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An evaluation of ANN methods for estimating the lengths

of hydraulic jumps in U-shaped channel

Larbi Houichi, Noureddine Dechemi, Salim Heddam and Bachir Achour
ABSTRACT
Modelling of hydraulic characteristics of jump using theoretical and empirical models has always

been a difficult task. The length of jump may be defined as the distance measured from the toe of the

jump to the location of the surface rise. Due to high turbulence this length cannot be determined

easily by theory. However, it has been investigated experimentally so as to design the stilling basins

with hydraulic jumps. In this work, the control of a hydraulic jump by broad-crested sills in a U-

shaped channel is recalled theoretically and experimentally examined. The study begins with a

multiple regression (MR) analysis. Then, and in order to model the relative lengths of hydraulic jumps,

we have implemented and evaluated two different artificial neural networks (ANN): multilayer

perceptron neural network (MLPNN) and generalized regression neural network (GRNN). The results

demonstrate the predictive strength of GRNN and its potential to predict hydraulic problems with an

adaptive spread value. However, the MLPNN model remains best classified by these indexes of

performance.
doi: 10.2166/hydro.2012.138

://iwaponline.com/jh/article-pdf/15/1/147/386897/147.pdf
Larbi Houichi
Research Laboratory in Applied Hydraulics,
Department of hydraulics,
University of Batna,
Algeria

Noureddine Dechemi
Laboratory Construction and Environment,
Polytechnical National School,
Alger,
Algeria

Salim Heddam (corresponding author)
Faculty of Science,
Department of Agronomy,
University of Skikda,
Algeria
E-mail: heddamsalim@yahoo.fr

Bachir Achour
Research Laboratory in Subterranean and Surface

hydraulics,
University of Biskra,
Algeria
Key words | artificial neural network, GRNN, lengths of hydraulic jump, MLPNN, MR, U-channel
NOMENCLATURE INTRODUCTION
A
 Cross-sectional area of flow [m2]
D
 Diameter [m]
Fr
 Froude number [–]
Lj
 Length of jump [m]
Q
 Discharge [m3/s]
g
 Acceleration due to gravity [m/s2]
h
 Depth of flow [m]
q
 Specific discharge [–]
y
 Relative depth of flow [–]
θ1
 Angle for semicircular cross-sectional area [rad]
ABBREVIATIONS
ANN
 Artificial neural networks
GRNN
 Generalized regression neural network
MLPNN
 Multilayer perceptron neural network
MR
 Multiple regression
The hydraulic jump is the discontinuous transition between
supercritical and subcritical flow with varied or fixed

location (Vischer & Hager ), it is characterized by a

sudden increasing of the water surface with high turbulence

production. This phenomenon is an example of steady non-

uniform flow. Principally, the hydraulic jump is well known

to hydraulic engineers as a useful means of dissipating

excess energy of flowing water downstream of hydraulic

structures, such as spillways, chutes and sluices (Hager

). Some of the other practical applications are: e.g.

flow-metering flume, mixing of chemicals for water purifi-

cation and aerating water (Chow ; Kucukali & Cokgor

). In practice, the stilling basin is seldom designed to

confine the entire length of a free hydraulic jump on the

paved apron, because such a basin would be too expensive.

Consequently, accessories to control the jump are usually

installed in the basin. The main purpose of such control is

to shorten the range within which the jump will take place
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Figure 1 | Definition sketch for hydraulic jump in U-shaped horizontal channel; Area A1 in

semicircular and Area A2 in U.
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and thus to reduce the size and cost of the stilling basin

(Chow ).

The hydraulic jump in open non-rectangular channels

has been studied by many researchers. Mentioning in this

context the circular and U-shaped channel; in the circular

one, the jump was considered by Hager (), Stahl &

Hager (), Achour (), Dey (), Gargano &

Hager () and Mitchell (). Moreover in the U-

shaped one, the jump was also considered by Silvester

(), Rajaratnam (), Hager (), Houichi (),

Achour & Debabeche () and Afzal & Bushra ().

The length of jump may be defined as the distance measured

from the toe of the jump to the location of the surface rise

(Rajaratnam ). This definition was adopted and used

within the current study. In theory, the length cannot be

determined easily because of the effects of highly turbulent

flow. This phenomenon continuously modifies the internal

jump characteristics. Yet, it has been investigated exper-

imentally (Chow ; Kréménetsky et al. ). In nature,

turbulent flow, rollers and eddies, the random nature of sur-

face disturbances, and air entrainment, complicate the exact

determination of the two ends of a hydraulic jump. In prac-

tice, the end of a hydraulic jump is considered to be the

point from which the concrete coating is not necessary

any more (Lencastre ).

Neural networks have been successfully applied in a

number of diverse fields including hydraulic problems. In

their excellent paper, Coulibaly et al. () put forward a

full state-of-the-art review of research on artificial intelligence

(AI), especially concerning artificial neural networks (ANNs);

though few attempts have so far been made to analyse the

hydraulic jump phenomenon using AI. Recently Raikar et al.

() introduced the application of ANNs to determine the

end-depth-ratio for a smooth inverted semicircular channel

in all flow regimes. Omid et al. () adopted an ANN

approach to model sequent depth and jump length in gradu-

ally expanding jumps having rectangular and trapezoidal

sections for a wide range of divergent angles and side wall

slopes. ANN models were developed by Güven et al. ()

to simulate the mean pressure fluctuations beneath a hydrau-

lic jump occurring on sloping stilling basins. Especially,

generalized regression neural network (GRNN) is widely

used in different science activities and environment appli-

cations, such as in the work of Heddam et al. ().
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The main objective of the present study is the presen-

tation and evaluation of two different ANN techniques:

multilayer perceptron neural network (MLPNN) and

GRNN, in order to predict the relative length for hydraulic

jumps in a U-shaped channel controlled by broad-crested

sills.
THEORETICAL ANALYSIS

In a horizontal or weak slope channel, a solution to the

hydraulic jump under rapid flow transition circumstances

cannot be found using a specific energy diagram. Instead,

the momentum equation is used. This approach is perhaps

the most popular theoretical approach towards the hydrau-

lic jump. Using the definition sketch shown in Figure 1, a

theoretical equation is developed by Houichi () and

Achour & Debabeche () for the sequent depth (h1, h2)

of the hydraulic jump in U-shaped channels as:

32q2

θ1 � sinθ1 cosθ1
� θ1 � sinθ1 cosθ1ð Þcosθ1 � 2

3
1� sin3 θ1
� �

¼ 8q2

y2 � 1
2
þ π

8

� �þ 2y2 � 1þ π

2

� �
2y2 � 1ð Þ (1)

with:

y1 ¼ h1

D
<0:5, y2 ¼ h2

D
� 0:5, q ¼ Qffiffiffiffiffiffiffiffiffi

gD5
p

and:

θ1 ¼ cos�1 1� 2y1ð Þ, Fr1 ¼ 8q
ffiffiffiffiffiffiffiffiffiffiffiffi
sin θ1

p

(θ1 � sin θ1 cos θ1)
1:5



Figure 4 | Hydraulic jump controlled by a broad sill in U-channel.

149 L. Houichi et al. | Modelling the lengths of hydraulic jumps Journal of Hydroinformatics | 15.1 | 2013

Downloaded from http
by guest
on 04 August 2022
In Equation (1), q is specific discharge calculated know-

ing the discharge Q and the diameterD. θ1 is the angle at the

centre of the circle between the lines connecting it to the

water surface at the boundary, calculated knowing the first

sequent depth h1 and the diameter D. y1 and y2 are relative

sequent depth respectively upstream and downstream of

jump. Equation (1) which is implicit for the sequent depth

of hydraulic jump, may be solved by a trial and error pro-

cedure and can be graphically presented as shown in

Figure 2.
EXPERIMENTS AND EXPERIMENTAL RESULTS

Figures 3 and 4 show an overall view of the experimental

model. The experiments were performed in a horizontal

U-shaped channel, 6 m in length, 0.245 m in diameter and
Figure 2 | Theoretical variation of y2 with q for various values of y1 according to Equation

(1).

Figure 3 | Schematic view of experimental device.

://iwaponline.com/jh/article-pdf/15/1/147/386897/147.pdf
0.7 m in total depth. The semicircular bed was made of

PVC (polyvinyl chloride): it is surmounted by two vertical

side walls of which one is of metal and the other is of trans-

parent plexiglass allowing the visualization of the flow. In

each of the experiments, water is supplied through a

closed flume by an axial pump. The flows Q, measured by

a diaphragm flowmeter, range between 3 and 30 l/s. The

incident flow is generated by a convergent box (CB) to pro-

vide different initial flow depths and Froude numbers into

the channel. The toe of the hydraulic jump was pushed

near to the CB so that the opening a0 becomes similar to

the first sequent depth of the jump (h1≈ a0). The jumps

were controlled by a series of broad sills which were posi-

tioned at a known distance. The depths h2 of the flow

were measured using a point gauge with a reading accuracy

of± 0.5 mm that was placed on rails at the top of the chan-

nel. The lengths Lj of jumps were evaluated with a graduated

ribbon with a reading accuracy of ±0.1 m. The experimen-

tation related to six series of tests each corresponding to

one of six initial depths h1¼ 1.0, 1.60, 2.4, 3.4, 5 and

6.1 cm or y1¼ 0.0408, 0.0653, 0.0979, 0.13, 0.2041 and

0.2490. Low values of h1 were voluntarily considered in

order to define especially their influence on the relative

lengths of jump. Table 1 summarizes the experimental

data range. The appendix gives the obtained experimental
Table 1 | Experimental data range

Parameters Range

First sequence depth (h1) 1.0–6.1 cm

Second sequence depth (h2) 12.5–35 cm

Length of jump (Lj) 125–275 cm

Discharge (Q) 3.0–27.4 l/s

Incident Froude Number (Fr1) 2.46–25.45
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measurements (available online at http://www.iwaponline.

com/jh/015/138.pdf). All experimental values (0.04� y1�
0.25, 0.51� y2� 1.43 and 0.03� q� 0.3) are included in

the complete theoretical range (0< y1< 0.5, 0.5< y2< 1.5

and 0< q< 0.5).
ARTIFICIAL NEURAL NETWORKS

Multilayer perceptron neural network (MLPNN)

ANNs are analogue computational systems whose structure

is inspired by studies of the human brain. ANNs may be

defined as structures comprised of densely interconnected

adaptive simple processing elements that are capable of per-

forming massively parallel computations for data processing

and knowledge representation. Many different architectures

of neural network have been developed to tackle a variety of

problems. In the current paper we have only investigated

one of the most simple and also most popular networks,

namely the MLPNN (Rumelhart & McClelland ),

because it is capable of approximating any function with a

finite number of discontinuities (Hornik et al. ) as

long as sufficient training is performed.

The MLPNN is a nonparametric technique for perform-

ing a wide variety of detection and estimation tasks (Haykin

). As shown in Figure 5, the MLPNN consists of three

layers: an input layer, an output layer and one or more

hidden layers. Each layer is composed of a predefined

number of neurons. The neurons in the input layer only

act as buffers for distributing the input signals ai to neurons

in the hidden layer, n is the number of input variables
Figure 5 | Schematic diagram of MLPNN.
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chosen in the input layer. Each neuron j in the hidden

layer sums up its input signals ai after weighting them with

the strengths of the respective connections wij from

the input layer, b is the bias term (or threshold) and

computes its output value yj of the neuron as a function

f of the sum:

yj ¼ f
Xn
i

wij ai þ b

 !
(2)

The output of neurons in the output layer is similarly

computed. The mean squared error (MSE) between the

desired and actual values of the output neurons E is

defined as:

E ¼ 1
2

XN
j

ydj � yi
� �2

(3)

where N is the number of data used, ydj is the desired value

of output neuron j and yj is the actual output of that neuron.

Each weight wji is adjusted to reduce E as rapidly as poss-

ible. The adjustment wji depends on the adopted training

algorithm (Haykin ).
Generalized regression neural network (GRNN)

The GRNN is a neural network architecture that can solve

any function approximation problems in the sense of esti-

mating a probability distribution function. The network

was first developed by Specht (). It approximates any

arbitrary function between input and output vectors,

drawing the function estimate directly from the training

data. We can also note that GRNNs perform regression

where the target variable is continuous. The GRNN

will consider a few non-linear aspects of the estimated

problem.

As shown in Figure 6, the GRNN consists of four layers,

including the input layer, pattern layer, summation layer and

output layer. The first layer is fully connected to the second

pattern layer where each unit represents a training input pat-

tern and its output is a measure of the distance of the input

from the stored patterns. Each pattern layer unit is

connected to the two neurons in the summation layer:

http://www.iwaponline.com/jh/015/138.pdf
http://www.iwaponline.com/jh/015/138.pdf
http://www.iwaponline.com/jh/015/138.pdf


Figure 7 | Matrix plot for all data and all pairs of variables.

Figure 6 | Schematic diagram of GRNN.
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S-summation neuron and D0-summation neuron. The S-

summation neuron computes the sum of the weighted out-

puts of the pattern layer while the D0-summation neuron

calculates the unweighted outputs of the pattern neurons.

The output layer merely divides the output of each S-

summation neuron by that of each D0-summation neuron,

yielding the predicted value Yi to an unknown input

vector x as:

Yi ¼

PM
i¼1

yi : exp �D0 x , xið Þ½ �
PM
i¼1

exp �D0 x , xið Þ½ �
(4)

where M indicates the number of training patterns and the

Gaussian D0 function in (4) is defined as:

D0 x; xið Þ ¼
Xm
k¼1

xk � xik
σ

� �2
(5)

yi is the weight connection between the ith neuron in the pat-

tern layer and the S-summation neuron, m is the number of

elements of an input vector, xk and xik are the jth element

of x and xi respectively. The σ notation, known as the

spread (or width), determines the generalization performance

of the GRNN. In general, a larger σ value may result in better

generalization: its optimal value is determined via trial and

error. It should be noted that in conventional GRNN appli-

cations all units in the pattern layer have the same single

spread.
://iwaponline.com/jh/article-pdf/15/1/147/386897/147.pdf
ANALYSES OF REGRESSION AND ANN MODELS

Jump lengths estimation approach

Empirical methods are basically regression models devel-

oped from fitting curves to measured experimental data.

Figure 7 shows the scatterplot matrix created as a matrix

of two variable scatterplots for all pairs of variables. All par-

ameters should be undertaken as inputs (q, y1, Fr1 and y2) to

explain the relative lengths of hydraulic jumps Lj/h2 or Lj/

h1. The choice is mainly based on Equation (1) which indi-

cates how parameters are connected and also based on

literature (Silvester ; Rajaratnam ; Hager ).

Excluding any variable induces unimproved results.

An approach equation can be obtained by multiple

regression (MR) analysis using the backward elimination

method for relative lengths of hydraulic jump Lj/h2 and

Lj/h1 knowing values of q, y1, Fr1 and y2.

Lj

h2
¼ 23:27þ 85:51q� 59:34y1 þ 0:37Fr1 � 24:71y2 (6)

Lj

h1
¼ 113:8þ 967:21q� 485:03y1 þ 12:35Fr1 � 266:29y2

(7)

Equations (6) and (7) consider simultaneously the

upstream influence of y1 and q.
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The experimental relative lengths Lj/h2exp, Lj/h1exp of

jumps are compared in Figures 8 and 9 with their counter-

parts Lj/h2pred, Lj/h1pred obtained by approach relations (6)

and (7). The rootMSEs for these models are equal to RMSE¼
0.87, 15.30 and the coefficients of determination equal to

R2¼ 0.930, 0.950 respectively.

Let us remember that RMSE describes the average

difference between experimental data and model predic-

tions, while coefficient of determination R2 is a measure of

how much of the original uncertainty in the data is

explained by the model.
Multilayer perceptron neural network models

Two alternatives have been considered to have two different

outputs. The output is the relative length value of hydraulic

jump Lj/h2 or Lj/h1. The inputs are (q, y1, Fr1 and y2) as

undertaken in the regression section.
Figure 8 | Predicted versus experimental Lj/h2 values for the MR model according to

Equation (6).

Figure 9 | Predicted versus experimental Lj/h1 values for the MR model according to

Equation (7).
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A difficult task with the MLPNN method is choosing

the number of hidden nodes. Yet, there is no theory to tell

how many hidden units are needed to approximate any

given function. The optimal determination of number of

neurons in the hidden layer is the issue of a trial (results

of Matlab) which has been verified by altering the

iteration number to achieve the best performance values

(RMSE and R2). The activation function used is the tansig

function.

Generalized regression neural network models

With the same considerations about inputs-outputs, (q, y1,

Fr1 and y2) and separately outputs (Lj/h2 or Lj/h1), the

robust model in this type of ANN is required to apply a

spread which will yield the most suitable performance

with an adaptive value and it proves useless to change this

in the present study.

Results of both models and different outputs

The best network structure is respectively given in Table 2

and Table 3 for the Lj/h2 and Lj/h1 outputs. As seen from

Table 2, the best model for predicting the relative length

values of hydraulic jumps Lj/h2 is MLPNN with the lowest

RMSE (0.41843) and highest R2 (0.99202) value for the vali-

dation phase, so GRNNs have a remarkably similar

performance.

The models consist of four inputs and seven neurons in

the hidden layer for the MLPNN and the spread value equal

to 0.3 for the GRNN. For both models, the graphical rep-

resentation is respectively given in Figures 10 and 11 for

training and validation phases.

As seen from Table 3, the best model for predicting

the relative length values of hydraulic jumps Lj/h1 is

also MLPNN which is characterized by the lowest

RMSE (4.90587) and highest R2 (0.99496) value for the

validation phase. It consists of 4 inputs and 3 neurons

in the hidden layer. The GRNN model with the same

spread value equal to 0.3 is also competing. The graphical

representation is given in Figures 12 and 13 for training

and validation phases for both models. Continually, in

the present study, both ANN models are better than the

MR model.



Table 3 | The performance values of MLPNN and GRNN models for Lj/h1 output

GRNN MLPNN MR

Performance index Training Validation Training Validation All data

R2 0.99857 0.98885 0.99567 0.99496 0.94715

RMSE 2.49140 7.37180 4.32344 4.90587 15.29641

Table 2 | The performance values of MLPNN and GRNN models for Lj/h2 output

GRNN MLPNN MR

Performance index Training Validation Training Validation All data

R2 0.99068 0.96304 0.99896 0.99202 0.92927

RMSE 0.30483 0.69109 0.10143 0.41843 0.87161

Figure 10 | Predicted versus experimental Lj/h2 values for the GRNN and MLPNN models

for training phase.

Figure 11 | Predicted versus experimental Lj/h2 values for the GRNN and MLPNN models

for validation phase.

Figure 12 | Predicted versus experimental Lj/h1 values for the GRPNN and MLPNN

models for training phase.

Figure 13 | Predicted versus experimental Lj/h1 values for the GRPNN and MLPNN

models for validation phase.
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By examining the tables of values and the graphs corre-

sponding, particularly in the validation phase, the results

also show that modelling the lengths of hydraulic jumps as
://iwaponline.com/jh/article-pdf/15/1/147/386897/147.pdf
Lj/h1 is more robust than the usual form Lj/h2. Moreover

this statement is confirmed for the MR model (R2¼
0.92927 for Lj/h2 and R2¼ 0.94715 for Lj/h1).
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CONCLUSIONS

Modelling the relative lengths of hydraulic jumps for con-

venient conceptions of hydraulic structures is very useful

when it is not easy to determine these lengths theoretically.

In this work we have used MR and ANN techniques to

predict the relative lengths Lj/h2 and Lj/h1. The compari-

son of these various models, considering all independent

variables (q, y1, y2, Fr1), shows that both MLPNN and

GRNN give comparable results for the training and the

validation. The best model for predicting is given by apply-

ing MLPNN technique with the tansig function of

activation. At the same time, GRNNs persist as a competi-

tive process by using an adaptive spread value equal to 0.3.

Besides, the study shows that both ANN models outper-

form the MR technique. By examining the tables of

values and the corresponding graphs, particularly in the

validation phase, the results also show that modelling the

lengths of hydraulic jumps as Lj/h1 is more robust than

the usual form Lj/h2. This remark is also confirmed for

the MR model.

In future, two possible extensions of our work can be

suggested: including other AI techniques to the same chan-

nel studied here, as well as extending the techniques already

used to study hydraulic jumps in the case of prismatic and

non-prismatic rough and sloped channels.
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