
An Evaluation Framework and Instruction Set Architecture for
Ion-Trap based Quantum Micro-architectures.

Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin
Department of Computer Science and Engineering

University of Washington
{alaska, lucasks, oskin}@cs.washington.edu

Abstract:
The theoretical study of quantum computation has yielded

efficient algorithms for some traditionally hard problems.
Correspondingly, experimental work on the underlying phys-
ical implementation technology has progressed steadily.
However, almost no work has yet been done which explores
the architecture design space of large scale quantum com-
puting systems. In this paper, we present a set of tools that
enable the quantitative evaluation of architectures for quan-
tum computers.
The infrastructure we created comprises a complete com-

pilation and simulation system for computers containing
thousands of quantum bits. We begin by compiling complete
algorithms into a quantum instruction set. This ISA enables
the simple manipulation of quantum state. Another tool we
developed automatically transforms quantum software into
an equivalent, fault-tolerant version required to operate on
real quantum devices. Next, our infrastructure transforms
the ISA into a set of low-level micro architecture specific con-
trol operations. In the future, these operations can be used to
directly control a quantum computer. For now, our simula-
tion framework quickly uses them to determine the reliability
of the application for the target micro architecture.
Finally, we propose a simple, regular architecture for ion-

trap based quantum computers. Using our software infras-
tructure, we evaluate the design trade offs of this micro ar-
chitecture.

1 Introduction

Experimental research into quantum computing technologies
has been progressing at a steadily. Demonstrations of bulk-
spin NMR computers [1], ion-trap based designs [2, 3, 4],
and optical cavity wells [5, 6] for quantum computation have
been performed. The next step in this area is to scale up
from experimental quantum computers consisting of a hand-
ful of quantum bits to large scale quantum computing sys-
tems. Clearly many technological hurdles still exist, and one
of the most basic is the architectural design of these systems.

Why worry about the architecture of a quantum computer
now? The most promising technologies are at least five years
from demonstrations of a dozen qubits or more, and large
scale systems are not even seriously on the drawing board.

Architects, however, can make significant contributions by:
(1) identifying the serious practical difficulties that will arise
from the physical structure of these devices and (2) finding
solutions to these and other challenges with the technology.

Identifying the challenges these systems face allows de-
vice physicists and quantum theorists to start exploring po-
tential solutions. By understanding the challenges facing
the practical implementation of these technologies, archi-
tects can find solutions through the proper organization of
the structure of these devices. Collectively, what this means
is computer architects have the potential to hasten the devel-
opment of a large scale quantum computer sooner rather than
later by identifying and solving scalability problems early.

Where to begin with quantum architecture research? Sim-
ilar to classical architecture, one begins with the applica-
tions. Surprisingly, even though it will be some time before
a quantum computer is built the application that computer
will execute is already well known: error correction. Quan-
tum technologies will operate with error rates far higher than
classical machines. Experimental error rates of 1E−3 per bit
operation have been measured in NMR systems [1]. Techno-
logical advances are expected to lower these rates dramati-
cally, but reaching 1E−10 - 1E−12 is considered highly
aggressive. There is only one way to manage these errors in
a quantum computer: utilizing software error correction on
a well-designed quantum computer architecture.

Our research efforts have been devoted to developing
these architectures. To conduct this research in a quantitative
fashion, we developed an infrastructure consisting of compi-
lation and modeling tools. This paper will spend significant
time describing these software artifacts (Sections 3- 7) be-
cause the methodology for applying architectural principles
to quantum computers is one of the primary contributions
of this work. All existing work on quantum architectures
has produced either hand-designed circuits without consid-
erations for scalability [7] or analytical models for perfor-
mance and reliability that are unable to scale to systems large
enough to solve real-world problems [8].

We rely on appropriate technological abstractions and
careful design of the ISA, scheduler, and simulator to con-
struct an infrastructure that scales (linearly) to thousands of
qubits and billions of time steps. Briefly, our tool chain is
the following:

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

• A compiler from an existing high-level language which
enables the manipulation of quantum bits to an instruc-
tion set architecture we developed for quantum comput-
ers.

• An error correction compiler that automatically trans-
forms a quantum ISA assembly text into equivalent
fault tolerant versions.

• A device scheduler that maps an assembly source into
a set of device specific primitive operations for control-
ling a quantum micro-architecture.

• A simulator that models the reliability of the quantum
bits in a quantum computer; performance and reliabil-
ity metrics for an application running on a targeted mi-
croarchitecture can be obtained by using this simulator.

Our tools enable researchers to explore architectural trade-
offs directly. Instead of using high-level models or mathe-
matical equations to calculate execution time and reliability
our infrastructure provides the proper compilation, schedul-
ing, and simulation tools to compute these results precisely.

Using these tools, in Section 8 we evaluate a few quantum
micro-architectures as they perform error correction steps.
We find that the realistic constraints exposed by execution
on a microarchitecture significantly decrease the acceptable
error rates. Idealized theoretical models set the critical
threshold – above which sustainable quantum computation
is not possible [9] – at approximately 1E−4, but a threshold
which accounts for the constraints of the proposed micro-
architecture is closer to 1E−9. Our results indicate that
more than 4/5 of this difference can be accounted for by re-
source contention and the impact of ion movement and turn-
ing in a real system. Since architects excel at the exploitation
of locality and the minimization of resource contention, this
suggests that through intelligent design, architects have the
potential to have a major impact on the accuracy of quantum
computation thus allowing us to achieve a scalable quantum
computer sooner rather than later.

The remainder of this paper is structured in a logical pro-
gression. In Section 2 we describe the abstractions we use to
make quantum architectures accessible. Section 3 presents
an overview of our software infrastructures. The ISA we
developed is described in Section 4. Sections 6, 5 and 7
elaborate on the design of our device scheduler, error cor-
rection compiler, and simulator. In Section 8 we present the
result from our exploration of a simple tile-based quantum
microarchitecture. In Section 9 we describe where to go next
with this work and in Section 10 conclude.

2 Technology abstraction

The science of architecture is the optimization of the hard-
ware / software interface. The nuts and bolts of it is exam-

ining applications, working with the realistic constraints of
the technology, and developing software infrastructures and
hardware designs. Research into architectures for quantum
computers is no different. To design architectures, a rea-
sonable abstraction for the underlying technology and un-
derstanding of the software applications is required. In this
section, we describe a basic set of abstractions for ion trap
based quantum computing technology. We will discuss the
application characteristics further in Section 4.

We focus our attention on ion trap based designs because
they appear to be the most promising in terms of a near term
ability to deliver a system with 10’s to 100’s of qubits. The
cost of these systems will not be insignificant with estimates
in the hundreds of millions of dollars to develop a single
prototype. Proper engineering of their architectural design
ahead of time will be required to maximize their scientific
and national infrastructure value.

For architectural design, we focus on three circuit compo-
nents: ions, traps and wires, as depicted in Figure 1. Ions
are the entities that realize qubits. The excitation state of the
outer electron on a 9BE+ ion is the actual quantum prop-
erty used to realize a qubit [3, 4]. A trap is a device that uses
classical support circuitry and lasers to perform quantum op-
erations on ions. This gives it a multi-purpose, ALU-like
functionality. Quantum operations can only be performed
on ions that are located in traps. Inside of the trap, any ar-
bitrary single qubit operation and a limited number of two
qubit operations including CNOT and controlled rotation can
be performed. For the two qubit operations, both ions must
be located in the same trap. Wires are just two sided struc-
tures within the design in which ions can move. Wires can
contain corners but care must be taken when moving ions
in anything other than a straight line. Ions must move adi-
abatically (read: slowly) around corners or an unrepairable
amount of noise will be introduced.

While the precise timing of all operations is obviously
not known yet – it is technology specific and will change
as the systems evolve, the relative timing between them, ob-
served from [3, 4], is roughly: moving 1 unit within a wire
is 1/10th a time step; performing a single qubit operation, 1
time step; performing a two qubit operation, 10 time steps;
turning a corner including getting into and out of a trap, 100
time steps. Architects should think of the single-qubit op-
erations as the “clock cycle” of the machine. The classical
analogy is that these operations are simple and fast, like an
addition. Measurement and two-qubit operations are slow,
just like complex classical functions such as divide. Later in
Section 5 we will present statistics for the relative instruction
mix between single/two qubit operations and measurement.

The basis unit for these time steps is ≈ 1us. For single-
and two-qubit operations, this will not change, as it is a fun-
damental property of the ions [3, 4] used to realize qubits.
For movement and turning, it is a function of the technol-
ogy, and as this develops, they may become faster. Moving,

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Operations are performed inside of traps. For two qubit
operations, the qubits must be in the same trap.

Moving qubits around corners
is significantly slower (greater than
100x) than going in a straight line.

Once moving in a wire ions can
move relatively quickly compared
to turning corners or performing
operations.

A qubit is
physically
realized by
an ion.

Two basic circuit components
are available: traps and wires

Figure 1: Technological abstraction of ion trap based quantum computers.

Tr
ap

Tr
ap

Tr
ap

Good Good Bad

Tr
ap

Good

Tr
ap

Tr
ap

Tr
ap

Bad

Tr
ap

Trapwire wire

wire wire

wirewire

wire

wirewire

wire

wire

wire

Good Bad

Figure 2: Basic design rules for ion trap systems.

and in particularly turning, induces noise (from heat) on the
qubit and must be performed slowly so that the state does
not decohere. Current experimental work aims for turning
to be 50-300 times slower than single-qubit operations [3].
Since controlling noise is so important for quantum archi-
tectures we do not use a highly aggressive turning time for
our simulations. We do, however, explore the impact of this
parameter on performance in Section 8.

Our review of current ion-trap based designs [3, 7] sug-
gests a few simple design rules that must be observed by ar-
chitects. These rules are the quantum analog of VLSI design
rules:

• Ion traps may only abut one or two wires

• Ion traps may not share any sides

• Ion traps may not abut the end of a wire

These rules are depicted in Figure 2. They serve as an

additional level of abstraction by removing the need to con-
sider the exact sizing and space tolerances for layouts. Later,
in Section 8, we will explore a simple regular architecture
that observes these design constraints.

3 Software overview

To evaluate complex conventional systems, architects utilize
a variety of software tools. Starting with a (hopefully) repre-
sentative set of applications, they compile and execute them
on sophisticated simulation infrastructures that model differ-
ent points in the design space. To properly study large scale,
quantum computers we created a corresponding infrastruc-
ture. This infrastructure is comprised of four major compo-
nents: a source compiler, an error correction compiler, a de-
vice scheduler, and a simulator. In this section, we describe
what these tools do and how they are used. In the next few
sections we elaborate more on how they work. Figure 3 con-
tains a pictorial overview of the flow of information through
the tools.

Source compiler: To describe quantum algorithms, we
utilize the existing QCL [10] work. The QCL toolkit pro-
vides an interpreter for a fairly straightforward imperative
programming language that includes data types and opera-
tion primitives for quantum operations. We did not extend
this work significantly except to make minor changes to per-
form loop unrolling and output instructions in the instruction
set described in Section 4.

To allow for aggressive code optimization we require the
input to applications at compile time. The resulting assem-
bly output from the compiler contains only the operations re-
quired to perform the algorithm on the provided input data.
This may seem limiting, but two related reasons motivate this
design choice. First, our expectation is that the time required
for a quantum computer to execute an algorithm will be sig-
nificantly longer than the time required to optimize resource
usage for a particular algorithm/input dataset combination.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

High-
Level

Languge

Quantum/
Classical
co-ISA

Compiler
Monte-Carlo

Fault
Simulator

Scheduler
Scheduled

ISA

not-reliable

reliable

New placement and/or
More error correction

Fault
tolerant

assembly

FT
compiler

micro-
architecture

Figure 3: Quantum architecture research infrastructure. This set of tools enables architects to start with a high level language description of an algorithm
and a microarchitecture and compile, add fault tolerant steps, schedule for the architecture, and simulate the speed and reliability of the algorithm.

Stated another way, there will be sufficient gains in execu-
tion time to spend significant time “up front” optimizing re-
source usage. The second reason is that error correction in-
curs a high overhead, suggesting that it should be applied as
minimally as possible. More general representations require
more general computation and hence more error correction,
while an executable targeted to only a single input dataset
can be optimized aggressively for just that dataset. Similar
findings have been reported in classical computing, where
dynamic optimizers aggressively tailor executables, folding
in constants, etc [11, 12, 13].

Error correction compiler: The output of our source
compiler is an assembly text. This assembly assumes an ide-
alized machine – one with no errors. This is not true at all –
quantum computers will have error rates between 1E−6 and
1E−10 per operation. To counteract this, researchers dis-
covered and explored many different types of quantum error
correction [14, 15, 16, 17]. For our purpose, we selected the
7 qubit Steane code [14] and the recursive construction pro-
cess described in [9]. The error correction compiler inputs
the assembly text that assumed an ideal computer and an “er-
ror correction strength” level and outputs another assembly
text that is the same algorithm except with fault tolerant con-
structs included. This output text is considerably larger –
potentially by several orders of magnitude – but is required
to coax the right answer from an otherwise noisy quantum
device.

Scheduler: The next step in the tool chain is to schedule
the resources of the quantum computer. For classical com-
puting devices, the schedule is implicit in the executable –
the semantics of von Neumann machines are sequential. For
quantum computers, sequential semantics are maintained,
but the importance of exploiting parallelism increases dra-
matically. Ignoring parallelism in a von Neumann machine
results in a longer execution time, but the computed result
does not change. In a quantum computer, ignoring paral-
lelism could result in a wrong answer. Thus our scheduler

takes in an assembly text and a description of the microar-
chitecture of the quantum computer and creates a parallel
schedule of operations that should be performed on the ac-
tual microarchitecture.

Simulator: Once the application is scheduled onto the
physical resources of the machine, the next step in the tool
chain is to decide whether or not the application will actu-
ally work. Too little error correction or a poor schedule will
produce noise instead of the correct answer. The purpose
of this step is to determine how reliable the scheduled ap-
plication will be on the device. If the simulator determines
the schedule will be reliable then we are done. The end re-
sults are two facts: how fast the algorithm executed on the
microarchitecture and how reliable the result was. If the re-
sult is determined to be unreliable, the user has to back up
two steps and add more error correction or model a different
microarchitecture that might perform better.

A schedule that shows a high rate of reliability under sim-
ulation is detailed enough to control the physical computer
during the execution of the algorithm and dataset. This step
is beyond the scope of this work, but basically, it involves
translating the schedule using a fairly straightforward map-
ping between operation steps and the pulses that control the
actual quantum computer.

4 Instruction set architecture

The design of an instruction set architecture (ISA) encom-
passes many different pieces. The most fundamental is the
execution model, which describes how a machine will pro-
cess a group of instructions. Next are the resources available
in the machine, typically memories and their interface. Fi-
nally, there are the actual instructions themselves. Figure 4
describes the ISA we designed.

The ISA we describe here is a “high-level ISA” which is
not directly executable by any quantum computer. These
ISAs have also been referred to as “virtual ISAs” [18] and
linear intermediate representations. The purpose of this ISA

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

is to provide a workable representation of an application. By
workable, we mean that it has relatively straightforward se-
mantics, tools can process it largely piecemeal operation-by-
operation, and it can be translated in a direct way to the ac-
tual control sequences a quantum computer requires.

Execution model: We base our ISA on the von Neumann
execution model. This means that conceptually, the quan-
tum computer can be thought to fetch, decode, and execute
the primitive operations one-by-one. This design choice is
motivated by an additional restriction we place on execu-
tion: Quantum programs may not contain branches. All
loops must be fully unrolled, and all conditionals must be
converted into predicates. (see Figure 5).

The reason we chose to restrict applications in this way
is that it enables our software infrastructure to provide de-
velopers with concrete reliability results. Since there are no
branches in the compiled binary, every instruction must be
scheduled onto a quantum micro-architecture. Once sched-
uled, our simulator can provide a very precise answer to the
question, “Will it work?”

If branches were part of the ISA, then answering that ques-
tion would no longer be possible. The schedule of low-level
operations could vary significantly from execution-run to
execution-run based upon branch outcomes, which in quan-
tum software, depends largely on random noise the system
experiences and corrects for. These variances make it far
more difficult to predict reliably whether or not the schedule
will actually compute correctly.

Resources: In our high-level ISA, we assume an infi-
nite number of quantum and classical memory locations are
available. Memory is split into two segments, a quantum
segment and a classical segment. Quantum bits (qubits) are
referred to as qName1, qName2, ..., while classical bits are
referred to as cName1, cName2, Since this is a high-
level ISA, there is no need to restrict the name of bits to sim-
ple numerical addresses as a simple compilation pass prior to
scheduling can assign device specific addresses and resolve
any false dependencies caused by name reuse. We do not use
a hierarchical memory (i.e. there is no distinction between
memory and registers).

Operations: The instruction set we have devised operates
on both classical and quantum data. The classical opera-
tions are fairly ordinary and encompass a straightforward set
of opcodes (logic, arithmetic, etc). For brevity, we do not
describe them in detail because they are your typical three
operand RISC-like ISA: cOutput = cInput1 op cInput2.

The quantum opcodes are summarized in Figure 4. These
operations provide a fairly basic, yet complete set of op-
erations for manipulating quantum state. There are many
things to note about this instruction set. First, all quan-
tum operations (except measurement) are, by definition, re-

[@cond] op operands

Instruction set format:

optionally perform operation only
if conditional is true

operation to perform

quantum or classical memory
locations to operate on

x

z

rot

s

toffoli

cnot

v

measure

swap

.exchange

Quantum Operations:

Pseudo-operations:

h qN

qN

qN

qN,real

qN

qN,qC,real

qN,qC

qN1,qN2

qN,qC1,qC2

cT, qN

qN1,qN2

Basic quantum primitives such as
Hadamard (H), invert (X), invert phase
(Z), arbitrary rotation (R), and phase
gate (S)

rotate qN about X axis, conditional on
qC, by real

flip qN conditional on qC

swap qN1 and qN2

flip qN conditional on qC1, qC2

measure qN place result in cT

move qN1,qN2 together.
(No operation)

allocate/deallocate a new quantum or
classical bit under name N.

.new

.free

qN | cN

qN | cN

Figure 4: The instruction set architecture for quantum computers

procedure Example() {
qureg q[3];

int m;

Not(q[1]);

for m=0 to #q-1 {
 H(q[m]);
}

CNot(q[1],q[0]);
measure q[0],m;

}

 .new q0, q1, q2

 .new c0

 X q1

 H q0
 H q1
 H q2

 CNot q1, q0
 measure c0, q0

 .free q0

 .free c0

QCL code from Ömer Compiled assembly

if m==1
 Not(q[1]);
else
 Not(q[2]);

@c0 X q1
@!c0 X q2

predicate
conversion

loop
unrolling

predicate
conversion

quantum state
destroyed by
measurement

Figure 5: The compiler, based on QCL [10], transforms QCL source text
into assembly.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

versible. This is a constraint imposed by the quantum com-
puting model itself. One implication of this is there is no
distinction between input and output operands. Instead, op-
erations transform all of their operands. Second, this ISA is
a balance between high-level primitives, such as multi-qubit
complex operations, and low-level device-specific controls.
Our guiding principle has been to design an ISA with primi-
tive enough operations that a clear 1 : N mapping exists be-
tween the operations and device specific control sequences,
but high-level enough that the tool infrastructure could ma-
nipulate a useful block of related work.

5 Error correction compiler

After compilation to an assembly text, the next step is to
transform the application into a fault-tolerant version. Fault
tolerant quantum computing is done in pretty much the same
way it has been done for decades in the classical domain
– through redundancy. Each quantum bit is encoded into a
logical qubit. Logical qubits utilize several physical qubits
to store a coded version of the quantum state. Each operation
on the original qubit is transformed into an equivalent set of
operations on the qubits that make up the logical qubit. The
major drawback in all of these schemes is the increase in the
number of qubits required.

In our system, we utilize the 7-qubit Steane code [14]
and employ the recursive error correction constructions de-
scribed in [9]. We do this with an assembly source to source
translator. This translator converts a compiled quantum ap-
plication into an equivalent assembly source file which con-
tains the embedded error correction operations.

The precise fault tolerant constructions are not a contribu-
tion of our work. We base them on prior work [14, 9, 19]
and refer the interested reader there. However, to the best
of our knowledge, our tool is the first to apply them auto-
matically to an application, accounting for all of the required
ancilla preparation work and at multiple strength levels (0,1,
and 2 levels of error correction). Because of this, we have
calculated some useful statistical properties about its output.

The results are shown in Figure 5. Architects should take
note of the overhead in both time and space introduced by
the error correction processes. The critical path for a single-
qubit operation with one layer of error correction (EC1) is
31 operations long. Only 1 of those is devoted to actually
performing the operation on the logical qubit. The rest are
devoted to the fault tolerant correction step. More realis-
tically, not all operations will be conducted in parallel, the
overhead will be substantially higher, and stronger levels of
error correction will be required. This sizable overhead is
one of the reasons we can design quantum computing archi-
tectures now – Amdahl’s Law [20] suggests quantum com-
puters are going to spend all of their time error correcting!

q0 q1 q2

q1

Applying op 2 to q1

q0

moving q0 near q1
for op 3 q2

moving q2 near q1
for op 5

Xop 1

Current timeHop 2

CNotop 3

Zop 4

CNotop 5

Figure 6: The goal of scheduling is to transform a program source (left)
into a sequence of primitive operations that move and manipulate ions in a
quantum computer (right). A main requirement is that the scheduler oper-
ate in O(instructions) time because the number of instructions is in the
billions for a complete fault tolerant run of Shor’s algorithm.

6 Device scheduler

Once we have a source assembly file with the error correc-
tion compiled in, the next step is produce a schedule for those
operations on an ion trap computer micro-architecture. Fig-
ure 6 depicts the overall goal: given a source assembly text
(represented in graph form on the left), the scheduler pro-
duces the parallel sequence of low-level operations (right).
In this section, we describe the scheduling process.

6.1 Input

The scheduler takes three pieces inputs: the source assem-
bly text to be scheduled, a description of the architecture to
schedule the source on, and a description of the technology
parameters and constraints. The source text has been previ-
ously described (Section 4).

The architecture description is a low-level description of
the ion trap layout. As a classical analogy, this is at the
same level as a VLSI layout produced with tools such as
Magic [21]. The description includes the precise X/Y co-
ordinates of ion-traps, the operations each trap can perform,
and their interconnection wiring.

The technology parameters provided to the scheduler con-
tain timing information for all device-specific operations.
This includes the timing of all operations (X, H, CNOT,
etc) and the timing for moving ions around the computer.
Specific movement parameters are included for moving ions
through wires, into and out of wires, and for turning corners.

6.2 Scheduling algorithm

The ability to process billions of operations was paramount
in designing the scheduler. Therefore, we chose to trade-off
optimality for speed. One of the major costs in scheduling
is determining the route an ion should take to travel between
traps that do not abut the same wire. This problem has paral-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

% cnot % measurement min max min max
time time space space

no EC - - 1 1 1
EC 1 56.37% 10.31% 31 447 16 96
EC 2 56.74% 9.44% 211 217529 58 12456

Table 1: Properties of error correction: In this table, we present results from our error correction compiler and scheduler. The first two columns
indicate the percentage of two-qubit CNOT gates and measurement operations. The next two columns min/max time indicate the time (in ops) required
to perform the error correction process. Minimum time refers to doing things maximally parallel (no architectural constraints), while maximum refers
to doing all operations sequentially. Minimum/max space refers to number of physical qubits required to perform the operation. Minimum space comes
from doing all operations sequentially (scheduled perfectly), while maximum space comes from doing as many operations in parallel as possible, reducing
execution time but increasing resource requirements.

lels in the routing of signals between logic units within FP-
GAs, so we adapted the PathFinder algorithm [22] to create
a collection of efficient paths from source to destination in
the micro-architecture. The biggest change is that we com-
pute 5-10 paths on the first movement between a source-
destination pair. This computation only occurs once, and
subsequent movements simply pick the best path from those
stored.

The next step is to parse the source assembly and sched-
ule the operations. For this we employ a variant of list-
scheduling [23]. First, the source text is parsed to comple-
tion and a graph representation is produced. We process this
graph in reverse order, starting from the leaves, and proceed-
ing to the root(s). By applying an earliest-possible greedy
approach in reverse, we approximate latest-possible schedul-
ing if run forward in time. From the view of the simulator,
qubits allocated only when absolutely necessary, allowing
reuse of “scratch” bits and attempting to minimize the time
that qubits must stay coherent.

At any given time point, the scheduler maintains a list of
operations that can be scheduled and attempts to allocate the
physical resources of the machine for the required number
of time steps. In the case of operations, this means simply
holding onto the ion trap for that time. For movement, it
means referring to the pre-computed path data structure and
choosing the path that with no conflicts for the time required.
Operations that cannot be scheduled due to resource conflicts
are simply delayed and another scheduling attempt is made
at the next opportune time step.

7 Simulator

The scheduler produces an exact set of command sequences
for controlling a quantum computer. One can directly read
the tail end of this schedule to determine the running time of
the application. Of critical importance, however, is whether
or not the qubits will contain correct values. Noise (decoher-
ence) could have corrupted them so much that the schedule
will not produce any meaningful result from a quantum de-
vice.

In all other quantum research projects, a precise physical
level simulator of the device is used to determine the relia-
bility. In our study, however, we are interested in comput-
ers with hundreds to thousands of qubits. Since the running
time of precise simulation is exponential in the number of
entangled qubits, the number of qubits that can be simulated
in reasonable time with current technology (clusters of ma-
chines, days of time) is in the low 30’s [24]. Clearly, this
approach will not work for 100 - 100,000 qubits.

Instead, we make the observation that if you do not care
about simulating the precise state of a quantum computer,
Monte Carlo simulation can be used to produce an expected
reliability for the device. With Monte Carlo simulation, the
expected probability of a phenomenon is determined by per-
forming an action several times and calculating what per-
centage of the time the phenomenon in question occurs.

In our case, the phenomenon in question is the introduc-
tion of error into an ion’s quantum state. To perform our
simulation, we start with a base error rate for each step of
computation. This base error rate represents the probability
that an error occurs in an ion at each time-step. We intro-
duce an error in the ion when our pseudo-random number
generator [25] produces a result less than this base error.

Within the simulation, errors are propagated based on the
dependencies of the computation. Once an ion is in error,
it stays in error and introduces error on any other ions it in-
teracts with. The only exception to this rule is when error
correction is applied. Our simulation framework models the
effect of the error correction added prior to scheduling. Once
an error correction is completed, the simulator examines the
qubits of the logical code word. If only one qubit is in error,
then the simulator assumes the error correction process fixed
that single qubit error. If two or more qubits are in error,
it propagates the error and assumes all qubits of that code
word are now in error (the upper bound of the effect of error
correction on a terminally broken code word).

Naturally, the effectiveness of Monte Carlo simulation de-
pends on the randomness of the pseudo-random number gen-
erator used. For this purpose, we have selected a random
number generator based on bit-rotation and addition which
is considered particularly well suited to Monte Carlo simu-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

V
ar

y
th

e
nu

m
be

r
of

 tr
ap

s
pe

r
un

it

Vary the quantity of
interconnect in each unit

Vary dimensions of
computing substrate

Figure 7: Basic tile structure (left) and substrate micro architecture
(right). The key parameters: ion trap cells, connectivity, and substrate size
are varied in this study.

lation [25].
The simulator can be used to quickly (O(n) in the number

of scheduled operations) determine whether or not a sched-
ule and micro-architecture will operate accurately. Since the
problems targeted by quantum computers are in the com-
plexity class NP (a super-set of NP-complete), despite the
fact that solutions to these problems are hard to generate,
verification in possible in polynomial time. This means that
accuracy need only be around 90% (since incorrect answers
can be quickly detected and the process re-run if necessary).
The implication is that the reliability of the system can be
determined with a mere 100 trials on our simulator.

In addition to a quick test of the reliability of a quan-
tum program and micro-architecture pair, the simulator can
also execute an arbitrary number of trials to achieve a fine-
grained understanding of the rate of error. In the next section
of this paper, we use this technique to explore variations on
a canonical quantum micro-architecture and measure their
runtime performance and critical thresholds [9].

8 Micro-architecture exploration

In this section, we use our infrastructure to explore basic
micro-architectural trade-offs. We begin by first validat-
ing the simulation model. Next, we use the tools to ex-
plore trap width versus wiring density in a simple quantum
micro-architecture. Finally, we conclude by exploring the
differences between quantum computing theory and prac-
tice, which highlights both the challenges for future tech-
nology development, and the importance of architecture to
this discipline.

8.1 Validation

Since these tools are the first of their kind and our simu-
lation methodology is a novel approach to modeling relia-
bility in quantum systems, some form of validation is de-
sired. To do this, we produced a single fault-tolerant error
correction sequence. This was scheduled onto an architec-
ture and processed by our simulator. The parameters the
simulator used to model error were changed such that mov-
ing ions around the micro-architecture occurred in zero time,
ions that were not being operated on had zero chance of de-
cohering, and CNOT instructions required the same amount
of time as single-qubit gates. These parameters match the
theoretical model of quantum computing that is used in the
literature. Doing this, we found the critical threshold – the
maximum error per operation for sustainable fault tolerant
computation, to be 4E − 4. This is exactly in line with what
one would expect from the theoretical estimate previously
calculated [9, 19].

8.2 Exploration

A basic design of a quantum micro-architecture is depicted
in Figure 7. The concept is to use a substrate of identical
tiles. This design has two basic micro-architectural knobs
to vary: the number of ion traps in a tile and the amount of
wiring between tiles.

To explore the effects of these two parameters on execu-
tion time, we mapped the error-correction (level 1) process
onto varying substrates using our scheduler. We chose lay-
outs that provided 150 traps total and organized the tiles to
be as square as possible.

The scheduler is non-deterministic (being based on a syn-
thesis of PathFinder and list scheduler), so results vary
slightly between runs. Therefore we execute each test 8
times and average the results. The overall results are shown
in Figure 8.

The results show three interesting trends. First, except for
the smallest design, small numbers of traps per tile are fa-
vored. Too few traps and scheduling becomes more difficult.
Ions must move into and out of regions too often, increas-
ing execution time. With too many traps, the conflicts over
the single wire into the tile begins to counter the increased
potential for intra-tile movement. With larger trap numbers,
the ions must also move further, leading to longer execution
times.

Second, beyond 2 traps / tile, a single surrounding wire
(which is 2 wires between ion trap complexes; Figure 7)
is less efficient than having more interconnect. However,
moving from 2-3 surrounding wires provides no real sav-
ings. Looking carefully at each trap complex configuration,
there is a corresponding ideal interconnect width: 2 traps
/ 1 wire, 3 traps / 2 wires, 5 traps / 3 wires. This pairing
arises from the schedulers ability to exploit trap resources

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

2 4 6 8
Traps / tile

180000

200000

220000

240000

260000

T
im

e
(s

te
ps

)

1 wires

2 wires

3 wires

Figure 8: Performance of error-correction on various trap configurations,
from designs built from tiles that are 1 trap high and 1 wire in between, to 9
traps and 3 wires.

and wire-resources, and it makes intuitive sense that the or-
der of these (more traps - more wires) is aligned up until 5
traps. Beyond 5, the resources are not exploited well by the
scheduler and simply increase delay.

The final observation is that 2 traps / tile and a surrounding
wire per tile performs best on average for this single appli-
cation. For our scheduler algorithm and the error correction
process, this design point minimizes overall length of travel
for ions and balances trap complex size against interconnect
size.

8.3 Dealing with architectural reality in quan-
tum computers

We conclude our study by examining the critical threshold
– the error rate above which error correction processes will
not work. In the past [9], theorists have estimated this thresh-
old using an overly idealized model of computation that did
not account for the actual microarchitecture of the machine.
Using our tools, we can account for this.

Figure 9 plots the reliability of fault-tolerant operations
as various technology and architectural features are progres-
sively accounted for. The x-axis of this graph is the rate of
error for a single-qubit gate. The y-axis of this graph depicts
the rate of error for the qubit measured by our simulator.
The straight-line depicts the rate of error for a non-encoded
non-fault tolerant single qubit operation. The x-axis points
at which the other curves cross this line are their critical-
thresholds.

The first line (farthest to the right) is the theoretical quan-
tum computing model. In this model, there is no accounting

-10 -9 -8 -7 -6 -5 -4 -3 -2

Device error (log)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

R
es

ul
ti

ng
 e

rr
or

 (
lo

g)

No error correction

Theoretical model

Architecture only

Architecture & CNOT

Everything

Figure 9: Observed error rates for different technology and architectural
assumptions.

for architecture or technology implications – such as move-
ment, turns, the difference between single- and two- qubit
gates, and the reality that a quantum state naturally deco-
heres with time, even if no operation is performed on it.
This line crosses the non-fault tolerant line where prior liter-
ature [9, 19] estimates it should.

The next line over, architecture only alters the model to
begin to consider the implications of having to perform error
correction in a real micro-architecture. For this calculation,
the impact of decoherence from having to wait for resources
to become available is introduced.

Next comes the architecture and cnot line. This line de-
picts the effects of the micro-architecture and accounts for
the fact that CNOT gates require an order of magnitude more
time to operate than single qubit gates.

The final result, everything accounted for, is one of the
main results of our work. In this trial, we introduce the full
impact of movement and turns. We found that when operat-
ing on an actual micro-architecture and accounting for all of
the implications of scheduling, resource conflicts, the cost of
moves and turns and single versus two-qubit gates, the true
threshold lies at ≈ 1E − 9. This is lower than the theoretical
calculation by 5 orders of magnitude.

An important observation from this data is that of these
5 orders of magnitude in difference between the theoretical
model and the actual implementation, 3 of these are the re-
sult of movement and turning, ≈ 1.5 are the result of basic
resource contention and only ≈ 1/2 is the result of the in-
creased cost of binary operations such as CNOT.

The implication of this is that improving the accuracy of
individual quantum operations will only have a minimal im-
pact on the overall accuracy of quantum computation. In-
stead, our work indicates that physicists should focus on re-
ducing the error rate and improving the execution time for
turns, while architects can make a major contribution by de-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

signing micro-architectures and schedulers that capitalize on
locality to decrease the need for movement and allow for the
efficient utilization and placement of resources to decrease
contention. In this way, architects can raise the practical
threshold. Otherwise, it really will be later rather than sooner
before quantum computing is a reality.

9 Future work

There is much work left to do on quantum architectures.
Right now, and for the foreseeable future, the goal of this
work should be to reduce the critical threshold. What we
have presented in this paper is a set of tools and architec-
tural analyses that show the real threshold is ≈ 1E − 9. At
least two and perhaps as much as three orders of magnitude
of this threshold, however, are due to the micro-architecture
and tool chain infrastructure. We will elaborate below on
ways to reduce this threshold:

Better error correction processes: Our current infras-
tructure utilizes the error correction steps described in [19].
More complex, but parallel steps are known [26]. Chang-
ing the front end of the tool chain to utilize these alternative
constructions could reduce by about 1/3 the minimum-time
component in Table 5. This is at the expense of more com-
plex ancilla.

Dynamically adding teleportation-channels: In [27] the
authors describe an alternative way to move quantum state
around a large micro-architecture. Exploiting these telepor-
tation channels instead of direct movement where appropri-
ate could further parallelize the operations involved in mov-
ing quantum state about.

Better micro-architectures: For this paper we did not ex-
tensively study micro-architecture designs. Our goal was
more on the front end in creating all of the tools required
to really study micro-architectures. Thus, the very next step
seems to be to design architectures that are better able to ex-
ploit parallelism within the error correction processes.

Smarter scheduling: Our current scheduler is essentially
a greedy algorithm with a bounded window. Perfect schedul-
ing is NP-hard. There is a middle ground. Right now the
scheduler is micro-architecture agnostic. It can schedule
any set of quantum algorithms onto any micro-architecture.
Making the scheduler more micro-architecture and error-
code aware seems a rich area for performance gains. For
example, qubits are often operated on in repetitive ways.
Having efficient (perhaps hand-done) schedules for these
common-case operations that the scheduler could draw upon
to create a larger application schedule seems a viable ap-
proach.

Hierarchical simulation: Currently, our simulator is pes-
simistic. It is akin to an automated “counting” simulator
(used to count point of failure). If the actual device had the
technology characteristics specified it would be more reli-
able when executing the application. How much more re-
liable is not yet known, but it is speculated that it is per-
haps as much as an order of magnitude. The simulator can
be made more precise by integrating a precise device-level
physics simulator and grouping operations into large units.
These units can be modeled precisely using the device sim-
ulator and then their reliability parameters integrated using
the counting approach of our existing framework.

10 Conclusion

In this paper, we described our work in designing an instruc-
tion set architecture, compiler, device scheduler and simu-
lator for ion trap based quantum computers. Many design
choices in each of these components were made to make
them scale to real application sizes. Among them: the tools
compile-in the input dataset and fully unroll all loops so that
the scheduler and simulator can provide concrete results; the
error correction compiler automatically transforms arbitrary
input programs into fault tolerant versions; the scheduler
combines techniques from FPGA/CAD synthesis and tradi-
tional processor compilers; finally, the simulator efficiently
models errors instead of quantum state in order to quickly
provide reliability information.

Using these tools, architects can design and quantitatively
evaluate large scale architectures. In the past, quantum re-
searchers have had to make careful analytical models for
system reliability and performance. Now, they can evaluate
these systems directly by compiling applications for them,
scheduling them for performance, and simulating them for
reliability. We did this for a few tile based designs and found
that a balanced design of 2 traps to 1 interconnect wire laid
out in a substrate performed best. We also found that the crit-
ical threshold is in fact five orders of magnitude lower than
previously found by theoretical models alone. In addition,
we determined that much of the difference between the theo-
retical, and practical breaking point can be attributed to prob-
lems that computer architects are particularly well suited to
solve.

Acknowledgments: This work is supported in part by the
DARPA QuIST Program (AFRL-F30602-01-2-0521), NSF
Nanoscale Program (CCF-0210373) and NSF CAREER
grants (CCF-0133188). Additional support is provided by
the A. P. Sloan foundation. We would like to thank our
anonymous reviewers for their constructive feedback.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

References
[1] I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W.

Leung, “Bulk quantum computation with nuclear-magnetic-
resonance: theory and experiment,” Proc. R. Soc. London A,
vol. 454, no. 1969, pp. 447–467, 1998.

[2] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and
D. J. Wineland, “Demonstration of a fundamental quantum
logic gate,” Phys. Rev. Lett., vol. 75, p. 4714, 1995.

[3] M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Leibfried,
V. Meyer, J. Beall, J. Britton, J. Hughes, W. M. Itano, B. Je-
lenkovic, C. Langer, T. Rosenband, and D. J. Wineland,
“Transport of quantum states and separation of ions in a dual
rf ion trap,” Quantum Information and Computation, vol. 2,
pp. 251–271, 2002.

[4] D. J. Wineland, M. Barrett, J. Britton, J. Chiaverini, B. L.
DeMarco, W. M. Itano, B. M. Jelenkovic, C. Langer,
D. Leibfried, V. Meyer, T. Rosenband, and T. Schaetz, “Quan-
tum information processing with trapped ions,” Phil. Trans.
Royal Soc. London A, vol. 361, pp. 1349–1361, 2003.

[5] G. T. Foster, L. A. Orozco1, H. M. Castro-Beltran, and H. J.
Carmichael, “Quantum state reduction and conditional time
evolution of wave-particle correlations in cavity qed,” Phys.
Rev. Lett., vol. 85, pp. 3149–3152, Oct 2000.

[6] P. Domokos, J. M. Raimond, M. Brune, and S. Haroche,
“Simple cavity-qed two-bit universal quantum logic gate: The
principle and expected performances,” Phys. Rev. A, vol. 52,
no. 5, pp. 3554–3559, 1995.

[7] D. Kielpinsky, C. Monroe, and D. Wineland, “Architecture for
a large-scale ion trap quantum computer,” Nature, vol. 417,
p. 709, 2002.

[8] T. Metodiev, A. Cross, D. Thaker, K. Brown, D. Copsey, F. T.
Chong, and I.L.Chuang, “Preliminary results on simulating a
scalable fault tolerant ion-trap system for quantum computa-
tion,” in 3rd Workshop on Non-Silicon Computing, June 2004.

[9] D. Aharonov, Noisy Quantum Computation. PhD thesis, The
Hebrew Univesity, Jerusalem, 1999.

[10] B. Ömer, “Quantum programming in qcl,” Master’s thesis,
Technical University of Vienna, 2000.

[11] M. U. Mock, C. Chambers, and S. J. Eggers, “Calpa: A tool
for automating selective dynamic compilation.,” in In Pro-
ceedings of the 33rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-33), pp. 291–302, Dec
2000.

[12] E. Feigin, A Case for Automatic Run-Time Code Optimiza-
tion. PhD thesis, Harvard College, Div. of Eng. and Applied
Sciences, 1999.

[13] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and
B. N. Bershad, “Fast, effective dynamic compilation,” in SIG-
PLAN Conference on Programming Language Design and
Implementation, pp. 149–159, 1996.

[14] A. Steane, “Error correcting codes in quantum theory,” Phys.
Rev. Lett., vol. 77, 1996.

[15] P. Shor, “Scheme for reducing decoherence in a quantum
computer memory,” Phys. Rev. A, vol. 52, no. 2493, 1995.

[16] C. H. Bennett, D. P. Vincenzo, J. A. Smolin, and W. K. Woot-
ters, “Mixed state entanglement and quantum error correc-
tion,” Phys. Rev. A, vol. 54, no. 5, pp. 3824–3851, 1996.

[17] R. Laflamme, C. Miquel, J.-P. Paz, and W. H. Zurek, “Per-
fect quantum error correction code,” Phys. Rev. Lett., vol. 77,
p. 198, 1996. arXive e-print quant-ph/9602019.

[18] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke,
“LLVA: A Low-level Virtual Instruction Set Architecture,” in
Proceedings of the 36th annual ACM/IEEE international sym-
posium on Microarchitecture (MICRO-36), (San Diego, Cali-
fornia), Dec 2003.

[19] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information. Cambridge, UK: Cambridge Univer-
sity Press, 2000.

[20] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proc. AFIPS
Conf., (Reston,Virginia), pp. 483–485, 1967.

[21] G. S. Taylor, J. K. Ousterhout, G. T. Hamachi, R. N. Mayo,
and W. S. Scott, “Magic: A vlsi layout system.,” in Proceed-
ings of the 21th Design Automation Conference, pp. 152–159,
1984.

[22] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-
based performance-driven router for FPGAs,” in Proceedings
of ACM Symp. on Field-Programmable Gate Arrays, pp. 111–
117, 1995.

[23] T. Yang and A. Gerasoulis, “List scheduling with and with-
out communication delays,” Parallel Comput., vol. 19, no. 12,
pp. 1321–1344, 1993.

[24] H. Rosé, T. Asselmeyer-Maluga, M. Kolbe, F. Nieh’́orster,
and A. Schramm, “The fraunhofer quantum computing por-
tal - www.qc.fraunhofer.de - a web-based simulator of quan-
tum computing processes,” tech. rep., Fraunhofer Institute
for Computer Architecture and Software Technology, Berlin,
2003.

[25] A. Fog, “Chaotic random number generators with random cy-
cle lengths.” www.agner.org/random/theory, Nov 2001.

[26] A. Steane, “Active stabilisation, quantum computation and
quantum state synthesis,” quant-ph/9611027, 1996.

[27] M. Oskin, F. Chong, and I. Chuang, “A practical architecture
for reliable quantum computers,” in Proc. International Sym-
posium on Computer Architecture (ISCA 2001), (New York),
ACM Press, 2001.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

