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ABSTRACT

Cloud computing promises a number of advantages for the de-
ployment of data-intensive applications. One important promise
is reduced cost with a pay-as-you-go business model. Another
promise is (virtually) unlimited throughput by adding servers if
the workload increases. This paper lists alternative architectures
to effect cloud computing for database applications and reports on
the results of a comprehensive evaluation of existing commercial
cloud services that have adopted these architectures. The focus of
this work is on transaction processing (i.e., read and update work-
loads), rather than analytics or OLAP workloads, which have re-
cently gained a great deal of attention. The results are surprising
in several ways. Most importantly, it seems that all major vendors
have adopted a different architecture for their cloud services. As a
result, the cost and performance of the services vary significantly
depending on the workload.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation (efficiency
and effectiveness); H.2.4 [Systems]: Distributed databases; K.6.0
[General]: Economics

General Terms

Experimentation, Measurement, Performance, Economics

Keywords

Cloud Computing, Benchmark, Performance Evaluation, Cloud Pro-
vider, Cloud DB, Transaction Processing, Cost

1. INTRODUCTION
Recently, there has been a great deal of hype about cloud com-

puting. Cloud computing is on the top of Gartner’s list of the ten
most disruptive technologies of the next years [14]. All major soft-
ware vendors and many start-ups have jumped on the bandwagon
and claim that they are either cloud-enabled or cloud-enabling.

Cloud computing makes several promises. It promises a reduc-
ed time-to-market by removing or simplifying the time-consuming
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hardware provisioning, purchasing, and deployment processes. It
promises cost reductions in several ways. First, it promises to turn
capital costs into operational costs by adopting a pay-as-you-go
business model. Second, it promises a better (close to 100 per-
cent) utilization of the hardware resources. Cloud computing is,
therefore, often considered a critical technology for green comput-
ing. Furthermore, cloud computing reduces operational cost and
pain by automating IT tasks such as security patches and fail-over.
In terms of performance, cloud computing promises (virtually) infi-
nite scalability so that IT administrators need not worry about peak
workloads. Finally, cloud computing promises improved flexibility
in the utilization and management of both software and hardware
which translates into savings in both time-to-market and cost.

As of today, a number of products have been launched. In par-
ticular, three of the big players of the IT industry, namely Amazon,
Google, and Microsoft, have made product offerings. All these
offerings have in common that they are available to a general audi-
ence by packaging cloud computing technology as a service, which
can be activated from any personal computer via a simple REST in-
terface. Also, all these offerings are geared towards delivering on
the key promises of cloud computing and their adoption in the IT
market place is rapidly growing.

The goal of this paper is to set a first yardstone in evaluating the
current offerings. Using the database and workload of the TPC-W
benchmark, we assessed Amazon, Google, and Microsoft’s offer-
ings and compared the results to the results obtained with a more
traditional approach of running the TPC-W benchmark on a Java
application server and an off-the-shelf relational database system.
In particular, we wanted to address the following questions:

• How well do the offerings scale with an increasing work-
load? Can indeed a (virtually) infinite throughput be achieved?

• How expensive are these offerings and how does their cost /
performance ratio (i.e., bang for the buck) compare?

• How predictable is the cost with regard to changes in the
workload?

Obviously, the results reported in this paper are just a snapshot of
the current state-of-the-art. The contribution is to establish a frame-
work that allows vendors to gradually improve their services and
allows users to compare products.

As will be shown, our experiments resulted in a number of sur-
prises. Even though, many services look similar from the outside
(e.g., Microsoft Azure and Amazon Web Services price matrixes
are almost identical in terms of network bandwidth, storage cost,
and CPU cost), the services vary dramatically when it comes to
end-to-end performance, scalability, and cost. Maybe even more
surprising are the differences in the architectures that effect large-
scale data management and transaction workloads in the cloud.
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While most (traditional) general-purpose database systems (e.g.,
DB2, MySQL, Oracle 11, Postgres, SQL Server) share roughly
the same "textbook" architecture and data structures (e.g., dynamic
programming, B-tree indexes, write-ahead logging) [26], the differ-
ences in the implementation of cloud services are immense. While
it is too early to come up with a textbook architecture for cloud ser-
vices, this paper tries to look behind the scenes, classify the archi-
tectural variants, and set the stage for a comparison of the different
architectural variants with regard to performance and cost.

The remainder of this paper is structured as follows: Section 2
summarizes related work. Section 3 describes alternative database
architectures for transaction processing in the cloud. Section 4
gives an overview of the services and variants that we have used
for the experiments and which represent the different architectures
described in Section 3. Section 5 details the benchmark and ex-
perimental environment. Section 6 presents the results of the ex-
periments. Section 7 contains conclusions and avenues for future
research.

2. RELATED WORK
This work follows a long tradition in the database community

to benchmark new breeds of data management systems as soon as
the first products appear on the market place. The first work in that
direction was the famous Wisconsin benchmark [10] which eventu-
ally resulted in the series of standardized TPC benchmarks for as-
sessing database system performance and cost for different work-
loads; e.g., TPC-C and TPC-E for OLTP, TPC-H for OLAP, and
TPC-W and TPC-App for whole web application stacks. Further-
more, a number of benchmarks have been developed for special-
purpose database systems; e.g., OO7 for object-oriented databases
[6], Bucky for object-relational databases [7], XMark for XML
databases [21], and Sequoia for scientific databases [25]. Of course,
there have also been numerous performance studies on various as-
pects of application servers, database systems, distributed database
systems, and specific components of cloud computing infrastruc-
tures (e.g., DHTs). In a recent paper, the performance of relational
database systems which run in a virtual machine has been studied
[16]. Obviously, all these results are relevant. Rather than assess-
ing individual components, however, the goal of our project was
to measure the end-to-end performance of alternative architectures
for the whole web application stack. One paper that particularly
inspired our work is the classic paper on client-server database ar-
chitectures [11].

With the emergence of cloud computing, several studies have as-
sessed the performance and scalability of cloud computing infras-
tructures. In the database community recent work compared the
performance of Hadoop versus the more traditional (SQL-based)
database systems [19]. That work focusses on read-only, large-
scale OLAP workloads whereas our work is focussed on OLTP
workloads. The results of a related study on cost-consistency trade-
offs for OLTP workloads in the cloud have been reported in [15].
Berkeley’s Cloudstone project is the most relevant related work.
Cloudstone specifies a database and workload for studying cloud
infrastructures [23] and defines performance and cost metrics to
compare alternative systems. Indeed, we could have used the Cloud-
stone workload for our experiments but we chose the TPC-W bench-
mark because of its popularity and wide-spread acceptance in the
community. This work is based on two previous position papers:
[12] suggests to study the cost in addition to latency and through-
put as part of performance experiments. [2] proposes a series of
experiments in order to evaluate cloud computing infrastructures.
This work can be seen as an initial step towards implementing the
agenda proposed in [2]: It carries out the "scalability" and "cost"
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Figure 1: Classic Database Architecture

experiments proposed in [2]. Carrying out the "peak" and "fault
tolerance" experiments proposed in [2] is left for future work. One
paper that particularly inspired our work is the classic paper on
client-server database architectures [11].

3. DISTRIBUTED DATABASE ARCHITEC-
TURES

This section revisits distributed database architectures as they
are used in cloud-computing today. First, the classic multi-tier
database application architecture is described as a starting point.
Then, four variations of this architecture are described. These vari-
ations are based on simple principles of distributed databases such
as replication, partitioning, and caching. The interesting aspect is
how these concepts have been packaged and adopted by commer-
cial cloud services (Section 4).

3.1 Classic
As a starting point, Figure 1 shows the classic architecture used

for most database applications today (e.g., SAP R/3 [5]). Requests
from clients are dispatched by a load balancer (depicted as a carousel
in Figure 1) to an available machine which runs a web and appli-
cation server. The web server handles the (HTTP) requests from
clients and the application server executes the application logic
specified, e.g., in Java or C# with embedded SQL (or LINQ or
any other database programming language). The embedded SQL
is shipped to the database server which interprets this request, re-
turns a result, and possibly updates the database. For persistence,
the database server stores all data and logs on storage devices. The
interface between the database server and the storage system in-
volves shipping physical blocks of data (e.g., 64K blocks) using
get and put requests. Traditional storage systems use disks which
can be attached locally to the machine that runs the database server
or which can be organized in a storage area network (SAN). Figure
1 shows the variant in which the storage system is separate from
the database server (e.g., a SAN). Instead of disks, next genera-
tion storage systems could use solid-state disks, main memory, or
a combination of different storage media.

The classic architecture has a number of important advantages.
First, it allows to use "best-of-breed" components at all layers. As
a result, a healthy market with a number of competing products
has emerged at each layer. Second, the classic architecture allows
scalability and elasticity at the storage and web/application server
layers. For instance, if the throughput of the application needs to
be adjusted due to an increased interest of clients, then it is easy to
add machines at the web/application server layer in order to handle
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Figure 2: Partitioning Figure 3: Replication Figure 4: Distributed Control

the additional workload. Likewise, machines at that layer can be
turned off or used for a different purpose, if the workload drops. At
the storage layer, machines (or disks) can be added and removed in
order to increase the bandwidth of the storage system for increased
workloads and/or to deal with changes in the size of the database.

The potential bottleneck of the classic architecture is the database
server. If the database server is overloaded, the only way out is to
buy a bigger machine. The machines used as database servers tend
to be quite expensive because they must be provisioned for peak
workloads. Therefore, the classic architecture of Figure 1 has lim-
itations in both scalability and cost, two important goals of cloud
computing. The remainder of this section lists the architectures that
cloud providers have chosen in order to overcome these limitations
at the database server layer.

3.2 Partitioning
Figure 2 shows how the classic database architecture can be adap-

ted in order to make use of partitioning. The idea is simple: Rather
than having one database server control the whole database, the
database is logically partitioned and each partition is controlled by
a separate database server. In the database literature, many parti-
tioning schemes have been studied; e.g., vertical partitioning vs.
horizontal partitioning, round-robin vs. hashing vs. range parti-
tioning [8]. All these approaches are relevant and can be applied to
data management in the cloud.

In addition to the partition scheme, there are several variants of
the architecture of Figure 2. First, the partitioning can be trans-
parent or visible to the application programmer (obviously, trans-
parency is desirable.) Second, the storage can be attached to the
machines that run the database servers or dissociated in, say, a stor-
age area network (as shown in Figure 1). Figure 2 depicts the vari-
ant in which the access to the distributed database is transparent
and the storage is attached to each database server. In practice,
other variants can also be found (Section 4).

For cloud computing, the architecture of Figure 2 was first adop-
ted by Force.com, the platform that runs the Salesforce application
and was opened to run custom-made applications. In Force.com,
the partitioning key is the tenant. That is, the data is distributed
according to the application that generated and owns the data. The
partitioning involves the whole server-side application stack, in-
cluding the web and application servers. All requests to the same
tenant are handled by the same web, app, and database server. As
a result, Force.com is tuned to scale with the number of applica-
tions. However, the Force.com architecture does not support the
scalability of a single application beyond a single database server.
Therefore, we did not include Force.com in our performance study.
We expect that Force.com would show similar behavior as the vari-
ants that have adopted the classic architecture in our experiments.

Partitioning and the architecture of Figure 2 are a viable solution
towards achieving the promises of cloud computing. The database
servers can run on cheap machines, thereby using many machines
that each operate on a fairly small data set in order to sustain the
load. Partitioning, however, has scalability limitations with regard
to dealing with a fluctuating workload: Adding or removing ma-
chines in order to deal with a higher (or lower) query/update work-
load involves repartitioning the data and, therefore, moving data
between machines. In order to achieve better scalability and fault-
tolerance, partitioning needs to be combined with replication.

3.3 Replication
Figure 3 shows how replication can be used in a database archi-

tecture. Again, the idea is simple and has been studied extensively
in the past. As with partitioning, there are several database servers.
Each database server controls a copy of the whole database (or par-
tition of the database, if combined with partitioning). Furthermore,
there are many variants conceivable. Figure 3 shows a variant in
which the replication is transparent and the storage is associated to
the database servers. The most important design aspect of repli-
cation is the mechanism to keep the replicas consistent. The most
prominent protocol is ROWA (read-once, write all) based on a Mas-
ter copy [20]. If replication is not transparent, applications direct
all update requests to the database server which controls the Mas-
ter copy, and the Master server propagates all committed updates
to the satellites when these updates have been successfully com-
mitted. Applications can issue requests of read-only transactions
to any database server (Master or satellite). If replication is trans-
parent, then requests are routed automatically to the Master or a
satellite. In Figure 3, transparent replication is depicted. It shows
the Master server in red (the most left server).

Cheap hardware can be used in order to run the database servers.
In particular, the satellites can run on cheap off-the-shelf machines.
Furthermore, the architecture of Figure 3 can scale-out and down
nicely with the workload, if the workload is read-mostly. At any
point in time, a satellite server can be dropped in order to deal with
a decreasing workload. Adding a satellite server for an increasing
query workload involves copying the database from the Master (or
a satellite) to the new server. For update-intensive workloads, the
Master can become the bottleneck, as shown in Section 6.

Replication can be used in order to increase both the scalability
and the reliability of a system. A specific protocol to ensure reli-
ability based on replication was devised by Oracle as part of the
Oracle RAC product [18].

3.4 Distributed Control
Figure 4 shows an architecture that models the database system

as a distributed system. At first glance, this architecture looks sim-
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ilar to the Partitioning and Replication architectures shown in Fig-
ures 2 and 3. The differences are subtle, but they have huge im-
pact on the implementation, performance, and cost of a system.
The Distributed Control architecture can also be characterized as
a shared-disk architecture [24] with a loose coupling between the
nodes in order to achieve scalability.

In this architecture, the storage system is separated from the
database servers and the database servers access concurrently and
autonomously the shared data from the storage system. In order
to synchronize read and write access to the shared data, distributed
protocols which guarantee different levels of consistency can be ap-
plied. Again, a large variety of different protocols are conceivable
and the classic textbook that gives an overview of such protocols
and consistency levels is [27]. In order to reduce overheads, the
database tier is merged with the web and application server tier;
that is, the database access is affected as a library as part of the
application server, rather than providing separate database server
processes.

This architecture is potentially the best match for cloud com-
puting. It provides full scalability and elasticity at all tiers. Each
HTTP request can be routed to any (web/app/DB) server so that
full scalability can be achieved at that level. Furthermore, the data
can be replicated and partitioned in any way at the storage layer so
that scalability can be achieved at that level, too. Another feature
of this architecture is that cheap hardware can be used at all tiers.
This scalability, however, comes at a cost: Because of the CAP the-
orem [4], it is not possible to achieve consistency, availability, and
resilience to network partitioning at the same time. In the variant
of this architecture that we studied (Amazon S3, Section 4), consis-
tency was sacrificed and only a consistency level known as even-

tual consistency [29] was achieved. In database terms, eventual
consistency achieves durability and it can be tweaked to achieve
atomicity, but it does not comply with the isolation requirements of
database transactions (i.e., serializability).

3.5 Caching
Figure 5 shows how caching can be integrated at the database

server layer. Caching can be combined with any other architecture
(partitioning, replication, and distributed control). Again, the prin-
ciple is simple: The results of database queries are stored by dedi-
cated cache servers. Typically, these servers keep the query results
in their main memory so that accessing the cache is as fast as possi-
ble. Correspondingly, the set of caching servers is typically referred
to as MemCache. Memcached [9] is the most widely used open-
source software to support such distributed main-memory caches.

As for replication, there are many different schemes in order to
keep the cache consistent with regard to updates to the database.
Figure 5 depicts an approach in which the application controls cache
consistency. This approach has been adopted by Google AppEngine
which is the only studied cloud provider that operates a farm of
dedicated MemCache servers. Unfortunately, Google has not pub-
lished any details on its implementation of a MemCache.

Caching can also help the cloud computing promises with regard
to cost and scalability. Cheap machines can be used for caching.
Furthermore, adding and dropping MemCache machines is trivial
at any point in time.

4. CLOUD SERVICES
This section describes the alternative services offered by three

of the big players of cloud computing; namely Amazon (AWS),
Google, and Microsoft. Since there are no standards yet, these
services differ in many aspects: Business model, software compo-
nents used at all tiers, and the programming model. An overview
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Figure 5: Caching

of the differences and key characteristics is given in Table 1. For
the performance experiments presented in Section 6, the Archi-

tecture is most relevant; this line is, therefore, highlighted in Ta-
ble 1. Another relevant category is the HW configuration. For sev-
eral services, the user must configure how many virtual machines
are used and on which kind of servers these virtual machines are
deployed. Only Google AppEngine allocates fully automatically
hardware resources for all tiers depending on the workload. Sim-
pleDB and Azure automatically provision and adapt resources at
the "DB server" and "Storage" layers, but require manual configu-
ration of the HW resources at the web/app server layer. Amazon
provides a service, called AutoScaling, that can be used in order
to automatically scale-out and scale-down EC2 machines for the
web/app tier. In order to better control the experiments and focus
on the scalability at the database tier, however, we did not make use
of this service in our experiments.

4.1 Amazon (AWS)
Amazon is a so-called infrastructure as a service (IaaS) provider.

That is, Amazon provides a set of basic services to use computing
infrastructure (CPU cycles, storage, and network), install a plat-
form (e.g., a Tomcat web/app server and MySQL database server),
and run an application on that platform. Amazon, therefore, pro-
vides a great basis to implement different architectural variants.
The basic Amazon services used in the experiments reported in
this paper are EC2 (for CPU cycles), EBS (for a storage service
that can be mounted like a disk), and S3 (for storage that can be
used as a key-value store). Since these services could easily be
provided by other cloud providers, all architectural variants imple-
mented on top of Amazon’s infrastructure are declared as flexible

in Table 1. In the last two years, Amazon has also provided richer
services such as RDS and SimpleDB. These services are only avail-
able on the Amazon cloud. All the Amazon services are described
in full detail in [1] which also lists the prices for using each service.
The remainder of this section describes how we implemented five
different architectural variants using the Amazon services (AWS).

4.1.1 AWS MySQL

The first variant studied follows the classic architecture of Fig-
ure 1. This variant can be seen as a baseline for all experiments
because it follows a traditional (non cloud-enabled) model to de-
ploy an enterprise web application. In our implementation, we used
a varying number of EC2 machines in order to run the web/app
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AWS MySQL AWS MySQL/R AWS RDS AWS SimpleDB AWS S3 Google AppEng MS Azure

Business Model IaaS IaaS PaaS PaaS IaaS PaaS PaaS

Cloud Provider Flexible Flexible Amazon Amazon Flexible Google Microsoft

Web/app server Tomcat Tomcat Tomcat Tomcat Tomcat AppEngine .Net Azure

Database MySQL MySQL Rep MySQL SimpleDB none DataStore SQL Azure

Storage / File Sys. EBS EC2 & EBS - - S3 GFS Windows Azure

Consistency Repeatable Read Repeatable Read Repeatable Read Eventual Consistency Eventual Consistency Snapshot Isolation Snapshot Isolation

App-Language Java Java Java Java Java Java/AppEngine C#

DB-Language SQL SQL SQL SimpleDB Queries low-level API GQL SQL

Architecture Classic Replication Classic Part.+Repl. Distr. Contol Part.+Repl.(+C) Replication

HW Config. manual manual manual manual/automatic manual automatic manual/automatic

Table 1: Overview of Cloud Services
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Figure 6: Read/Write Performance EBS

servers and execute the (TPC-W benchmark) application logic. We
varied the number of EC2 machines depending on the workload.
As a combined web and (Java) application server, we used Tom-
cat Version 6.0.18. For the database server tier, we used MySQL
Version 5.0.51 with InnoDB, running on Ubuntu 8.04. The MySQL
server was run on a separate EC2 machine. As a storage system, we
used EBS for both the database and the logs. EBS guarantees per-
sistence (the EBS data is replicated). In theory, the database could
also be stored on the local disk of the EC2 machines that runs the
MySQL server. However, in that approach all data is lost if the EC2
machine fails. That is why this option was not considered in the ex-
periments. With regard to performance, Figure 6 compares the read
and write performance of EBS with that of a locally attached disk.
It can be seen that the read/write bandwidth of both options is in
the same ballpark.

4.1.2 AWS MySQL/R

In order to study the Replication architecture (Figure 3), we used
MySQL Replication Version 5.0.51 on a set of EC2 machines. In
this variant we used the (cheaper) local disks of the EC2 machines
for storing the database because the durability of the data was guar-
anteed by the Replication architecture. EBS was only used for the
logs of the Master copy. These logs are needed in order to fail-over
when the Master fails.

MySQL Replication uses the ROWA / Master copy protocol de-
scribed in Section 3.3 in order to synchronize all update requests,
whereas read requests from the applications can be processed by
any satellite. The replication is not transparent. Consequently, each
application server maintains a connection to the Master copy and
connections to one satellite. Requests of updating transactions are
handled by the Master, whereas requests of read-only transactions
are issued to the satellite associated to the application server. As
for AWS MySQL, Tomcat was used as an integrated web and ap-
plication server and the number of EC2 machines for that tier was
varied, depending on the workload.

We also experimented with MySQL Cluster Versions 5.0.51 and

7.0.8a. MySQL Cluster promises improved scale-out for a large
number of servers [17]. Unfortunately, both of these versions of
MySQL Cluster showed worse performance than the simple MySQL
system (AWS MySQL) in our experiments so that we do not show
the results in this paper. We have no explanation why we could not
reproduce the results of [17] in the Amazon cloud.

4.1.3 AWS RDS

In late 2009, Amazon released the relational database service,
RDS. In essence, RDS implements the same platform as provided
by the AWS MySQL approach described above. Therefore, we
expect both approaches to perform and cost similarly. The dif-
ference is that RDS is pre-packaged so that users do not need to
worry about managing the deployment, software patches, software
upgrades, and backups. RDS comes in five "sizes" ranging from
small to quadruple extra large database servers. Obviously, a small
server is sufficient for light workloads, whereas large servers are
needed for heavy workloads with high query and update through-
puts or complex queries. Accordingly, the prices for RDS vary
from USD 0.11 per hour (small) to USD 3.11 per hour (quadruple
extra large). This way, RDS implements scale-up on the database
tier. Since RDS is based on a Classic architecture, however, RDS
is not able to scale-out by adding database servers.

4.1.4 AWS SimpleDB

As mentioned at the beginning of this section, Amazon has also
its own database service, called SimpleDB. SimpleDB provides a
simple interface which allows to insert, update, and delete records.
Furthermore, it allows to retrieve records based on their key values
or based on ranges on primary and secondary keys. Details of the
implementation of SimpleDB have not been published. From per-
sonal communication with Amazon engineers, we have learnt that
the SimpleDB architecture can be best characterized as a combi-
nation of partitioning (Figure 2) and replication (Figure 3). Unlike
MySQL Replication, however, it does not synchronize concurrent
read and write accesses to different copies of the same data so that
it only supports a low level of consistency called eventual consis-
tency [29]. As of March 2010, SimpleDB also supports “consistent
read” as a higher level of consistency. Unfortunately, this release
came too late for consideration in our experiments.

At the application layer, the AWS SimpleDB variant is imple-
mented using the same configuration as the other AWS variants;
i.e., Tomcat with a varying number of EC2 machines. Since Sim-
pleDB does not support SQL, SQL operators such as joins and ag-
gregation had to be implemented at the application level. To do
so, we implemented a (Java) library with these SQL operations
and manually optimized SQL queries (i.e., join orders and meth-
ods). Obviously, this approach resulted in shipping all the relevant
base data from SimpleDB to the application servers and resulted in
poorer performance as the query shipping approach supported by
full-fledged SQL database systems.
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4.1.5 AWS S3

As a fourth architectural variant, we implemented the benchmark
directly on top of S3. This variant corresponds to the Distributed
Control architecture depicted in Figure 4. S3 only provides a low-
level put/get interface so that any higher-level services such as SQL
query processing and B-tree indexing had to be implemented as part
of the application. We did that as part of a library that provided
the basic database features for implementing the TPC-W bench-
mark. In order to improve performance, that library stored several
tuples in a single S3 object. Furthermore, the library implemented
a protocol in order to synchronize concurrent accesses from mul-
tiple application servers to the same S3 objects. For this purpose,
we used the basic protocol proposed in [3]. This protocol can be
implemented in a straightforward way on top of S3. As in the AWS

SimpleDB variant, this protocol only supports eventual consistency.
Higher levels of consistency can be implemented using the other
protocols of [3] but were not considered as part of our study in or-
der not to lose focus. To improve performance, caching of S3 ob-
jects was carried out in the application servers. In particular, S3 ob-
jects which represent B-tree index pages were aggressively cached
across transactions in the application servers. The basic protocol
described in [3] is also applicable to ensure correctness when data
and index pages are cached.

[3] uses SQS, a persistent queue provided by Amazon, in or-
der to implement the basic protocol for durability and eventual
consistency. We did not follow that recommendation and imple-
mented the basic protocol on our own implementation of queues.
Our queues were deployed on a varying number of EC2 machines
and EBS in order to store the logs of the queues persistently in the
event of failures. We varied the number of EC2 machines for this
purpose from one to five, depending on the workload. The TTL pe-
riod for caching was set to 120 seconds and the checkpoint interval
(defined in [3]) was set to 10 seconds. Checkpoints were effected
by a watchdog [3].

The integrated web/app/DB server made use of Tomcat and the
library to implement basic SQL constructs and consistency. We
varied the number of EC2 machines, again depending on the work-
load.

4.2 Google
Unlike Amazon, Google follows a platform as a service (PaaS)

only strategy. Google AppEngine is a service which enables to
deploy whole applications without providing control over the com-
puting resources. Google AppEngine automatically scales the re-
sources consumed by an application out and down, depending on
the workload. Google AppEngine supports Python and Java as pro-
gramming languages, both with embedded SQL for accessing the
database. We used the Java version of Google AppEngine with
Google SDK 1.2.4 and Data Mappings with JPA. Unfortunately,
Google only supports a simplified SQL dialect, referred to as GQL.
Whenever GQL was not sufficient, we implemented the missing
functionality in Java as part of a library in the same way as for the
AWS S3 and AWS SimpleDB variants. For instance, GQL does not
support group by, aggregate functions, joins, or LIKE predicates.
As for SimpleDB, Google has not published any details on its im-
plementation of GQL and a distributed database system. According
to [13], Google AppEngine has adopted a combined Partitioning
and Replication architecture (Figures 2 and 3).

One nice feature of Google AppEngine is that it supports a Mem-
Cache. Thus, Google AppEngine provides a convenient interface
that allows application programmers to put and retrieve objects
into a MemCache. If the MemCache is used, Google AppEngine

closely follows the architecture shown in Figure 5. We experi-
mented with both variants (caching and non-caching).

4.3 Microsoft
Microsoft has recently launched Azure, a set of cloud services

based on Windows, SQL Server, and .Net. To experiment with
Azure, we implemented the TPC-W benchmark in C# with embed-
ded SQL. In theory, other technology such as Java can also be de-
ployed on the Azure cloud, but then the libraries for accessing the
Azure database service and other Azure services are not available.
Like Amazon and Google, Microsoft has not yet published full de-
tails on the implementation of Azure. As stated in [22], Azure
adopted a Replication architecture (with Master-slave replication)
as shown in Figure 3. Therefore, Azure should be directly compa-
rable to the AWS MySQL/R variant.

All three cloud providers charge for storage, network traffic, and
CPU hours. They also have similar rates for several categories (e.g.,
CPU hours). There are, however, also subtle differences. Azure,
for instance, differs from Amazon and Google with regard to the
pricing of the SQL Azure database service: Rather than paying as
you go, Azure charges a monthly flat fee depending on the database
size with unlimited database connectivity.

5. EXPERIMENTAL ENVIRONMENT
This section describes the benchmark and experimental environ-

ment used for the experiments. The results of the experiments are
presented in the next section.

5.1 The TPC-W Benchmark
Since we were interested in the end-to-end performance of en-

terprise web applications that involve transaction processing, we
used the TPC-W benchmark [28]. Other benchmarks for OLTP
(such as TPC-C or TPC-E) emphasize the impact of the database
system on the overall performance and do not involve any sophis-
ticated application logic. Although the TPC organization has dep-
recated the TPC-W benchmark, it is still popular both in industry
and academia.

The TPC-W benchmark models an online bookstore with a mix
of fourteen different kinds of requests. These requests involve que-
ries such as searching for products, displaying products and up-
date functions such as the placement of an order. Furthermore, the
TPC-W benchmark specifies three kinds of workload mixes: (a)
browsing, (b) shopping, and (c) ordering. A workload mix speci-
fies the probability for each kind of request. In all the experiments
reported in this paper, the ordering mix was used because it is the
most update-intensive mix: About one third of the requests involve
an update of the database in the ordering mix. Finally, the TPC-
W benchmark allows to study different workloads with regard to
the request throughput. To this end, the TPC-W benchmark models
emulated browsers (EBs). Each EB simulates one user who issues a
request (according to the probabilities of the workload mix), waits
for the answer, and then issues the next request after a specified
waiting time. We varied the EB parameter from 1 (≈ 500 requests
per hour) to 9000 (≈ 1250 requests per second). In the ordering
mix a TPC-W request involves 6.6 HTTP requests on an average
because TPC-W web pages contain several embedded components
(e.g., images).

The TPC-W benchmark has two metrics. The first metric is a
throughput metric and measures the number of valid TPC-W re-
quests per second. This metric is abbreviated as WIPS and this
paper follows this notation. It is important that a request is only
valid and, thus, counted if it meets the response time requirements.
Depending on the kind of request, the allowed response time varies
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from 3 seconds to 20 seconds. Benchmark results may only be re-
ported if 90% of all requests of every category are valid and return
the complete answer within the allowed response time. It is illegal,
for instance, to drop all updates and achieve high WIPS with reads
only.

The second metric defined by the TPC-W benchmark is
Cost/WIPS. This metric relates the performance (i.e., WIPS) to
the total cost of ownership of a computer system. To this end, the
TPC-W benchmark gives exact rules on how to compute the cost of
a system. These rules had to be relaxed for this study because they
were not applicable to any of the cloud services studied. In all our
experiments, cost was computed by considering the bills we had to
pay.

In addition to the computation of the Cost/WIPS metric, we made
the following adjustments to the TPC-W benchmark:

• Benchmark Database: The TPC-W benchmark specifies that
the size of the benchmark database grows linearly with the
number of EBs. Since we were specifically interested in
the scalability of the services with regard to the transactional
workload and elasticity with changing workloads, we carried
out all experiments with a fixed benchmark database which
complies to a standard TPC-W database for 100 EBs. This
database involved 10,000 items and had 315 MB of raw data
which typically resulted in database sizes of about 1GB with
indexes (Section 6.5).

• Consistency: The TPC-W benchmark requires strong consis-
tency with ACID transactions. As shown in Table 1, several
variants do not support this level of consistency.

• Bestseller Query: One kind of TPC-W request, the so-called
bestseller query, could not be implemented using S3, Sim-
pleDB, and Google AE. Implementing this query at the ap-
plication level would have been prohibitive because almost
the whole database needs to be scanned for this query. To
avoid that all results are biased by this kind of request, we
replaced this query with a query that randomly returns a set
of products and that could be implemented efficiently on all
platforms.

• HTTP: The TPC-W benchmark requires the use of the HTTPS
protocol for secure client / server communication. As a sim-
plification, we used the HTTP protocol (no encryption).

5.2 Methodology, Metrics, and Implementa-
tion

The goal of this performance evaluation was to study the scala-
bility (with regard to throughput) and cost of alternative cloud ser-
vice offerings under different workloads. To this end, we imple-
mented and ran the TPC-W benchmark on the alternative services
listed in Section 4 and measured WIPS and cost, thereby varying
the EBs (i.e., number of simulated concurrent users). As mentioned
in the previous section, we varied the load from 1 EB (light work-
load) to 9000 EBs (heavy workload). We did not evaluate the other
promises of cloud computing such as availability, time-to-market,
or flexibility because these metrics are difficult to measure. In sum-
mary, the following metrics were measured:

• WIPS(EB): The throughput of valid requests per second de-
pending on the number of emulated browsers (EBs). The
higher, the better. (Valid means "meeting the response time
goal" as explained in the previous subsection.)

• Cost/WIPS(EB): The cost per WIPS, again depending on the
number of EBs. The lower, the better.

• CostPerDay(EB): The (projected) total cost of running the
benchmark with a certain number of EBs for 24 hours. The
lower, the better.

• s(Cost/WIPS): The standard deviation of the Cost/WIPS for
a set of different EB settings (from EB=1 to EB=max where
max is the EB value for which the highest throughput could
be achieved). This metric is a measure for the predictability
of cost of a service provider. Ideally, the Cost/WIPS does not
depend on the load and is therefore predictable. Therefore,
the lower s, the better.

In addition to these metrics, we measured the time and cost to bulk-
load the benchmark database as well as the size and monthly cost
to store the benchmark database.

Depending on the variant, we had two different experimental
setups in order to determine the cost and WIPS for each EB set-
ting. For the SimpleDB, S3, Google AppEngine (w/o caching) vari-
ants, we measured the WIPS for a number of EB settings (EB=1,
250, 500, 1000, 2000, 3000, 4000, and 9000, if possible) during
a period of 10 minutes. For these variants, we were not able to
measure the whole spectrum of EB settings for budget reasons.
For the three MySQL variants (MySQL, MySQL/R, and RDS) and
Azure we measured all possible EB settings in the range of EB=1
to EB=9000. This was done by starting with EB=1 and increas-
ing the workload by one EB every 0.4 seconds. In all cases, we
did a warm-up run of two minutes before each experimental run;
the cost and throughput of this two minute warm-up phase were
factored out in the results presented in this paper.

We did a number of additional experiments and measures in or-
der to guarantee the stability of the results. For MySQL, MySQL/R,
RDS, and Azure, all experiments were repeated seven times and the
average WIPS and cost of these seven runs are reported in this pa-
per. For the SimpleDB, S3, Google AE, and Google AE/C variants,
all experiments were repeated only three times, again, because of
budget constraints during this project. Furthermore, we ran several
data points for longer periods of time (up to thirty minutes) with
a fixed EB setting in order to see whether the providers would ad-
just their configuration to the workload. However, we could not
detect any such effects. Only for Microsoft Azure, we observed a
small discontinuity. In our first experiments with Azure, Azure be-
came shortly unavailable for EB=2000 and EB=5500. We believe
that at these points, Azure migrated the TPC-W database to bigger
machines so that the increased workloads could be sustained. This
effect happened only for the very first experiment with Azure. It
seems that Azure does not migrate databases back to less power-
ful machines when the workload decreases so that all subsequent
experiments on Azure were carried out on the (presumably) big
database machine. Overall, however, the results were surprisingly
stable and we had only one outlier in one of the MySQL experi-
ments. It is well known that the quality of service of cloud com-
puting providers varies, but a long term, detailed study on these
variances was beyond the scope of this work.

The experiments with AWS RDS and Microsoft Azure were car-
ried out in February 2010. The experiments with all other variants
were carried out in October 2009. (In October 2009, Azure and
RDS were not yet generally available.) Obviously, all providers
will make many changes that affect the results, just as hardware
and technology trends affect the results of any other performance
study. Nevertheless, we believe that the results of this study reveal
important insights into the properties of alternative architectures for
cloud computing platforms (Section 3).

In all experiments, the emulated browsers (EBs) of the TPC-W
benchmark were run on EC2 machines in the Amazon cloud. For
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the experiments with Google AppEngine and Azure, therefore, the
client machines were located naturally in different data centers than
the server machines that handled the requests. For fairness, we
made sure that EC2 client machines and EC2 server machines were
located in different data centers for all Amazon variants. This was
done by explicitly choosing a data center when starting the EC2
instances for clients and servers.

We used medium HIGH-CPU EC2 machines to run the web/app
servers in the Amazon cloud. Accordingly, we used medium ma-
chines to run the web/app servers in the Azure cloud. The medium
EC2 and Azure machines have roughly the same performance and
cost so that the results are directly comparable. Furthermore, we
adjusted the number of machines that ran the web/app servers man-
ually in the Amazon and Azure clouds. With the help of separate
experiments (not reported here), we discovered that one medium
server was able to sustain the load of 1500 EBs. Correspondingly,
we provisioned one web/app server per 1500 EBs, up to six ma-
chines for the maximum workload of 9000 EBs. In the S3 variant,
an integrated web/app/DB server was only able to sustain 900 EBs
so that up to ten EC2 machines were used for this variant. We
pre-allocated EC2 and Azure machines in order to make sure that
they were available when needed (as the load increased). In the
experiments with Google AppEngine, we had no influence on the
choice and number of machines used for the web/app layer because
the servers were automatically provisioned by Google AppEngine
(Table 1).

We also used medium EC2 machines in order to run database
servers for AWS MySQL and AWS MySQL/R. If not stated oth-
erwise, we used a large machine for AWS RDS because the large
RDS machine has similar performance characteristics as a medium
EC2 machine. For all other variants, the database machines could
not be configured.

As mentioned in Section 2, we did not carry out any "peak" ex-
periments, as proposed in [2]. The purpose of "peak" experiments
is to evaluate how quickly a provider adapts to rapid changes in the
workload. As mentioned above, we could not observe any signif-
icant adjustments by the providers (with the noteworthy exception
of Azure in the first experimental run) so that we believe that our
results represent the steady-state behavior of the systems. A more
detailed analysis of "peak" performance and adaptability, however,
is an important avenue for future research.

In all experiments, the images used as part of the TPC-W bench-
mark (e.g., pictures of products) were stored in a separate file sys-
tem and not inside the database. In the Amazon cloud, all images
were stored on the local EC2 filesystem to save cost. In Azure, the
images were stored as part of the web project.

6. EXPERIMENTS AND RESULTS
This section presents the performance (WIPS) and cost ($) re-

sults of running the TPC-W benchmark on the eight cloud service
variants described in Section 4. In addition, this section shows the
running times and costs of bulkloading the benchmark database for
each variant.

6.1 Big Picture
Table 2 summarizes the overall results of this study. More de-

tailed analyses are given in the subsequent subsections. The first
column gives the maximum throughput (WIPS) that could be
achieved for each variant. The second and third columns list the
Cost per WIPS for low workloads (EB=1, second column) and high
workloads (EB=max, third column). The fourth column gives the
mean and variance of the cost for the whole range of workloads,
from EB=1 to EB=max. Here, EB=max refers to the maximum

Throughput Cost/WIPS (m$) Cost Predictability
(WIPS) Low TP High TP (mean ±s)

MySQL 477 0.635 0.005 0.015 ± 0.077

MySQL/R 454 2.334 0.005 0.043 ± 0.284

RDS 462 1.212 0.005 0.030 ± 0.154

SimpleDB 128 0.384 0.037 0.063 ± 0.089

S3 >1100 1.304 0.009 0.018 ± 0.098

Google AE 39 0.002 0.042 0.029 ± 0.016

Google AE/C 49 0.002 0.028 0.021 ± 0.011

Azure >1100 0.775 0.005 0.010 ± 0.058

Table 2: Throughput, Cost/WIPS, Cost Predictability

number of EBs that a variant could sustain; i.e., the EBs at which
the maximum throughput was achieved. In all columns, the winner
is high-lighted in bold and italics.

Looking at the first column (for throughput), it becomes clear
that only S3 and Azure are able to sustain high workloads of 9000
EBs. For all other variants, the database server becomes a bottle-
neck with a growing number of EBs. We believe that the S3 variant
with a Distributed Control architecture is able to scale even beyond
9000 EBs. This architecture is the only architecture which has no
potential bottleneck. Since it is based on a "Replication" architec-
ture (Section 3.3), Azure reaches its limits as soon as the Master
database server is overloaded. It seems, however, that Microsoft
makes use of high-end machines for the SQL Azure database layer
so that this limit was not reached for 9000 EBs.

Turning to the "Cost/WIPS" results, it can be observed that all
services, except Google AE, have lower Cost/WIPS at high work-
loads than at low workloads. Ideally, the "Cost/WIPS" should be
constant and should not depend on the workload. If the "Cost/WIPS"
is higher for a low workload than for a high workload, then the ser-
vice has fixed costs that need to be paid for, independent of the
usage of the service. For instance, all Amazon variants need to pay
for at least one EC2 instance in order to be able to respond to client
requests, even if there is no load at all. In addition, some Amazon
instances must pay for machines at the database layer. Likewise,
a monthly flat fee for SQL Azure and at least one machine for a
web/app server must be paid in order to keep a web application on-
line in the Azure cloud. Google AppEngine is the only variant that
does not have any fixed cost and is free if there is no load. Ob-
viously, such fixed costs are not compliant with the pay-as-you-go

paradigm promised by cloud computing.
The fourth column of Table 2 shows the mean and standard de-

viation of the Cost/WIPS metric over the whole range of EBs that
a service could sustain. With the exception of Google, all services
have a high variance which means that the cost for the service is
highly dependent on the load and, thus, becomes unpredictable (un-
less the system has a constant load).

6.2 Scale-out
Figure 7 shows the WIPS achieved by each variant as a func-

tion of EB. For readability, Figure 7 does not show the results for
Google AppEngine without caching and MySQL/R. Google App-
Engine without caching showed almost the same performance as
Google AppEngine with caching; a little worse in all cases, but the
differences were marginal and the shape of the curve is almost iden-
tical. MySQL/R showed almost the same performance as MySQL,
again, slightly worse in all cases, but the shape of the curve was
almost the same. For update-intensive workloads such as the or-
dering mix of the TPC-W benchmark, the Master becomes a bot-
tleneck and scaling out read-only transactions to satellites does not
result in any throughput gains.
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Figure 7: Comparison of Architectures [WIPS]

Figure 7 shows that the only two variants that scale are S3 and
Azure. As mentioned in the previous sub-section, S3 is the only
variant that is based on an architecture that has no bottlenecks.
Azure scales well for using powerful machines to run the database
servers. Both of these variants scale almost ideally up to 9000 EBs
and achieve the maximum throughput at 9000 EBs. For reference,
the ideal throughput of a perfect system is shown as a dotted line in
Figure 7. All other variants have scalability limits and cannot sus-
tain the load after a certain number of EBs. The baseline variants,
MySQL and RDS, reach their limits at about 3500 EBs; SimpleDB
at about 3000 EBs; and Google AE/C at a few hundred EBs.

The behavior of the alternative variants in overload situations is
surprisingly different. Figures 8 to 10 depict the throughput be-
havior of AWS RDS, SimpleDB, and Google AppEngine in more
detail. These figures show the ideal (dotted) and WIPS (green solid)
lines (as in Figure 7) and, in addition, the number of issued requests

that were submitted (yellow line). Recall from Section 5 that the
TPC-W benchmark specifies that a client (i.e., emulated browser)
waits for a response before issuing the next request. Thus, if a sys-
tem cannot sustain the load and does not produce responses any-
more, then the number of issued requests is lower than in an ideal
system. Obviously, the WIPS line must be below the issued re-
quests line. Figures 8 to 10 show the following effects in overload
situations for the different variants:

• RDS (Figure 8): The throughput of RDS plateaus after 3500
EBs and stays constant. That is, all requests return answers,
but a growing percentage of requests are not answered within
the response time constraints specified by the TPC-W bench-
mark. Recall that the MySQL variant is technically the same
as RDS and therefore has the same behavior (not shown for
brevity).

• SimpleDB (Figure 9): Figure 7 shows that the WIPS grow up
to about 3000 EBs and more than 200 WIPS. In fact, Sim-
pleDB was already overloaded at about 1000 EBs and 128
WIPS in our experiments. At this point, all write requests to
hot spots failed. In the TPC-W benchmark, item objects are
frequently updated and these update requests were dropped
by SimpleDB. According to the rules of the TPC-W bench-
mark, dropping more than 10% of the requests of any cat-
egory is illegal (Section 5). As a result, Table 2 reports on
a peak throughput of 128 WIPS for SimpleDB. In an over-
load situation, SimpleDB simply drops requests and returns
errors. As failure is immediate, the issued requests grow lin-
early with the number of EBs.

• Google AE/C (Figure 10): Like SimpleDB, Google AE (with

1 10 100 500 1000

MySQL 0.635 0.072 0.020 0.006 0.006

MySQL/R 2.334 0.238 0.034 0.008 0.006

RDS 1.211 0.126 0.032 0.008 0.006

SimpleDB 0.384 0.073 0.042 0.039 0.037

S3 1.304 0.206 0.042 0.019 0.011

Google AE 0.002 0.028 0.033 0.042 0.176

Google AE/C 0.002 0.018 0.026 0.028 0.134

Azure 0.775 0.084 0.023 0.006 0.006

Table 3: Cost per WIPS [m$], Vary EB

and without caching) drops requests in overload situations.
This effect can be observed by a linearly growing issued re-

quests curve in Figure 10. Unlike SimpleDB, Google AE is
fair and drops requests from all categories. That is, both read
and write requests of all kinds are dropped in overload sit-
uations. In these scale-out experiments, Google AppEngine
performs worst among all variants. This phenomena can be
explained by Google’s focus on supporting low-end work-
loads for the lowest possible price (see next section).

6.3 Cost

6.3.1 Cost/WIPS

Table 3 details the Cost/WIPS for the alternative variants with
varying EBs. As discussed in Section 6.1, Google AE is cheap-
est for low workloads (below 100 EBs) whereas Azure is cheap-
est for medium to large workloads (more than 100 EBs). The
three MySQL variants (MySQL, MySQL/R, and RDS) have (al-
most) the same cost as Azure for medium workloads (EB=100 and
EB=3000), but they are not able to sustain large workloads (Section
6.2).

The success of Google AE for small loads has two reasons. First,
Google AE is the only variant that has no fixed costs. There is only
a negligible monthly fee to store the database (see Table 6). Second,
at the time these experiments were carried out, Google gave a quota
of six CPU hours per day for free. That is, applications which are
below or slightly above this daily quota are particularly cheap.

Azure and the MySQL variants win for medium and large work-
loads because all these approaches can amortize their fixed cost for
these workloads. Azure SQL server has a fixed cost per month of
USD 100 for a database of up to 10 GB, independent of the number
of requests that need to be processed by the database. For MySQL
and MySQL/R, EC2 instances must be rented in order to keep the
database online. Likewise, RDS involves an hourly fixed fee so that
the cost per WIPS decreases in a load situation. It should be noted
that network traffic is cheaper with Google than with both Amazon
and Microsoft.

This cost analysis is more an artifact of the business models used
by Amazon, Google, and Microsoft. Obviously, all providers can
change their pricing any time, and Amazon has frequently done so
in the past. The cost analysis, however, indicates for which kind
of workload a service is optimized for: Google is obviously target-
ing the low end market whereas Microsoft seems to be focussing
more on enterprise customers. Furthermore, we believe that cost is
indeed a good indicator for the efficiency of an implementation.

6.3.2 Cost per Day

Table 4 shows the total cost per day for the alternative approaches
and a varying load (EBs). (A "-" indicates that the variant was not
able to sustain the load.) These results confirm the observations
made in the previous subsection: Google wins for small workloads;
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1 250 1000 3000 9000

MySQL 8.25 22.85 64.48 183.66 -

MySQL/R 16.40 31.01 72.90 194.44 -

RDS 14.75 29.47 70.92 187.88 -

SimpleDB 4.42 116.52 412.25 - -

S3 16.02 71.96 131.78 346.60 914.87

Google AE 0.02 82.25 - - -
Google AE/C 0.02 60.57 - - -

Azure 9.15 22.86 61.22 176.87 521.13

Table 4: Total Cost per Day [$], Vary EB

Azure wins for medium and large workloads. All the other variants
are somewhere in between. The three MySQL variants come close
to Azure in the range of workloads that they sustain. Again, Azure
and the three MySQL variants roughly share the same architectural
principles ("Classic" and "Replication" with Master copy architec-
tures). SimpleDB is an outlier in this experiment. With the current
pricing scheme, SimpleDB is an exceptionally expensive service.
For a large number of EBs, the high cost of SimpleDB is partic-
ularly annoying because users must pay even though SimpleDB
drops many requests and is not able to sustain the workload.

Turning to the S3 cost in Table 4, the total cost grows linearly
with the workload. This behavior is exactly what one would ex-
pect from a pay-as-you-go model. For S3, the high cost is matched
by high throughputs so that the high cost for S3 at high workloads
is tolerable. This observation is in line with a good Cost/WIPS
metric for S3 and high workloads (Table 3). Nevertheless, S3 is
indeed more expensive than all the other approaches (except Sim-
pleDB) for most workloads. This phenomenon can be explained
by Amazon’s pricing model for EBS and S3. For instance, a write
operation to S3 is hundred times more expensive than a write op-
eration to EBS which is used in the MySQL variants. Amazon can
justify this difference because S3 supports concurrent updates with
an eventual consistency policy whereas EBS only supports a single
writer (and reader) at a time.

6.3.3 Cost Analysis

Figure 11 shows the cost per day spent on network traffic, CPUs,
and storage. The network traffic is depicted in red. Network traffic
costs are purely variable costs which entirely depend on the work-
load. The CPU cost has a variable and a fixed component. In Figure
11, the fixed CPU cost is shown in orange, and the variable CPU
cost is shown in yellow. Fixed CPU costs are required to reserve
machines. Variable CPU costs are incurred by surcharges of actual
usage. For instance, the cost of an EC2 instance depends on the us-
age. Storage costs also have a fixed and variable component. The
fixed storage costs are the monthly costs for storing the database.
The variable storage costs are the costs per request to fetch and
put data into the database. As will be shown in Section 6.5, the
fixed storage costs were neglible for our experiments so that Figure
11 shows the aggregated storage cost (fixed + variable) as a single
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Figure 11: Cost Factors, 250 EBs [$]

storage cost metric in blue. Figure 11 shows this cost breakdown by
resource (network, CPU, and storage) for each variant for EB=250.
Again, the results for MySQL/R and Google AE without caching
are omitted for brevity (they are similar to MySQL and Google
AE/C, respectively).

Figure 11 shows that the total cost for the MySQL variant is
dominated by network costs for EB=250. Another significant fac-
tor is the (fixed) cost for the reservation of EC2 instances for the
web/app and database servers. All other cost factors are negligible.
For SimpleDB, the total cost is dominated by the (variable) cost for
the compute hours spent in order to query and update SimpleDB.
As mentioned in the previous subsection, SimpleDB is an expen-
sive service. For the SimpleDB variant, all other cost factors are
in the same order as for the other variants. The S3 variant has a
significant cost factor for storage because the cost of retrieving and
putting data to S3 is significant compared to the cost of retrieving
and putting data to EBS (as mentioned in the previous subsection).
All other cost factors of the S3 variant are comparable to the cost
factors of the other variants implemented on the Amazon cloud.

Looking at the Google cloud, it can be seen that Google AE is the
only variant that has no fixed costs for reserving CPUs. All the CPU
cost is variable, but even at a moderate workload of 250 EBs, it can
be considerable. Nevertheless, the absence of any fixed cost (there
is only a negligible fixed cost factor for storing the database in the
Google cloud), makes Google so attractive for small applications.

Again, Azure seems to be targeting a complementary market seg-
ment as compared to Google. Microsoft charges a fixed price to re-
serve machines for the application and database servers. However,
once this fee has been paid, there are no variable costs for actually
using these machines.

Figures 12 to 17 confirm these results. These figures visualize
the percentage of each cost factor in each variant, depending on the
workload. Figures 12 and 13 for MySQL and RDS are mostly red,
as network cost dominates the overall cost for these two variant al-
most independent of the workload. Only for small workloads (EB
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Figure 15: S3: Cost Fact., Vary EB Figure 16: AE/C: Cost Fact., Vary EB Figure 17: Azure: Cost Fact., Vary EB

< 100), the cost for reserving machines is significant (depicted or-
ange). An interesting effect is the zig-zag in both figures: Every
step (at a spacing of 1500 EBs) indicates that an additional EC2
instance was added at the web/app layer in order to sustain the ad-
ditional workload.

Figure 14 confirms that the cost of the SimpleDB variant is dom-
inated by the cost of querying and updating the SimpleDB service.
Correspondingly, Figure 15 shows that for high workloads (EB >

1000), the cost of the Distributed Control architecture implemented
on top of S3 is dominated by the usage of the AWS S3 service.
Only for small workloads, the cost is dominated by the fixed cost
of reserving EC2 machines and network traffic.

Figure 16 confirms that the dominant cost for Google AE is the
(variable) CPU cost. Only for very small workloads (EB < 10), the
cost of Google AE/C is dominated by storage costs (blue), but for
these workloads the overall cost is negligible (in the order of a few
cents). In contrast, Figure 17 is mostly red, confirming that the cost
of Azure is dominated by network traffic - just as for the MySQL
variants. Figure 17 also has the same zig zag as Figures 12 and 13
for adding a new web/app server for each 1500 EBs.

Again, these cost results are an artifact of the pricing models of
the providers. The results are likely to change soon as the competi-
tion between the three cloud providers tightens. Nevertheless, it is
important to understand the cost factors of a system. In the past, for
instance, the (variable) cost for CPU time has dropped faster than
the cost for network traffic.

6.4 Scale-up
One of the goals of cloud computing is to scale-out. That is,

provide increased throughput with a growing number of machines.
Nevertheless, some cloud providers also support scale-up options.
For the "Classic", "Partitioning", and "Replication" architectures
described in Section 3, such scale-up options are important because
the database server can become the bottleneck and scaling-up the
database server is the only way to achieve higher throughput. Con-
cretely, Amazon RDS provides a scale-up option. Table 5 shows
the overall results in terms of throughput, cost/WIPS, and cost pre-
dictability. It can be seen that a larger database machine is able to
sustain a higher workload, as expected. However, even the biggest
RDS machine is not able to sustain 9000 EBs and a throughput of

Throughput Cost/WIPS (m$) Cost Predictability
(WIPS) Low TP High TP (mean ±s)

RDS Small 171 0.564 0.005 0.033 ± 0.119

RDS Large 462 1.212 0.005 0.030 ± 0.154

RDS 4 XLarge 767 6.431 0.006 0.071 ± 0.613

Table 5: RDS Scale-Up: Throughput, Cost/WIPS, Cost Pre-
dictability

more than 1000 WIPS. Obviously, a bigger machine increases the
fixed cost of the system (poor cost/WIPS for low workloads) and
consequently, decreases the cost predictability (i.e., increases the
variance).

6.5 Bulkloading
For completeness, Table 6 shows the bulkloading times and costs

as well as the database size and monthly storage costs for the alter-
native variants. Again, the winners are shown in bold and italics.
In all cases, the best possible offering for bulkloading the database
was used. For MySQL, the data was inserted using a JDBC con-
nection. For SimpleDB, we used the batch-put operation which is
able to store 25 records at once. S3 has no specific bulkloading sup-
port so that the data was loaded using the standard protocol of [3].
For Google AE, we made use of a Python script to enable Google’s
batch import for the DataStore. For Azure, the SQL Azure Migra-
tion Wizard was used. In all, MySQL was the clear winner in this
category. MySQL/R had exactly three times the time and cost of
MySQL because we had a replication factor of three for MySQL/R.

Turning to the size of the database and storage cost per month
(the last two columns of Table 6), it can be seen that Azure is the
winner. Overall, however, the storage costs are negligable and are
not an important factor for the overall cost (Section 6.3). It should
be noted that for all variants, except MySQL, the monthly stor-
age cost grows linearly with the size of the database. The MySQL
variant is based on EBS for storing the database (Section 4.1.1)
and the cost function of EBS is more complex. In a prudent set-
up, EBS resources are overprovisioned because if an EBS device
is full, then a new EBS device with larger capacity must be provi-
sioned and the data must be copied from the old to the new EBS
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BL Time BL Cost DB Size Storage Cost / Month
(h:mm) ($) (GB) ($)

MySQL 0:10 0.17 0.81 > 0.1

MySQL/R 0:30 0.51 2.43 0.1

RDS 0:07 0.46 - 0.1

SimpleDB 1:50 5.16 1.32 0.33

S3 1:33 0.44 0.99 0.15

Goolge AE 30:10 11.69 4.28 0.64

Google AE/C 30:10 11.69 4.28 0.64
Azure 0:23 0.36 0.38 0.0

Table 6: Bulkloading Time and Cost; Database Size and Cost

device. Obviously, copying data is expensive so that the storage
must be overprovisioned in order to avoid these incidents.

7. CONCLUSION
This paper presented the results of a first study of the end-to-end

performance and cost of running enterprise web applications with
OLTP workloads on alternative cloud services. Since the market is
still immature, the alternative services varied greatly both in cost
and performance. Most services had significant scalability issues.
An interesting observation was to see how the alternative services
behave in overload situations. With regard to cost, it became clear
that the alternative providers have different business models and
target different kinds of applications: Google seems to be more in-
terested in small applications with light workloads whereas Azure
is currently the most affordable service for medium to large ser-
vices. Public clouds are often criticized for a lack of support to
upload large data volumes. This observation could be confirmed.
It is still difficult to upload, say, 1 TB or more of raw data through
the APIs provided by the providers.

The more fundamental question of what is the right data man-
agement architecture for cloud computing could not be answered.
It is still unclear whether the observed results are an artifact of the
level of maturity of the studied services or fundamental to the cho-
sen architecture. We hope that this work has pathed the way to a
continuous monitoring of progress on alternative approaches and
products for data management in the cloud.
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