Tarr
ev(i)

+ T cha
ev(i)

)

16: else

17: T
fin
ev(i)

=
(

Tarr
ev(i)

+Dev(i)

)

18: end if

19: end if

20: replace the LIST.GET(0) with T
fin
ev(i)

21: sort LIST with ascending order
22: end if

23: end for

24: if
(

LIST.GET(0) > Tarr
ev(r)

)

then

25: return ECWTcs =
(

LIST.GET(0)− Tarr
ev(r)

)

26: else

27: return ECWTcs = 0
28: end if

• In one case, if T arr
ev(i)

is earlier than the earliest avail-

able time considering all charging slots, as given by
(

LIST.GET(0) > T arr
ev(i)

)

at line 5, the charging finish

time T fin
ev(i)

is calculated by aggregating this available time

for charging and the corresponding expected charging

time T cha
ev(i)

.

In particular, the condition
((

LIST.GET(0) − T arr
ev(i)

+ T cha
ev(i)

)

≤ Dev(i)

)

at line

7 implies that EVi could be fully recharged before

departure and vice versa, where
(

LIST.GET(0) − T arr
ev(i)

)

reflects the time to wait for charging. Following lines

8 and 10, T fin
ev(i)

is thus calculated considering above

condition. Note that only the EVi can be charged before

departure, would involve the calculation, as the condition

given by
((

LIST.GET(0) − T arr
ev(i)

)

< Dev(i)

)

at line 6.

• In another case as presented at line 13, EVi will not

wait for additional time to start charging. Here, T fin
ev(i)

is calculated by considering T arr
ev(i)

, T cha
ev(i)

and Dev(i)

following the calculations at lines 15 and 17.

By replacing the earliest available time for charging with each

T fin
ev(i)

, the available time for charging per charging slot is

dynamically updated, until all EVi (in the queue of NR) have

been processed. Note that the LIST will be sorted with the

ascending order after the process of each EVi, such that the

earliest available time for charging is always at the head of
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LIST for further calculation in the next loop.

Upon this loop operation, the arrival time of EVr will

be compared with the earliest available time for charging,

denoted as the head value in LIST. Then, their differential

is estimated as the expected charging waiting time at CS, as

EWCTcs presented between lines 25 and 27. Note that the

condition
(

LIST.GET(0) > T arr
ev(r)

)

implies that the charging

for EVr has to wait for additional
(

LIST.GET(0) − T arr
ev(r)

)

time duration.

E. CS-Selection Decision Making

Algorithm 4 CS-Selection Decision Making

1: for ∀lcs ∈ Ncs do

2: calculate T tra
ev(r)

3: calculate Tmin
cs,d

4: calculate ECWTcs via Algorithm 3

5: if
((

T cha
ev(r)

+ ECWTcs

)

≤ Dev(r)

)

then

6: T
cs,d
ev(r)

= T tra
ev(r)

+ T cha
ev(r)

+ ECWTcs + Tmin
cs,d

7: else

8: T
cs,d
ev(r)

= T tra
ev(r)

+Dev(r) + Tmin
cs,d

9: end if

10: end for

11: lmin
cs ← argmin

(

T
cs,d
ev(r)

)

12: return lmin
cs

By running Algorithm 3, the expected charging waiting time

at CS (with location lcs) can be estimated. Upon this, the total

trip duration for EVr can be calculated based on following

inputs:

1) The travelling time from the current location of EVr to

the selected CS, given by T tra
ev(r)

.

2) The duration (including the time to wait for charging

and expected charging time) staying at the selected CS,

is given by the calculation at line 6 or 8 in Algorithm

4.

3) The estimated minimum travelling time from the se-

lected CS to the trip destination of EVr, given by

Tmin
cs,d . As stated in assumption of Section II, upon a

(fully/not fully) recharged service at the selected CS,

EVr will start to travel towards its destination, with the

maximum moving speed Smax
ev . Therefore, Tmin

cs,d can be

obtained by the shortest distance between that CS and

trip destination, divided by Smax
ev .

Based on above, we define T cs,d
ev(r)

as the trip duration for

EVr through an intermediate charging. In Algorithm 4, T cs,d
ev(r)

is obtained as follows:

• In one case, the total trip duration for EVr through a fully

recharged service at an intermediate CS, is given by:

T cs,d
ev(r)

= T tra
ev(r)

+ T cha
ev(r)

+ ECWTcs + Tmin
cs,d (3)

Note that the condition
((

T cha
ev(r)

+ ECWTcs

)

≤ Dev(r)

)

at line 5 holds true for a full recharging. This implies

EVr will be fully recharged before its departure deadline

Dev(r) .

• In another case, a not-fully recharged service due to

limited Dev(r)
turns to following calculation at line 8:

T cs,d
ev(r)

= T tra
ev(r)

+Dev(r) + Tmin
cs,d (4)

This implies that EVr can only be charged for a period

of Dev(r) .

By running T cs,d
ev(r)

for each CS, the one meets the minimum

trip duration for EVr is selected, and then the GA returns the

location of selected CS, as lmin
cs back to EVr.

F. Reservation Updating

Once EVr has confirmed the CS-selection decision (based

on the minimum trip duration) from the GA by reporting its

charging reservation, EVr will further periodically send the

reservation update request during its journey. The GA then

runs Algorithm 4 based on the updated information obtained

from CSs and other EVs making reservations. Under such

updated condition, the CS (newly decided CS) which meets

the minimum trip duration for EVr is found.

Algorithm 5 Reservation Updating

1: find lcs via Algorithm 4
2: if (lcs ̸= lcs) then

3: if
(

T
cs,d
ev(r)

< T
cs,d
ev(r)

)

then

4: if
((

T cha
ev(r)

+ ECWTcs

)

≤ Dev(r)

)

then

5: cancel reservation at CS
6: make reservation at CS
7: change charging plan towards CS

8: else if
((

T cha
ev(r)

+ ECWTcs

)

> Dev(r)

)

then

9: cancel reservation at CS
10: make reservation at CS
11: change charging plan towards CS
12: end if

13: end if

14: end if

If the CS is different from the one decided previously,

a comparison is then made in terms of total trip duration

T cs,d
ev(r)

. The core idea is to monitor the entire network condition

through periodically updated EVs’ reservations, and adjust the

CS-selection decision making to minimize the trip duration

for EVr. Here, the decision change logic is only executed if

T cs,d
ev(r)

is shorter than that of previously selected CS, given by
(

T cs,d
ev(r)

< T cs,d
ev(r)

)

.

Driven by this decision change, EVr will then confirm this

new decision. It next informs the GA to cancel its reservation

at the previously selected CS, and records a new reservation at

CS (the newly decided CS). Above operations run periodically,

while no additional communication will be established if there

is no decision change. In order not to include too much

communication overhead due to a subtle reduced trip duration,

only the following two conditions will trigger decision change.

• In the ideal case, the decision change is made given
((

T cha
ev(r)

+ ECWTcs

)

≤ Dev(r)

)

. This guarantees EVr

can still be fully recharged at CS.

• Otherwise, if EVr cannot be fully recharged at both

previous CS and CS given by condition at line 8, the CS
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from which EVr will experience a shorter trip duration

is still selected.

The motivation behind this considers the mobility uncer-

tainty, that the varied EV moving speed Sev during journey

will inevitably affect the accuracy of EVs’ reservation infor-

mation used in Algorithm 3. In the worst case, an inaccurate

estimation may result in a longer expected charging waiting

time for EVr, and its complete charging service may not be

finished due to limited parking duration.

G. Discussion

Actually, the decision change for EVr is based on three

aspects:

• The time spent to travel towards that CS.

• The time spent at CS (expected time to wait for charging

+ expected charging time).

• The travelling time spent from that certain CS to the

destination of EVr.

Our design has an arbitrage to omit decision changed in

line with a subtly reduced trip duration. This is achieved by

holding the condition that, the sum of time to wait for charging

and expected charging time, cannot exceed the EV parking

duration. If a CS-selection decision will change, we obtain:

• The expected charging time is increased due to energy

consumption from movement.

• Also, the travelling time towards the current CS is re-

duced, due to a proximity to CS.

As such, a substantially reduced time to wait for charging,

plays an important role in improving the total trip duration

(Such waiting time has significant impact on re-selecting a

new CS that is geographically different from previous CS).

Even if they adjust charging plans after the decision change

of EVr, there is no disadvantage for other EVs, given by the

certain parking duration (meaning they move towards a newly

selected CS, but experience a longer charging waiting time

and trip duration).

Based on above, we further introduce the following no-

tations to facilitate problem formulation of charging waiting

time:

• γlcs : Number of EVs currently parking at a CS.

• ωlcs : Average charging waiting time for each EV cur-

rently parking at a CS.

• W: Total charging waiting time for all EVs in network.

Straightforwardly, we obtain:

To minimize W =
∑

lcs∈Ncs

γlcs × ωlcs (5)

Here, note that γlcs is a function of Ncs. This is because that

a larger number of Ncs enables a small γlcs EVs distributed

at each CS. Furthermore, ωlcs is related to γlcs , δ, β. This is

reflected by the fact, a larger number of γlcs EVs intend to

charge at a CS, inevitably increases their average charging

waiting time at this CS. Of course, both a fast charging power

β and more charging slots δ will reduce such time.

In order to achieve the minimum waiting time for EVs

allocated at Ncs CSs, thus γlcs ×ωlcs should be equal among

all CSs, as ideal situation. Since all CSs share the same β and

δ, we obtain γlcs = F( 1

Ncs
), and ωlcs = F(

γlcs

δ×β
) to achieve

the minimum charging waiting time. The following evaluation

results will address all factors involved in this discussion.

Due to mobility uncertainty, the charging management

towards an equal number of EVs associated to each CS is

difficult to achieve. Therefore, a frequently updated charging

reservation from EVs, contributes to balancing the charging

load at each CS, so as to reduce waiting time.

V. PERFORMANCE EVALUATION

CS2
CS1

CS3

CS4

CS5

CS6

CS7

Fig. 4. Simulation Scenario of Helsinki City

Fig. 5. Google Map of Helsinki City

We have built up an entire EV charging system in Op-

portunistic Network Environment (ONE) [25]. In Fig.4, the

default scenario with 4500×3400 m2 area is shown as the

down town area of Helsinki city abstracted from Google map

(Fig.5) in Finland. Here, 240 EVs with [30 ∼ 50] km/h
variable moving speed are initialized in the network. The

destination of each EV trip is randomly selected from a

location in the map. Particularly, once the current destination
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is reached, a new destination is randomly chosen again. Such

procedure is repeated until the EV reaches the SOC threshold

and then requests charging service. The configuration of

EVs follows the charging specification {Maximum Electricity

Capacity (MEC), Max Travelling Distance (MTD), Status Of

Charge (SOC) threshold}. We configure three types of EVs,

which are:

• Coda Automotive [26] {33.8 kWh, 193 km, 30%}, aver-

age energy consumption 0.1751 kWh/km.

• Wheego Whip [27] {30 kWh, 161 km, 40%}, average

energy consumption 0.1863 kWh/km.

• Hyundai BlueOn [28] {16.4 kWh, 140 km, 50%}, average

energy consumption 0.1171 kWh/km.

Here, the electricity consumption for the Traveled Distance

(TD) is calculated based on MEC×TD
MTD

, as widely used in

literature such as [15]. Each type is with 80 EVs, and all

EVs’ batteries are with full volume at beginning, depending on

their types. Besides, 7 CSs are provided with sufficient electric

energy and 5 charging slots through entire simulation, using

the fast charging rate of 62 kW. This is different from previous

works on demand response where the charging power is dy-

namically adjusted. Furthermore, using the constant charging

power in our work can refer to many previous works on

common CS-selection schemes e.g, [10], [16]. If the ratio

between its current energy and maximum energy is below the

value of SOC, the EV would travel towards a decided CS

for charging. Here, the shortest path towards CS is formed

considering the Helsinki road topology. In reality, we believe

the GA is with a super power and super computation capability

to make charging plans for all EVs in large scale network.

Under this configuration, the charging management is essen-

tial as some EVs need to wait additional time for charging,

until a charing slot is available. The following schemes are

evaluated for comparison:

• MTD&RU: The proposed CS-selection scheme with min-

imum trip duration, with periodical reservation updating.

The default updating interval is 100s.

• MTD: The proposed CS-selection scheme with minimum

trip duration, without reservation updating.

• MCWT: The CS-selection is based on the minimum

expected charging waiting time as proposed in [16].

This scheme does not consider the limited EV parking

duration.

• MQT: The CS-selection is based on the minimum queu-

ing time as proposed in [9].

The simulation represents a 12 hours’ duration with a 0.1s

resolution. So, the EVs positions, speeds and energies are

updated every 0.1s, on the road or in a CS. Particularly,

Njam = 30 randomly generated traffic jams happen for every

300s, while its range is 300m. Therefore, each EV will adjust

its moving speed, if the distance between its location and a

traffic jam is smaller than 300m. All traffic jams will last for

100s since generation. The following performance metrics are

evaluated:

• Average Charging Waiting Time: The average period

between the time an EV arrives at the selected CS and

the time it finishes (full) recharging its battery. This is

the performance metric at the EV side.

• Number of Fully Charged EVs: The total number of

fully charged EVs in the network. This is the performance

metric at the CS side. It is appreciated that EVs can

be fully charged within their limited parking duration.

In the worst case, traveling to a CS but could not

have chance for charging within the parking duration,

certainly degrades user QoE. If that happens, the EV

needs charging service would have to continuously find

a CS for charging.

• Average Trip Duration: The average time that an EV

experiences for its trip, through recharging service at an

intermediate CS. This is the performance metric at the

EV side.

• Number of Decision Changes: Number of deci-

sion changes for CS-selection, this only happens in

MTD&RU. This is the performance metric at system

level.

A. Influence of Parking Duration

In Fig.6(a), we observe that a longer parking duration

increases the average charging waiting time. This is because

more EVs can be fully charged at CSs, as such the time

for other parking EVs waiting for charging is increased.

Particularly, MTD without reservation updating still achieves

a better performance, than MCWT and MQT, due to taking

the parking duration into account. Concerning uncertain EVs

mobility due to traffic jams, MTD&RU benefits from the

reservation updating to adjust EVs’ charging plans. Due to the

same reason, in Fig.6(b), MTD&RU charges a higher number

of EVs compared to MTD. In Fig.6(c), both MTD&RU and

MTD achieve much reduced trip duration than other schemes.

In spite that the advantage of MCWT over MQT has already

been examined in [16], both MTD&RU and MTD outperforms

MCWT.

Particularly, if with an extremely short parking duration e.g.,

300s, the waiting time is always zero and the EVs are never

fully charged, with only the trip duration is captured.

B. Influence of Charging Slots

If increasing the number of charging slots at CSs, all

performances are improved in Fig.7(a), Fig.7(b) and Fig.7(c)

respectively. In particular, MQT benefits more from increased

charging slots than other schemes. This implies that only

considering the local condition of CSs is not suggested for

achieving an optimal performance, particularly when CSs are

in congestion. Here, the proposed MTD&RU and MTD still

show their shorter charging waiting time over MCWT, even

with 3 charging slots that highly possible to overload CSs.

Besides, the total trip duration is remarkably reduced by

MTD&RU and MTD.

Fig.8 further shows the number of charged EVs at each CS.

It is observed that MTD&RU and MTD achieve a relatively

balanced distribution among CSs, compared to MCWT and

MQT. This reflects advantage of our proposed estimation on

charging waiting time, concerning limited parking duration.
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Fig. 6. Influence of Parking Duration, 3 Charging slots
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Fig. 9. Influence of Charging Power
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Fig. 8. Distribution of Number of Charged EVs at Each CS, 5 Charging
Slots

C. Influence of Charging Power

Results in Fig.9(a), Fig.9(b) and Fig.9(c) show that re-

duced charging power however makes more EVs get stuck

at CSs. Thus, the charging waiting time and trip duration are

increased, while number of charged EVs is reduced.

D. Influence of Mobility Uncertainty

Here, we examine the influence of mobility uncertainty

in term of number of traffic jams. In Fig.10(a), the average

charging waiting time is reduced, if Njam is increased from

10 to 30, and with a fluctuation from 30 to 50 traffic jams.

Meanwhile, the number of charged EVs is dramatically re-

duced in Fig.10(b). This is because more EVs have to reduce

speed or even stop when moving on the road, thus they

cannot be charged timely. Due to the same reason, the average

trip duration is increased in Fig.10(c). Here, the proposed

MTD&RU and MTD also outperform other schemes in this

case.

E. Influence of Reservation Updating Interval

Results in TABLE II show that a frequent reservation

updating interval improves the charging performance. This is

because an updated CS-selection is made frequently, such that

the EV charging planning would be adjusted depending on the

dynamically generated traffic jams. From 50s to 10s updating

interval, we observe a subtle improvement regarding number
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Fig. 10. Influence of Traffic Jams

TABLE II
INFLUENCE OF RESERVATION UPDATING INTERVAL

Updating

Frequency

Average

Charging

Waiting

Time

Number of

Charged

EVs

Average Trip

Duration

Number of

Decision

Changes

10s 830s 460 1321s 230

50s 834s 456 1327s 65

100s 836s 456 1326s 18

200s 841s 449 1388s 13

300s 844s 442 1404s 7

of charged EVs as well as average trip duration. While, there is

a huge communication overhead given 10s updating interval.

Here, the communication overhead is reflected by number of

CS-selection changes, as a decision change is normally in line

with operations for reservation canceling and remaking. By

jointly considering these, we choose 100s reservation updating

interval as a trade-off between charging performance and

communication overhead under our scenario.

F. Future Works

There are several concerns leading to our future works:

• It is user-friendly to further concern a dedicated amount

of user-reserved energy charging service. This is different

from the perceived fully charged service in this article.

Bringing such additional user specific requirement is one

of the efforts towards better user QoE.

• It is worth to bring advanced charging technologies, such

as battery switch to provide fast services (which just

takes few minutes). In more detail, the EV could deplete

its battery upon arriving at a CS, then switches with a

fully charged battery. The depleted battery from the EV

is charged by CS itself.

• Since the decision making for on-the-move EV charging

management relies on the GA, the charging system suf-

fers more from security and scalability aspects. Attackers

can manipulate the reservation reported from EVs, and

also the CS-selection decisions from the GA to EVs.

Furthermore, if the GA fails to work, the charging man-

agement system will not work. Future work could focus

on provisioning of an efficient, scalable communication

framework.

VI. CONCLUSION

In this article, we proposed a CS-selection scheme in a

charging management system to minimize the EVs’ trip dura-

tion. The selection computation takes EVs’ parking duration

and their charging reservations into account, so as to capture

an accurate condition of CSs and anticipated EVs mobility.

It is highlighted that under the scenario where the mobility

uncertainty influences the accuracy of EVs’ reservation infor-

mation, a periodical reservation updating is executed to adjust

the charging plans. Evaluation results under the Helsinki city

scenario showed the advantage of our proposal, in terms of

a shorter EVs’ trip duration through intermediate charging, a

shorter charging waiting time as well as a higher number of

charged EVs.
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Protocol Evaluation,” in ICST SIMUTools ’09, Rome, Italy, March, 2009.
[26] [Online]. Available: www.codaautomotive.com.
[27] [Online]. Available: wheego.net.
[28] [Online]. Available: wikipedia.org/wiki/Hyundai BlueOn.

Yue Cao received his PhD degree from the Institute
for Communication Systems (ICS) formerly known
as Centre for Communication Systems Research, at
University of Surrey, Guildford, UK in 2013. Further
to his PhD study, he was a Research Fellow at the
ICS. Since October 2016, he has been the Lecturer
in Department of Computer Science and Digital
Technologies, at Northumbria University, Newcastle
upon Tyne, UK. His research interests focus on
Delay/Disruption Tolerant Networks, Electric Vehi-
cle (EV) charging management, Information Centric

Networking (ICN), Device-to-Device (D2D) communication and Mobile Edge
Computing (MEC).

Wang Tong is an Associate Professor at Infor-
mation and Communication Engineering College,
Harbin Engineering University, China. He received
PhD degree in Computer Application from Harbin
Engineering University in 2006. His research in-
terests include Wireless Sensor Networks (WSNs),
Vehicular Ad-Hoc Networks (VANETs) and Internet
of Things (IoT).

Omprakash Kaiwartya received his Ph.D., degree
in Computer Science from School of Computer
and Systems Sciences, Jawaharlal Nehru University,
New Delhi, India in 2015. He is currently a Post-
Doc Research Fellow at Faculty of Computing,
Universiti Teknologi Malaysia (UTM), Johor Bahru,
Malaysia. His research interests include Vehicular
Ad-hoc Networks, Mobile Ad-hoc Networks and
Wireless Sensor Networks.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Mathematics and Computer Science at the Univer-
sity of Exeter, UK. He received the PhD degree in
Computing Science from the University of Glasgow,
UK, in 2003. His research interests include Future
Internet, Computer Networks, Wireless Communi-
cations, Multimedia Systems, Information Security,
High Performance Computing, Ubiquitous Comput-
ing, Modelling and Performance Engineering.

Naveed Ahmad received his BSc (Computer Sci-
ences) honors degree from University of Peshawar,
Pakistan in 2007, and PhD in Electronics and Elec-
trical Engineering from Institute of Communication
System, University of Surrey, UK in 2013. He is
currently serving as Assistant Professor in Depart-
ment of Computer Science, University of Peshawar,
Pakistan. He research interests include routing, se-
curity and privacy in emerging networks such as Ve-
hicular Adhoc Networks (VANETS), Delay Tolerant
Networks (DTN) and Internet of Things (IoT).

Abdul Hanan Abdullah received his Ph.D. degree
from Aston University in Birmingham, United King-
dom in 1995. He is currently working as a Profes-
sor at Faculty of Computing, Universiti Teknologi
Malaysia, Johor Bahru, Malaysia. He was the dean
at the faculty from 2004 to 2011. Currently he
is heading Pervasive Computing Research Group,
a research group under K-Economy Research Al-
liances. His research interests include Wireless Sen-
sor Networks, Vehicular Adhoc Networks, Internet
of Vehicles, Network Security and Next Generation

Networks.


