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Abstract Lines of Action (LOA) is a two-person zero-sum chess-like connection game. 

Building an evaluation function for LOA is a difficult task because not much 

knowledge about the game is available. In this paper the evaluation function 

of the tournament program MIA is explained. This evaluator consists of the 

following nine features: concentration, centralisation, centre-of-mass position, 

quads, mobility, walls, connectedness, uniformity, and player to move. These 

features have resulted in the evaluator MIA IV. The evaluator is tested in a tour

nament against other LOA evaluators, which have performed well at the previous 

Computer Olympiads. Experiments show that MIA IV defeats them with large 

margins. It turns out that the evaluator even performs better at deeper searches. 
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1. Introduction 

LOA is a two-person zero-sum game with perfect information; it is a chess

like game with a connection-based goal, played on an 8 x 8 board. LOA was 

invented by Claude Soucie around 1960. Sid Sackson (1969) described it in his 

first edition of A Gamut of Games. After this publication, LOA received some 

attention of AI researchers. For instance, the first LOA program was written at 

the Stanford AI laboratory around 1975 by an unknown author. In the 1980s and 

1990s "hobby" programmers wrote several LOA programs. However, ali were 

beatable by humans (Dyer, 2000). At the end of the nineties LOA again became 

a target of AI researchers. Some of them used LOA only as. a test domain for 

their algorithms, others tried to build strong LOA programs by using new ideas. 

The programs YL, MONA and MIA (Maastricht In Action) belong to the latter 

category. MIA finished third, second and again second at the fifth, sixth and 

seventh Computer Olympiad, respectively (Bjornsson, 2000; Bjornsson and 

Winands, 2001; Bjornsson and Winands, 2002). The program can be played 

online at the website: http://www.cs.unimaas.nl/m.winands/loa/. 
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The standard framework of the a(3 search with its enhancements offers a 

good start for building a strong game-playing program. The real challenge in 

LOA is building a decent evaluation function, which incorporates the strategic 

intricacies of the game. The difficulty lies in the fact that knowledge about LOA 

evaluation functions is not well developed, although some material on this topic 

has been published (Winands et al., 2001). In this paper we discuss the latest 

evaluation function used in the program MIA. 

The remainder of this paper is organised as follows. Section 2 explains 

the game of Lines of Action and describes the search engine. In Section 3 

the evaluation function is explained. This evaluation function is tested against 

other evaluators in Section 4. Finally, in Section 5 we present our conclusions 

and topics for future research. 

2. Test Environment 

In this section we explain first the game ofLines of Action. Next, the search 

engine of MIA is described briefly. 

2.1 Lines of Action 

LOA is played onan 8 x 8 board by two sides, Black and White. Bach side has 

twelve pieces at its disposal. The players alternately move a piece, starting with 

Black. A move takes place in a straight line, exactly as many squares as there 

are pieces of either colour anywhere along the line of movement. A player may 

jump over its own pieces. A player may not jump over the opponent's pieces, 

but can capture them by landing on them. The goal of a player is to be the first 

to create a configuration on the board in which ali own pieces are connected in 

one unit. The connections within the unit may be either orthogonal or diagonal. 

In the case of simultaneous connection, the game is drawn. If a player cannot 

move, this player has to pass. If a position with the same player to move occurs 

for the third time, the game is drawn. · 

Analysis of 2585 self-play matches showed an average branching factor 

of 29 and an average game length of 44 ply. The game-tree complexity and 

state-space complexity are estimated tobe 0(1023) (Winands et al., 2001) and 

0(1 064), respectively. A characteristic property of LOA is that it is a converging 

game (Allis, 1994 ), sin ce the initial position consists of 24 pieces, and during the 

game the number of pieces (usually) decreases. However, since most terminal 

positions have still more than 1 O pieces remaining on the board (Winands, 

2000), endgame databases are (probably) not effectively applicable in LOA. As 

a case in point, we remark that an endgame database of ten pieces would require 

approximately 10 terabytes. Finally, in LOA the standard chess notation for 

moves is used. 
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2.2 MIA's Search Engine 

MIA performs an af3 depth-first iterative-deepening search. Several tech

niques are implemented to make the search efficient. The program uses PVS 

(Principal Variation Search) to narrow the af3 window as much as possible 

(Marsland and Campbell, 1982). A two-deep transposition table (Breuker et al., 

1996) is applied to prune a subtree or to narrow the af3 window. At ali interior 

nodes which are more than 2 ply away from the leaves, the program generates 

ali the moves to perform the Enhanced Transposition Cutoffs (ETC) scheme 

(Schaeffer and Plaat, 1996). Next, a null move (Donninger, 1993) is performed 

before any other move and it is searched to a lower depth (reduced by R) than 

other moves. In the search tree we distinguish three types of nodes, namely PV 

nodes, CUT nodes, and ALL nodes (Knuth and Moore, 1975; Marsland and 

Campbell, 1982). The null move is done at CUT nodes and at ALL nodes. Ata 

CUT node a variable scheme, called adaptive null move (Heinz, 1999), is used 

to set R. If the remaining depth is more than 6, R is set to 3. When the number 

of pieces of the side to move is lower than 5 the remaining depth has to be more 

than 8 for setting R to 3. In ali other cases R is set to 2. For ALL nodes R = 
3 is used. If the null-move does not cause a (3-cut, multi-cut (Bjomsson and 

Marsland, 1999) is performed. Experiments showed that usipg multi-cut is not 

only beneficia} at CUT nodes but also at ALL nodes (Winands et al., 2003). 

For move ordering, the move stored in the transposition table, if applicable, is 

always tried first. Next, two killer moves (Akl and Newbom, 1977) are tried. 

These are the last two moves, which were best or at least caused a cut-off at the 

given depth. Thereafter follow: (1) capture moves going to the inner area (the 

central4 x 4 board) and (2) capture moves going to the middle area (the 6 x 6 

rim). Ali the other moves are ordered decreasingly according to their scores in 

the history table (Schaeffer, 1983). In the leaf nodes of the tree a quiescence 

search is performed. This quiescence search looks at capture moves, which 

form or destroy connections (Winands et al., 2001) and at captjlfe moves going 

to the central 4 x 4 board. 

3. Evaluation Function 

In this section the evaluation function of MIA is explained. This evaluator 

consists of the following nine features: concentration, centralisation, centre

of-mass position, quads, mobility, walls, connectedness, uniformity, and player 

to move. These features are described below in detail (Subsection 3.1 to 3.9), 

followed by some information about the use of caching (Subsection 3.10). 
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Figure 1. (a) Scattered Pieces (b) Position with two black Q4's. 

3.1 Concentration 

The concentration ofthe pieces is calculated by a centre-of-mass approach. In 

MIA this is done in four steps. First, the centre of mass of the pieces on the board 

is computed for each side. Second, we compute for each piece its distance to the 

centre of mass. The distance is measured as the minimal number of squares from 

the piece to the centre of mass. These distances are summed together, called the 

sum-of-distances. Third, the sum-of-minimal-distances is looked up in a table. 

It is defined as the sum of the minimal distances of the pieces from the centre 

of mass. This number is necessary since otherwise boards with a few pieces 

would be preferred. For instance, if we have ten pieces, there will be always 

eight pieces at a distance of at least 1 from the centre of mass, and one piece at a 

distance of at least 2. In this case the sum-of-minimal-distances is 1 O. Thus, the 

sum-of-minimal-distances is subtracted from the sum-of-distances, the result 

being called the surplus-of-distances. Fourth, we calculate the 'concentration, 

defined as the inverse of the average surplus-of-distances. Since by doing so 

we reward positions with pieces in the neighbourhood of each other, eventually 

they will be connected in solid formations or they will create threats to win. 

3.2 Centralisation 

Bach piece gets a value dependent on its board square according to this 

feature. Pieces at squares closer to the centre are given higher values than the 

ones farther away. Pieces at the edge are given a negative value. This is done 

because such pieces are easy to block by a wall (see Subsection 3.6). Pieces 

at the corner are punished even more severely. To prevent the program from 

over-aggressively capturing pieces, the average is computed instead of the sum 

of piece values. 
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3.3 Centre-of-mass Position 

In earlier versions of MIA positions with a somewhat more centralised centre

of-mass were slightly preferred. The idea was to prevent formations from being 

built on the edges, where they are more easily destroyed or blocked. Interest

ingly, after applying Temporal-Difference (TD) learning the weight for the 

centralised centre-of-mass feature is changing its sign (Winands et al., 2002), 

which means that opposite to expectations it is good to have the centre-of-mass 

closer to the edge instead of in the centre. If the centre-of-mass is in the centre, 

it is possible that pieces are scattered over the board ( e.g., the white pieces in 

Figure la). If the centre of mass is at the edge, pieces have tobe in the neigh

bourhood of each other, otherwise they would Iie outside the board. Another 

plausible explanation of why it is worse to have the main ~iece formation in 

the centre is that it can be more easily attacked there, whereas groups residing 

closer to the edge can only be attacked from one side. 

3.4 Quads 

The use of quads for a LOA evaluation function was first proposed and 

implemented by Dave Dyer in 1996 in his program LoAJAVA and empirically 

evaluated by Winands et al. (2001). This feature counts certain quads types. 

A quad is defined as a 2x2 array of squares (Gray, 1971). In this feature we 

only consider quads of three (Q3) or four pieces (Q4) of the same colour, since 

it is impossible to destroy these formations by a single capture. However, the 

danger exists that many of those quads are created outside the neighbourhood 

of the centre of mass. So, in MIA we have rewarded only Q3 's and Q4 's, which 

are at a distance of at most two of the centre of mass. For instance, Black has 

two Q4's in Figure lb. 

3.5 Mobility 

In the mobility feature the number of moves for each side are computed. 

This feature was first implemented in MoNA and YL. In previous evaluation 

functions of MIA ali moves were weighted equally. However, experiments have 

shown that certain move types are better than others (see also Hashimoto et al., 

2003). Therefore, in MIA the following bonus/malus system is applied: the 

value of a capture move is doubled, the value of a move going to an edge or 

a move along an edge is halved. If a move belongs to multiple categories, the 

bonus/malus system is used multiple times. For example, let us assume that a 

regular move gets value 1, then a capture move gets value 2, a capture move 

going to an edge gets value 1, a cap ture move in an edge line going to a comer 

gets value 0.5. The computational requirements of this component are not high. 

For each line configuration of pieces (represented as a bit vector) the mobility 
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can be precomputed and stored in a table. During the search, the index scheme 

can be updated incrementally and in the evaluation function only a few table 

lookups have to be done. 

3.6 Walls 

Because a piece is not allowed to jump over the opponent's pieces, it can 

happen that the piece is blocked, i.e., cannot move. Blocking a piece far away 

from the other pieces is an effective way of preventing the opponent to win. 

Even partial blocking, called a wall (Handscomb, 2000), can be quite effective, 

since it forces a player to tind a way around the wall. Detecting whether a piece 

is (partially) blocked can be expensive as we have to know what the moves of 

the piece are and what its goal is. In MIA we look only at walls that prevent 

the opponent's edge pieces from moving toward the centre. '.These walls are 

quite common and effective. The patterns can be precomputed and therefore 

are easy to detect. For example, in Figure 2a the piece on a4 is blocked in 

three ways going to the centre, whereas the piece on h4 is only blocked in two 

centre directions. In the evaluator, we distinguish between walls which block 

two or three centre directions. We also remark that we take special care of 

walls which block corner pieces. For example, the piece on h~ is blocked only 

in two directions, but we evaluate this position as if it was blocked in 3 centre 

directions. The totally isolated piece on aS is evaluated as if there were two 

walls which both block the piece in three directions. We only look at certain 

blocking patterns for edge pieces. For example, the pieces on bl and el are 

completely blocked, but we take only the two 3-centre directions blocks into 

account. It is a subject of future research to incorporate more of these kind of 

patterns. 

3. 7 Connectedness 

Although the concentration component and quad component favour solid 

formations in the centre, there is still room for a component which determines 

the connectedness of a side. In MIA we compute the average number of connec

tions of a piece. In some evaluation functions the total number of connections is 

taken into account (e.g., YL), but this could implicitly bea material advantage. 

Any kind of material component in LOA evaluation functions is always tricky 

because the program might wildly capture pieces. This feature does not take 

into account whether a connection is important or not. To distinguish this, a 

globallook at the board would be needed, which is time consuming. The num

ber of connections for each side in each line configuration can be precomputed 

as is done with the mobility component. 
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Figure 2. (a) Position with walls (b) Position with an outlier on b8. 

3.8 Uniformity 

The disadvantage of the centre-of-mass approach is that it aims to connect as 

many pieces as possible in a local group, hardly worrying about some remote 

pieces (orphans). It is sometimes hard to connect these orphans. For instance, 

in Figure 2b the black pieces are grouped around e2, but the, black piece on b8 

is rather far away from this group. To prevent that one or more pieces become 

too remote from the main group, a feature is used which aims at a uniform 

distribution (Chaunier and Handscomb, 2001) to counterbalance the negative 

effects of the centre-of-mass approach. In our program this is done in a way 

which is primitive but effective. The area of the distributed pieces is computed, 

assuming it is a rectangle. The smaller the area is, the higher the reward is. An 

analogous implementation was first done in the program YL, but details are not 

known. 

3.9 Player to Move 

In the search tree not every leaf node has the same player to move. A small 

bonus is given to the moving side, since having the initiative is mostly an 

advantage in LOA (Winands, 2000) like in many other games (Uiterwijk and 

van den Herik, 2000). 

3.10 Caching 

It is possible in our evaluation function to cache computations of certain fea

tures, which can be used in other positions. Let us assume that we investigate 

the move b8-c8 in Figure 2b and evaluate the resulting position. If we next 

investigate b8-b7 we notice that certain properties of White's position remain 

the same (e.g., the number of pieces, centre-of-mass, the number of connec

tions), whereas others can change (e.g., moves, blockades). It easy to see that 
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we do not have to compute the concentration, centralisation, position of the 

centre-of-mass, quads, connection, and uniformity for White again. Evaluation 

of components, which are not dependent of the position of the other side, are 

stored in the evaluation cache table. In the current evaluation function this gives 

a speed-up of at least 60 percent in the number of nodes investigated per second. 

4. Experiments 

In order to quantify the improvements of the evaluation function, we played 

a round-robin tournament in which evaluators from earlier tournament versions 

of the program participated. Ali evaluators used the current search engine, 

described in Subsection 2.2. The evaluators are explained in Subsection 4.1. 

The results are described in Subsection 4.2. 

4.1 Benchmark Evaluators 

The benchmark evaluation functions are described below. 

Evaluator: MIA 1 The core of this evaluation function is the centre-of-mass 

approach. The quad feature is also implemented. Pieces at the edge are given a 

negative bonus. Contrary to MIA IV a bonus is given for a centralised centre

of-mass (Winands et al., 2001). The weights of the features were carefully 

hand-tuned. In retrospect this evaluator was primitive, although it won a game 

against both MoNA and YL at the fifth Computer Olympiad (Bjornsson, 2000). 

Evaluator: MIA II The major change of this evaluation function compared 

to the previous one is the introduction of the mobility component. There is no 

discrimination in rewarding different move types. In this evaluator pieces ata 

corner edge are punished more severely. Using this evaluator the tournament 

program shared the first place with YL in the regular tournament at the sixth 

Computer Olympiad. The play-off match was won by YL (Bjornsson and 

Winands, 2001). 

Evaluator: MIA III This evaluation function is enhanced with the wall 

feature. The centralisation feature is improved by rewarding pieces in the centre. 

A bonus is given for the player to move. The major improvement was retuning 

ali the weights by using TD-learning (Winands et al., 2002). There were three 

major changes in the weights. First, the initial weight of the dominating centre

of-mass was decreased to one tenth of its original value, indicating that we 

had overestimated the importance of this feature. Second, the weight for the 

centralised centre-of-mass feature changed its sign, which means that opposite 

to expectations it is good to have the centre-of-mass closer to the edge instead 

of in the centre. Third, the weight of the centralisation component increased 

the most, indicating that we had overestimated the importance of this feature. 

V sing this evaluator the tournament program finished second at the seventh 

Computer Olympiad (scoring 1.5 points out of 4 against the much improved 
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winner YL) (Bjornsson and Winands, 2002). An exhibition match was played 

against MONA during the Third International Conference on Computers and 

Games 2002 (CG'02), which ended in a 2-2 tie (Billings and Bjornsson, 2002). 

Evaluator: MIA IV This evaluation function incorporates ali features as 

described in Section 3. The centralisation, wali, and player-to-move features 

used the same weights as the o nes in MIA III. Ali the weights of the other features 

were basicaliy found by using TD-learning. Some of them were adjusted by 

hand afterwards. 

An overview of the separate features as used in the four evaluators is given 

in Table 1. Note that the weights and details of the features may differ between 

different evaluators. 

MIAI MIA II MIA III MIA IV 

Concentration X X X X 

Centralisation X X X X 

C.o.m. position X X X X 

Quads X X X X 

Mobility X X X 

Walls X X 

Connectedness X 

Uniformity X 

Player to move X X 

Table 1. Overview of the features. 

4.2 Results 

The evaluators, previously described, played 1000 matches against each other 

in a round-robin tournament. They started always from the same 10 positions 

given in the Appendix, playing with both colours. To prevent that programs 

played the games over and over again, a sufficiently large random factor was 

included in each evaluation function. 

Fixed-depth searches were used as time control instead of time. At first sight 

it may look as if we are favouring the more advanced evaluators (i.e., they are 

time intensive because of the extra knowledge). This is nota problem for two 

reasons. First, the difference in speed is quite moderate. The program runs only 

15 per cent slower with the MIA IV evaluator than with the MIA 1 evaluator. 

Ali the evaluators have to compute the average distance to the centre-of-mass 

and the quads, which is time consuming. Most other additions are relatively 

cheap. Second, when an evaluator is a good predictor of the situation, a best 

move found ata shaliow search is more likely to stay good and therefore causing 

cut-offs at deeper searches. For example, when the MIA 1 evaluator is used in 

the current search engine it searches 75 per cent more nodes compared to the 
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MIA N evaluator. The advantage of fixing the depth is that we can measure 

the inftuence of increasing the depth. 

Evaluator MIAI MIA II MIAID MIA IV 

MIAI o 259 199 71.5 

MIA II 741 o 373 163.5 

MIAID 801 627 o 248.5 

MIA IV 928.5 836.5 751.5 o 

Table 2. Tournament results at depth 4. 

Evaluator MIAI MIA II MIAID MIA IV 

MIAI o 188 168.5 51 

MIA II 812 o 356 174 

MIAID 831.5 644 o 223.5 

MIA IV 949 826 776.5 o 

Table 3. Tournament results at depth 6. 

Evaluator MIAI MIA II MIAID MIA IV 

MIAI o 137 159.5 41.5 

MIA II 863 o 360 129 

MIAID 840.5 640 o 205 

MIA IV 958.5 871 795.0 o 

Table4. Tournament results at depth 8. 

Evaluator MIAI MIA II MIAID MIA IV 

MIAI o 97.5 137.5 44.5 

MIA II 902.5 o 359.5 121.5 

MIAID 862.5 640.5 o 234.5 

MIA IV 955.5 878.5 765.5 o 

Table5. Tournament results at depth 10. 

In Tables 2-5 the results of the tournaments are given for searches to depth 4, 

6, 8, and 10, respectively. MIA N defeats the previous evaluators of MIA with 

ease. Even the strong MIA III is not able to score more than 20 to 25 percent 

of the points against MIA N. Although MIA II's only majorimprovement is 

a primitive mobility component, it did not only outperform MIA I, but it also 

played much better against MIA III and N than MIA I did. Interestingly, the 

weak MIA I performs worse at deep searches, whereas the opposite holds for 

the strong MIA N evaluator. A reason rnight be that at the one hand a deep 

search is not able to compensate the lack of knowledge of MIA I, while at the 

other hand a deep search exploits more of the potential of MIA N. 
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5. Conclusions and Future Research 

In this paper we have seen that MIA IV defeats the older evaluators by large 

margins. Most additions of MIA IV in knowledge are quite simple to evaluate 

and lead to big rewards in playing strength. It turns out that MIA IV even 

performs better at deeper searches. 

More patterns of blocked pieces, better distinction of move types in the mo

bility component, and additional knowledge whether a connection is important 

are some of the issues which could improve the evaluator. There is stiH room 

to fine tune certain weights and parameters in the evaluation function. Until 

now the authors of the strong programs YL and MoNA have not published 

the details oftheir programs' evaluators. lftheir knowledge becomes available, 

combining their ideas with MIA IV would probably further increase the playing 

strength significantly. 
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Appendix: Start Positions 

Below the positions are given, which are used in the experiments of Section 4. 
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