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Abstract

Task-oriented dialog systems need to know

when a query falls outside their range of sup-

ported intents, but current text classification

corpora only define label sets that cover ev-

ery example. We introduce a new dataset

that includes queries that are out-of-scope—

i.e., queries that do not fall into any of the

system’s supported intents. This poses a new

challenge because models cannot assume that

every query at inference time belongs to a

system-supported intent class. Our dataset

also covers 150 intent classes over 10 domains,

capturing the breadth that a production task-

oriented agent must handle. We evaluate a

range of benchmark classifiers on our dataset

along with several different out-of-scope iden-

tification schemes. We find that while the clas-

sifiers perform well on in-scope intent classi-

fication, they struggle to identify out-of-scope

queries. Our dataset and evaluation fill an im-

portant gap in the field, offering a way of more

rigorously and realistically benchmarking text

classification in task-driven dialog systems.

1 Introduction

Task-oriented dialog systems have become ubiq-

uitous, providing a means for billions of people

to interact with computers using natural language.

Moreover, the recent influx of platforms and tools

such as Google’s DialogFlow or Amazon’s Lex for

building and deploying such systems makes them

even more accessible to various industries and de-

mographics across the globe.

Tools for developing such systems start by guid-

ing developers to collect training data for intent

classification: the task of identifying which of a

fixed set of actions the user wishes to take based on

their query. Relatively few public datasets exist for

evaluating performance on this task, and those that

do exist typically cover only a very small number

of intents (e.g. Coucke et al. (2018), which has 7

What is my balance?

You have $1,847.51 
across your 3 accounts.

How are my sports teams 
doing?

Who has the best record 
in the NBA?

1

2

3

✓

✗

Sorry, I can only answer 
questions about banking. ✓

Your last payday was on 
the 1st of November.

Figure 1: Example exchanges between a user (blue,

right side) and a task-driven dialog system for personal

finance (grey, left side). The system correctly identi-

fies the user’s query in 1 , but in 2 the user’s query

is mis-identified as in-scope, and the system gives an

unrelated response. In 3 the user’s query is correctly

identified as out-of-scope and the system gives a fall-

back response.

intents). Furthermore, such resources do not facil-

itate analysis of out-of-scope queries: queries that

users may reasonably make, but fall outside of the

scope of the system-supported intents.

Figure 1 shows example query-response ex-

changes between a user and a task-driven dialog

system for personal finance. In the first user-

system exchange, the system correctly identifies

the user’s intent as an in-scope BALANCE query.

In the second and third exchanges, the user queries

with out-of-scope inputs. In the second exchange,

the system incorrectly identifies the query as in-

scope and yields an unrelated response. In the

third exchange, the system correctly classifies the

user’s query as out-of-scope, and yields a fallback

response.

Out-of-scope queries are inevitable for a task-

oriented dialog system, as most users will not be

fully cognizant of the system’s capabilities, which

are limited by the fixed number of intent classes.
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Correctly identifying out-of-scope cases is thus

crucial in deployed systems—both to avoid per-

forming the wrong action and also to identify po-

tential future directions for development. How-

ever, this problem has seen little attention in anal-

yses and evaluations of intent classification sys-

tems.

This paper fills this gap by analyzing intent

classification performance with a focus on out-of-

scope handling. To do so, we constructed a new

dataset with 23,700 queries that are short and un-

structured, in the same style made by real users

of task-oriented systems. The queries cover 150

intents, plus out-of-scope queries that do not fall

within any of the 150 in-scope intents.

We evaluate a range of benchmark classifiers

and out-of-scope handling methods on our dataset.

BERT (Devlin et al., 2019) yields the best in-scope

accuracy, scoring 96% or above even when we

limit the training data or introduce class imbal-

ance. However, all methods struggle with iden-

tifying out-of-scope queries. Even when a large

number of out-of-scope examples are provided for

training, there is a major performance gap, with

the best system scoring 66% out-of-scope recall.

Our results show that while current models work

on known classes, they have difficulty on out-of-

scope queries, particularly when data is not plenti-

ful. This dataset will enable future work to address

this key gap in the research and development of di-

alog systems. All data introduced in this paper can

be found at https://github.com/clinc/

oos-eval.

2 Dataset

We introduce a new crowdsourced dataset of

23,700 queries, including 22,500 in-scope queries

covering 150 intents, which can be grouped into

10 general domains. The dataset also includes

1,200 out-of-scope queries. Table 1 shows exam-

ples of the data.1

2.1 In-Scope Data Collection

We defined the intents with guidance from queries

collected using a scoping crowdsourcing task,

which prompted crowd workers to provide ques-

tions and commands related to topic domains in

the manner they would interact with an artificially

intelligent assistant. We manually grouped data

1See the supplementary material for a full list of domains
and intents, as well as additional examples.

generated by scoping tasks into intents. To col-

lect additional data for each intent, we used the

rephrase and scenario crowdsourcing tasks pro-

posed by Kang et al. (2018).2 For each intent,

there are 100 training queries, which is represen-

tative of what a team with a limited budget could

gather while developing a task-driven dialog sys-

tem. Along with the 100 training queries, there are

20 validation and 30 testing queries per intent.

2.2 Out-of-Scope Data Collection

Out-of-scope queries were collected in two ways.

First, using worker mistakes: queries written for

one of the 150 intents that did not actually match

any of the intents. Second, using scoping and

scenario tasks with prompts based on topic areas

found on Quora, Wikipedia, and elsewhere. To

help ensure the richness of this additional out-of-

scope data, each of these task prompts contributed

to at most four queries. Since we use the same

crowdsourcing method for collecting out-of-scope

data, these queries are similar in style to their in-

scope counterparts.

The out-of-scope data is difficult to collect, re-

quiring expert knowledge of the in-scope intents

to painstakingly ensure that no out-of-scope query

sample is mistakenly labeled as in-scope (and vice

versa). Indeed, roughly only 69% of queries col-

lected with prompts targeting out-of-scope yielded

out-of-scope queries. Of the 1,200 out-of-scope

queries collected, 100 are used for validation and

100 are used for training, leaving 1,000 for testing.

2.3 Data Preprocessing and Partitioning

For all queries collected, all tokens were down-

cased, and all end-of-sentence punctuation was re-

moved. Additionally, all duplicate queries were

removed and replaced.

In an effort to reduce bias in the in-scope data,

we placed all queries from a given crowd worker in

a single split (train, validation, or test). This avoids

the potential issue of similar queries from a crowd

worker ending up in both the train and test sets,

for instance, which would make the train and test

distributions unrealistically similar. We note that

this is a recommendation from concurrent work by

Geva et al. (2019). We also used this procedure

for the out-of-scope set, except that we split the

data into train/validation/test based on task prompt

instead of worker.

2 In all cases, crowd workers were paid $0.20 per task.
See the supplementary material for examples of each task.

https://github.com/clinc/oos-eval
https://github.com/clinc/oos-eval
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Domain Intent Query

BANKING TRANSFER move 100 dollars from my savings to my checking

WORK PTO REQUEST let me know how to make a vacation request

META CHANGE LANGUAGE switch the language setting over to german

AUTO & COMMUTE DISTANCE tell the miles it will take to get to las vegas from san diego

TRAVEL TRAVEL SUGGESTION what sites are there to see when in evans

HOME TODO LIST UPDATE nuke all items on my todo list

UTILITY TEXT send a text to mom saying i’m on my way

KITCHEN & DINING FOOD EXPIRATION is rice ok after 3 days in the refrigerator

SMALL TALK TELL JOKE can you tell me a joke about politicians

CREDIT CARDS REWARDS BALANCE how high are the rewards on my discover card

OUT-OF-SCOPE OUT-OF-SCOPE how are my sports teams doing

OUT-OF-SCOPE OUT-OF-SCOPE create a contact labeled mom

OUT-OF-SCOPE OUT-OF-SCOPE what’s the extended zipcode for my address

Table 1: Sample queries from our dataset. The out-of-scope queries are similar in style to the in-scope queries.

2.4 Dataset Variants

In addition to the full dataset, we consider three

variations. First, Small, in which there are only

50 training queries per each in-scope intent, rather

than 100. Second, Imbalanced, in which intents

have either 25, 50, 75, or 100 training queries.

Third, OOS+, in which there are 250 out-of-scope

training examples, rather than 100. These are in-

tended to represent production scenarios where

data may be in limited or uneven supply.

3 Benchmark Evaluation

To quantify the challenges that our new dataset

presents, we evaluated the performance of a range

of classifier models3 and out-of-scope prediction

schemes.

3.1 Classifier Models

SVM: A linear support vector machine with bag-

of-words sentence representations.

MLP: A multi-layer perceptron with USE embed-

dings (Cer et al., 2018) as input.

FastText: A shallow neural network that averages

embeddings of n-grams (Joulin et al., 2017).

CNN: A convolutional neural network with non-

static word embeddings initialized with GloVe

(Pennington et al., 2014).

BERT: A neural network that is trained to pre-

dict elided words in text and then fine-tuned on

our data (Devlin et al., 2019).

Platforms: Several platforms exist for the de-

velopment of task-oriented agents. We con-

sider Google’s DialogFlow4 and Rasa NLU5 with

spacy-sklearn.

3See the supplementary material for model details.
4https://dialogflow.com
5https://github.com/RasaHQ/rasa

3.2 Out-of-Scope Prediction

We use three baseline approaches for the task of

predicting whether a query is out-of-scope: (1)

oos-train, where we train an additional (i.e. 151st)

intent on out-of-scope training data; (2) oos-

threshold, where we use a threshold on the clas-

sifier’s probability estimate; and (3) oos-binary, a

two-stage process where we first classify a query

as in- or out-of-scope, then classify it into one of

the 150 intents if classified as in-scope.

To reduce the severity of the class imbalance be-

tween in-scope versus out-of-scope query samples

(i.e., 15,000 versus 250 queries for OOS+), we

investigate two strategies when using oos-binary:

one where we undersample the in-scope data and

train using 1,000 in-scope queries sampled evenly

across all intents (versus 250 out-of-scope), and

another where we augment the 250 OOS+ out-of-

scope training queries with 14,750 sentences sam-

pled from Wikipedia.

From a development point of view, the oos-

train and oos-binary methods both require care-

ful curation of an out-of-scope training set, and

this set can be tailored to individual systems. The

oos-threshold method is a more general decision

rule that can be applied to any model that pro-

duces a probability. In our evaluation, the out-of-

scope threshold was chosen to be the value which

yielded the highest validation score across all in-

tents, treating out-of-scope as its own intent.

3.3 Metrics

We consider two performance metrics for all sce-

narios: (1) accuracy over the 150 intents, and (2)

recall on out-of-scope queries. We use recall to

evaluate out-of-scope since we are more interested

in cases where such queries are predicted as in-

https://dialogflow.com
https://github.com/RasaHQ/rasa
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In-Scope Accuracy Out-Of-Scope Recall

Classifier Full Small Imbal OOS+ Full Small Imbal OOS+

FastText 89.0 84.5 87.2 89.2 9.7 23.2 12.2 32.2

SVM 91.0 89.6 89.9 90.1 14.5 18.6 16.0 29.8

CNN 91.2 88.9 89.1 91.0 18.9 22.2 19.0 34.2

DialogFlow 91.7 89.4 90.7 91.7 14.0 14.1 15.3 28.5

Rasa 91.5 88.9 89.2 90.9 45.3 55.0 49.6 66.0o
o

s-
tr

a
in

MLP 93.5 91.5 92.5 94.1 47.4 52.2 35.6 53.9

BERT 96.9 96.4 96.3 96.7 40.3 40.9 43.8 59.2

SVM 88.2 85.6 86.0 — 18.0 13.0 0.0 —

FastText 88.6 84.8 86.6 — 28.3 6.0 33.2 —

DialogFlow 90.8 89.2 89.2 — 26.7 20.5 38.1 —

Rasa 90.9 89.6 89.4 — 31.2 1.0 0.0 —

CNN 90.9 88.9 90.0 — 30.9 25.5 26.9 —

o
o

s-
th

re
sh

o
ld

MLP 93.4 91.3 92.5 — 49.1 32.4 13.3 —

BERT 96.2 96.2 95.9 — 52.3 58.9 52.8 —

Table 2: Benchmark classifier results under each data condition using the oos-train (top half) and oos-threshold

(bottom half) prediction methods.

scope, as this would mean a system gives the user

a response that is completely wrong. Precision er-

rors are less problematic as the fallback response

will prompt the user to try again, or inform the user

of the system’s scope of supported domains.

4 Results

4.1 Results with oos-train

Table 2 presents results for all models across the

four variations of the dataset. First, BERT is

consistently the best approach for in-scope, fol-

lowed by MLP. Second, out-of-scope query per-

formance is much lower than in-scope across all

methods. Training on less data (Small and Imbal-

anced) yields models that perform slightly worse

on in-scope queries. The trend is mostly the op-

posite when evaluating out-of-scope, where recall

increases under the Small and Imbalanced training

conditions. Under these two conditions, the size of

the in-scope training set was decreased, while the

number of out-of-scope training queries remained

constant. This indicates that out-of-scope perfor-

mance can be increased by increasing the relative

number of out-of-scope training queries. We do

just that in the OOS+ setting—where the models

were trained on the full training set as well as 150

additional out-of-scope queries—and see that per-

formance on out-of-scope increases substantially,

yet still remains low relative to in-scope accuracy.

4.2 Results with oos-threshold

In-scope accuracy using the oos-threshold ap-

proach is largely comparable to oos-train. Out-

of-scope recall tends to be much higher on Full,

In-Scope Out-of-Scope

Accuracy Recall

Classifier under wiki aug under wiki aug

DialogFlow 84.7 — 37.3 —

Rasa 87.5 — 37.7 —

FastText 88.1 87.0 22.7 31.4

SVM 88.4 89.3 32.2 37.7

CNN 89.8 90.1 25.6 39.7

MLP 90.1 92.9 52.8 32.4

BERT 94.4 96.0 46.5 40.4

Table 3: Results of oos-binary experiments on OOS+,

where we compare performance of undersampling (un-

der) and augmentation using sentences from Wikipedia

(wiki aug). The wiki aug approach was too large for

the DialogFlow and Rasa classifiers.

but several models suffer greatly on the lim-

ited datasets. BERT and MLP are the top oos-

threshold performers, and for several models the

threshold approach provided erratic results, partic-

ularly FastText and Rasa.

4.3 Results with oos-binary

Table 3 compares classifier performance using the

oos-binary scheme. In-scope accuracy suffers for

all models using the undersampling scheme when

compared to training on the full dataset using the

oos-train and oos-threshold approaches shown in

Table 2. However, out-of-scope recall improves

compared to oos-train on Full but not OOS+.

Augmenting the out-of-scope training set appears

to help improve both in-scope and out-of-scope

performance compared to undersampling, but out-

of-scope performance remains weak.
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Num. Num. Chatbot Many Constrained Out-of-Scope

Dataset Intents Utterances Style Intents Training Data Utterances

Our Dataset (This Work) 150 23,700 ✓ ✓ ✓ ✓

TREC-6, (Li and Roth, 2002) 6 5,952 ✗ ✗ ✗ ✗

TREC-50, (Li and Roth, 2002) 50 5,952 ✗ ✓ ✓ ✗

Web Apps, (Braun et al., 2017) 8 89 ✗ ✗ ✓ ✗

Ask Ubuntu, (Braun et al., 2017) 5 162 ✗ ✗ ✓ ✗

Chatbot Corpus, (Braun et al., 2017) 2 206 ✓ ✗ ✓ ✗

Snips, (Coucke et al., 2018) 7 14,484 ✓ ✗ ✗ ✗

Liu et al. (2019) 54 25,716 ✓ ✓ ✗ ✗

Table 4: Classification dataset properties. Ours has the broadest range of intents and specially collected out-of-

scope queries. We consider “chatbot style” queries to be short, possibly unstructured questions and commands.

5 Prior Work

In most other analyses and datasets, the idea

of out-of-scope data is not considered, and in-

stead the output classes are intended to cover

all possible queries (e.g., TREC (Li and Roth,

2002)). Recent work by Hendrycks and Gimpel

(2017) considers a similar problem they call out-

of-distribution detection. They use other datasets

or classes excluded during training to form the out-

of-distribution samples. This means that the out-

of-scope samples are from a small set of coher-

ent classes that differ substantially from the in-

distribution samples. Similar experiments were

conducted for evaluating unknown intent discov-

ery models in Lin and Xu (2019). In contrast, our

out-of-scope queries cover a broad range of phe-

nomena and are similar in style and often similar

in topic to in-scope queries, representing things a

user might say given partial knowledge of the ca-

pabilities of a system.

Table 4 compares our dataset with other short-

query intent classification datasets. The Snips

(Coucke et al., 2018) dataset and the dataset pre-

sented in Liu et al. (2019) are the most similar to

the in-scope part of our work, with the same type

of conversational agent requests. Like our work,

both of these datasets were bootstrapped using

crowdsourcing. However, the Snips dataset has

only a small number of intents and an enormous

number of examples of each. Snips does present

a low-data variation, with 70 training queries per

intent, in which performance drops slightly. The

dataset presented in Liu et al. (2019) has a large

number of intent classes, yet also contains a wide

range of samples per intent class (ranging from

24 to 5,981 queries per intent, and so is not con-

strained in all cases).

Braun et al. (2017) created datasets with con-

strained training data, but with very few intents,

presenting a very different type of challenge.

We also include the TREC query classification

datasets (Li and Roth, 2002), which have a large

set of labels, but they describe the desired response

type (e.g., distance, city, abbreviation) rather than

the action intents we consider. Moreover, TREC

contains only questions and no commands. Cru-

cially, none of the other datasets summarized in

Table 4 offer a feasible way to evaluate out-of-

scope performance.

The Dialog State Tracking Challenge (DSTC)

datasets are another related resource. Specifically,

DSTC 1 (Williams et al., 2013), DSTC 2 (Hen-

derson et al., 2014a), and DSTC 3 (Henderson

et al., 2014b) contain “chatbot style” queries, but

the datasets are focused on state tracking. More-

over, most if not all queries in these datasets are

in-scope. In contrast, the focus of our analysis is

on both in- and out-of-scope queries that challenge

a virtual assistant to determine whether it can pro-

vide an acceptable response.

6 Conclusion

This paper analyzed intent classification and out-

of-scope prediction methods with a new dataset

consisting of carefully collected out-of-scope data.

Our findings indicate that certain models like

BERT perform better on in-scope classification,

but all methods investigated struggle with identify-

ing out-of-scope queries. Models that incorporate

more out-of-scope training data tend to improve

on out-of-scope performance, yet such data is ex-

pensive and difficult to generate. We believe our

analysis and dataset will lead to developing better,

more robust dialog systems.

All datasets introduced in this paper can

be found at https://github.com/clinc/

oos-eval.

https://github.com/clinc/oos-eval
https://github.com/clinc/oos-eval
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