
An Evaluation of Automata Algorithms for

String Analysis?

Pieter Hooimeijer1 and Margus Veanes2

1 University of Virginia??

pieter@cs.virginia.edu

2 Microsoft Research
margus@microsoft.com

Abstract. There has been significant recent interest in automated rea-
soning techniques, in particular constraint solvers, for string variables.
These techniques support a wide range of clients, ranging from static
analysis to automated testing. The majority of string constraint solvers
rely on finite automata to support regular expression constraints. For
these approaches, performance depends critically on fast automata oper-
ations such as intersection, complementation, and determinization. Ex-
isting work in this area has not yet provided conclusive results as to
which core algorithms and data structures work best in practice.

In this paper, we study a comprehensive set of algorithms and data
structures for performing fast automata operations. Our goal is to pro-
vide an apples-to-apples comparison between techniques that are used in
current tools. To achieve this, we re-implemented a number of existing
techniques. We use an established set of regular expressions benchmarks
as an indicative workload. We also include several techniques that, to the
best of our knowledge, have not yet been used for string constraint solv-
ing. Our results show that there is a substantial performance difference
across techniques, which has implications for future tool design.

1 Introduction

There has been significant recent interest in decision procedures for string con-
straints. Traditionally, many analyses and automated testing approaches relied
on their own built-in model to reason about string values [5,21,8,9,29,23]. Recent
work on string analysis has focused on providing external decision procedures
that reason about strings [11,15,24,2,28,27,12]. The separation of string deci-
sion procedures from their client analyses is desirable because it allows for the
independent development of more scalable algorithms.

Existing string decision procedures vary significantly in terms of feature
sets. Although most tools support regular expression constraints in one form

? Microsoft Research Technical Report MSR-TR-2010-90, July 2010, Updated August
2010.

?? This work was done during an internship at Microsoft Research.

or another, there is no strong consensus on which features are necessary. Many
programming languages provide a variety of string manipulating functions. For
example, the user manual for PHP lists 111 distinct string manipulation func-
tions [20], and the System.Text namespace in the .NET class library contains
more than a dozen classes that deal with Unicode encodings [19]. Constraint
solving tools must strike a balance between expressive utility and other concerns
like scalability and generality.

In this paper, we focus on a subclass of string decision procedures that sup-
port regular expression constraints and use finite automata as their underlying
representation. This includes the DRPLE [11], JSA [5], and Rex [28,27] tools, as
well as a prototype from our recent work [12]. These tools are implemented in
different languages, they parse different subsets of common regular expression
idioms, they differ in how they use automata internally, and the automata data
structures themselves are different. However, each approach relies crucially on
the efficiency of basic automaton operations like intersection and determiniza-
tion/complementation. Existing work provides reasonable information on the
relative performance of the tools as a whole, but does not give any insight into
the relative efficiency of the individual data structures.

Our goal is to provide an apples-to-apples comparison between the core algo-
rithms that underlie these solvers. To achieve this, we have performed a faithful
re-implementation in C# of several often-used automaton data structures. We
also include several data structures that, to the best of our knowledge, have not
yet featured in existing work on string decision procedures. We conduct perfor-
mance experiments on an established set of string constraint benchmarks. We
use both ASCII and UTF-16 encodings where possible, to investigate the im-
pact of alphabet size on the various approaches. Our testing harness includes
a relatively full-featured regular expression parser that is based on the .NET
framework’s built-in parser. By fixing factors like the implementation language
and the front-end parser, and by including a relatively large set of regular ex-
pression features, we aim to provide practical insight into which data structures
are advisable for future string decision procedure work.

This paper makes the following contributions:

– To the best of our knowledge, we provide the first performance comparison
of automata data structures (and associated algorithms) designed for string
decision procedures. We pay special attention to isolating the core operations
of interest.

– We present several approaches that have not yet been used for string decision
procedures. We demonstrate that these approaches frequently out-perform
existing approaches.

The rest of this paper is structured as follows. Section 2 provides a brief ex-
ample that highlights the utility of string decision procedures in the context of
the Pex [26] unit testing framework. Section 3 gives formal definitions of the au-
tomata constructs of interest. Section 4 presents the design and implementation
of the data structures that we implemented. In Section 5, we provide experi-

2

mental results using those data structures. We discuss closely related work in
Section 6, and we conclude in Section 7.

2 Motivating Example

Before launching into the details of the automata operations of interest, we
briefly illustrate the motivation that underlies automaton-based string decision
procedures. To illustrate one concrete application scenario, consider the following
C# method:

bool IsValidEmail(string s)

{

string r1 = @"^[A-Za-z0-9]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$";

string r2 = @"^\d.*$";

if (System.Text.RegularExpressions.Regex.IsMatch(s, r1))

if (System.Text.RegularExpressions.Regex.IsMatch(s, r2))

return false; //branch 1

else

return true; //branch 2

else

return false; //branch 3

}

In the context of parameterized unit testing with Pex [26] one objective is to
generate values for the parameter s that provide branch coverage of the method.
There are three return branches. Pex uses symbolic execution to generate path
constraints and uses a constraint solver to solve those conditions for concrete
parameter values. If any of those constraints include string operations (such as
the use of IsMatch above), then we need a string decision procedure to solve
those constraints. Some of the techniques discussed in this paper have been
recently integrated into Pex. Note that characters in .NET use UTF-16 character
encoding by default; it is challenging to make string decision procedures scale to
such a large alphabet.

For this example, the path condition for branch 1 is s ∈ L(r1) ∧ s ∈ L(r2)
(e.g. s = "0@a.b"), the path condition for branch 2 is s ∈ L(r1) ∧ s /∈ L(r2)
(e.g. s = "a@b.c"), and the path condition for branch 3 is s /∈ L(r1) (e.g.
s = "a@..b"). Let A1 be the SFA for r1 and let A2 be the SFA for r2. Thus,
solving the path conditions correspond to generating members in L(A1)∩L(A2),
L(A1) \ L(A2), and {(L(A1)) (equivalently Σ∗ \L(A1)), respectively. Note that
if some path condition does not have a solution, this usually implies presence
of dead-code, the techniques can thus also be used to enhance code reachability
analysis.

3 Preliminaries

We assume familiarity with classical automata theory [13]. We work with a rep-
resentation of automata where several transitions from a source state to a target

3

state may be combined into a single symbolic move. Symbolic moves have labels
that denote sets of characters rather than individual characters. This representa-
tion naturally separates the structure of automata graph from the representation
used for the character sets that annotate the edges. In this context, classical fi-
nite automata can be viewed as a special case in which each label is a singleton
set. The following definition builds directly on the standard definition of finite
automata.

Definition 1. A Symbolic Finite Automaton or SFAA is a tuple (Q,Σ,∆, q0, F),
where Q is a finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial

state, F ⊆ Q is the set of final states and ∆ : Q× 2Σ ×Q is the move relation.

We indicate a component of an SFA A by using A as a subscript. The word
symbolic stems from the intension that a move (q, `, p) denotes the set of tran-

sitions [[(q, `, p)]]
def

= {(q, a, p) | a ∈ `}. We let [[∆]]
def

= ∪{[[ρ]] | ρ ∈ ∆}. An SFA A

denotes the finite automaton [[A]]
def

= (QA, ΣA, [[∆A]], q0A, FA). The language L(A)
accepted by A is the language L([[A]]) accepted by [[A]].

An εSFA A may in addition have moves where the label is ε, denoting the

corresponding epsilon move in [[A]]. Given a move ρ = (p, `, q), let Src(ρ)
def

=

p,Tgt(ρ)
def

= q,Lbl(ρ)
def

= `. We use the following notation for the set of moves

starting from a given state q in A: ∆A(q)
def

= {ρ | ρ ∈ ∆A,Src(ρ) = q} and

furthermore will allow lifting functions to sets. For example,∆A(Q)
def

= ∪{∆A(q) |

q ∈ Q}. We write ∆ε
A for the set of all epsilon moves in ∆A and ∆6 ε

A for ∆A \∆ε
A.

An εSFA A is clean if for all ρ ∈ ∆6 ε
A, Lbl (ρ) 6= ∅; A is normalized if for all q ∈ QA,

if ρ1, ρ2 ∈ ∆6 ε
A(q) and Tgt(ρ1) = Tgt(ρ2) then ρ1 = ρ2; A is total if for all states

q ∈ QA, ΣA =
⋃

ρ∈∆A(q) Lbl(ρ). For making an SFA A total, do the following:

for all q ∈ QA such that ` = {(
⋃

ρ∈∆A(q) Lbl(ρ)) 6= ∅, add (q, `, sink) to ∆A, and

add the state sink to QA and the move (sink, Σ, sink) to ∆A. Epsilon elimination
from an εSFA is straightforward and makes use of union [28]. Also, any SFA can
easily be made clean and normalized. When we say SFA we assume that epsilon
moves are not present.

/.-,()*+q4

Σ
--

Σ \ {2,b}
// 76540123'&%$!"#q5

Σ
qq

// /.-,()*+q0

ε

??

ε
// /.-,()*+q1

Σ

�� {2}
// /.-,()*+q2

{b}
// 76540123'&%$!"#q3

Σ
qq

Fig. 1. εSFA generated from regex 2b|[^2b].

We assume a translation
from regex (extended regular
expression) patterns to εSFAs
that follows closely the stan-
dard algorithm, see e.g., [13,
Section 2.5]. A sample regex and
corresponding εSFA are illustrated in Figure 1.

4 Automata Data structures and Algorithms

In this section, we describe the automaton data structures and algorithms of
interest. We assume a graph-based data structure for the automata; each tran-
sition edge is annotated with a data structure that represents the label of that

4

transition. Section 4.1 describes a the data structures we use for those annota-
tions. In Section 4.2, we discuss lazy and eager algorithms for two key operations
on automata: language intersection (using the cross product construction) and
language difference (using the subset construction). Later, in Section 5, we will
evaluate experimentally how well each data structure/algorithm combination
performs.

4.1 Representing character sets

We start by defining an interface for character set operations. This interface
represents all the operations that the higher-level automata algorithms use to
perform intersection and complementation. We then discuss several represen-
tations that can be used to implement this interface. A given representation
affects both the performance of the algorithms discussed below; it also affects
how effectively the algorithms can be combined with existing solvers.

Definition 2. A minterm of a finite nonempty sequence (`i)i∈I of nonempty
subsets of Σ is a sequence (`′i)i∈I where each `′i is `i or {(`i) and

⋂

i∈I `
′
i 6= ∅,

where
⋂

i∈I `
′
i is the set represented by the minterm.

`1
`2

Σ

(`1, `2) (`1, `2)(`1, `2)

(`1, `2)

Fig. 2. Intuition behind minterms of (`1, `2).

Intuitively, a minterm (`′1, `
′
2)

of a sequence (`1, `2) of two
nonempty subsets `1, `2 ⊆ Σ
represents a minimal nonempty
region `′1∩`

′
2 of a Venn diagram

for `1 and `2, see Figure 2. Note
that the collection of all minterms of a given sequence of nonempty sets over Σ
represents a partition of Σ.3

Character set solver interface:

Boolean operations: union (∪), intersection (∩), and complement ({).

Nonemptiness check: decide if a given set is nonempty.

Minterm generation: compute all minterms of a sequence of sets.

For any character set representation, we can use an algorithm similar to that
of Figure 3 to perform the minterm computation in terms of repeated comple-
mentation and intersections. This algorithm is similar in spirit to the standard
Quine-McCluskey algorithm for minimizing Boolean functions. We compute in-
tersections combinatorially in rank order; once a given combination reaches the
empty set at rank i, we know that derived combinations of rank i′ > i are nec-
essarily empty (and thus uninteresting). In practice, we use this algorithm for
every character set representation.

For each character-set representation we discuss how the above operations
are supported, and indicate how the minterm generation is implemented.

3 A partition of Σ is a collection of nonempty subsets of Σ such that every element of
Σ is in exactly one of these subsets.

5

Input: Finite nonempty sequence of nonempty sets (`i)i∈I .
Rank propagation: Iterate over ranks r ≤ |I| and construct Sr:

S0 = {∅}
Sr+1 = {J ∪ {i} | J ∈ Sr, i ∈ I \ J, `i ∩

⋂

j∈J `j 6= ∅}

Output: Set of all J ∈
⋃

r Sr such that (
⋂

i∈J `i) ∩ (
⋂

i∈I\J {(`i)) 6= ∅.

Fig. 3. Minterm generation algorithm.

Character sets as BDDs In the general case, regexes, and string operations
involving regexes, assume Unicode UTF-16 character encoding. This means that
characters correspond to 16-bit bit-vectors. For the special case of ASCII range
(resp. extended ASCII range) the number of bits is 7 (resp. 8). Independent of
the number of bits, the general idea behind the BDD encoding is that each bit
of a character corresponds to a variable of the BDD. The crucial point is to
determine a good variable order for the BDD encoding. In order to do so, we
considered typical uses of regexes, and in a separate evaluation determined an
order which yielded BDDs of small size.

Based on the evaluation, a good choice of order turned out to be one where the
highest bit has the lowest ordinal, in particular, for 16 bits, the MSB has ordinal
0 and the LSB has ordinal 15. This decision was in part based on the observation
that typical regexes make extensive use of predefined character patterns called
character classes where several bits are clustered and yield compact BDDs, such
as \w (matches any word character), \W (matches any non-word character), \d
(matches any decimal digit), p{Lu} (matches any single character in the Unicode
general category Lu that is an uppercase letter), etc. There are a total of 30
general Unicode categories and the character class \w is a union of 7 of those
categories (namely categories 0 (Lu), 1 (Ll), 2 (Lt), 3 (Lm), 4 (Lo), 8 (Nd) and 18
(Pc)). In total, the class \w alone denotes a set of characters consisting of 323
nonoverlapping ranges, totaling 47057 characters. Let βp denote the BDD of a
character pattern p. The BDD β\w has 1656 nodes. Note that Boolean operations
with the above set interpretation correspond directly to Boolean operations over
BDDs.

For example the pattern [\w-[\da-d]] denotes the set of all word characters
that are not decimal digits or characters a through d, i.e., β[\w−[\da−d]] = β\w ∩
{(β\d ∪ βa−d). We write [[β]] for the set of characters represented by β, thus for
example [[β1 ∩ β2]] = [[β1]]∩ [[β2]]. It is easy to write infeasible character patterns,
for example [\W-[\D]] denotes an empty set since [[β\d]] ⊂ [[β\w]] and

[[β\W ∩ {(β\D)]] = [[{(β\w) ∩ {({(β\d))]] = {([[β\w]]) ∩ [[β\d]].

Nonemptiness check of BDDs is trivial since the empty BDD β⊥ is unique.
Similarly, the BDD of all characters β> is unique. Except for β⊥ and β>, two
BDDs are not guaranteed to be identical by construction even though they are
isomorphic when representing the same sets. However, checking isomorphism
(equivalence) of BDDs is linear. Equivalence checking is used prior to calling the
minterm algorithm in order to eliminate duplicate sets from the input sequence.

6

Character sets as bitvector predicates A common alternative representa-
tion for character sets is to use interval arithmetic over bitvectors or integers.
Here we assume that we are working in the context of a constraint solver that
provides built-in support for bit vectors. We write bv

n for the sort of characters
used by the solver, which is assumed to be a sort of n-bit vectors for a given fixed
n ∈ {7, 8, 16}. Standard logic operations as well as standard arithmetic opera-
tions over bv

n, such as ‘≤’, are assumed to be built-in and can be used to form
predicates for expressing character ranges. Let ϕp(χ) denote a predicate (with
a single fixed free variable χ:bv

n) corresponding to the regex character pattern
p and let [[ϕp]] denote the set of all characters a for which ϕp(a) is true modulo
the built-in theories. For example, consider bv

7 and the character pattern \w,
the predicate ϕ\w is as follows where each disjunct corresponds to a Unicode
category (the Unicode categories 2 , 3 and 4 are empty for the ASCII character
range):

(‘A’ ≤ χ ∧ χ ≤ ‘Z’) ∨ (‘a’ ≤ χ ∧ χ ≤ ‘z’) ∨ (‘0’ ≤ χ ∧ χ ≤ ‘9’) ∨ χ = ‘ ’

where ‘..’ is the bitvector representation of a character. The Boolean opera-
tions are directly supported by the corresponding built-in logical operators. For
example [[ϕ[\w−[\da−d]]]] = [[ϕ\w ∧ ¬(ϕ\d ∨ ϕa−d)]] = [[ϕ\w]] ∩ {([[ϕ\d]] ∪ [[ϕa−d]])

For the ASCII range (or extended ASCII range), the direct range representa-
tion has several advantages by being succinct and taking advantage of the built-in
optimizations of the underlying solver. Based on our experiments though, for full
Unicode the representation produces predicates that do not scale. Instead, we
use if-then-else (Ite) terms, supported in all state-of-the-art constraint solvers,
to encode Shannon expansions, thus mimicking BDDs. An Ite-term is a term
Ite(ψ, t1, t2) that equals t1, if ψ is true; equals t2, otherwise. We explain the
main idea. Given a BDD β the corresponding predicate Ite[β] is constructed as
follows where all shared subterms are constructed only once (and cached) and
are thus maximally shared in the resulting term of the solver. Given a BDD β
(other than β⊥ or β>) we write BitIs0 (β) for the predicate over χ:bv

n, that is
true if and only if the i’th bit of χ is 0, where i = n− ordinal (β)− 1 (recall that
ordinal (β) is the reverse bit position).

Ite[β]
def

=

true, if β = β>;
false, if β = β⊥;
Ite(BitIs0 (β), Ite[Left(β)], Ite[Right(β)]), otherwise.

It follows from the definition that [[β]] = [[Ite[β]]].
Nonemptiness check of [[ϕ]] for a character predicate ϕ is given by checking if

the formula ϕ is satisfiable by using the constraint solver. For minterm generation
we use an incremental constraint solving technique that is sometimes called cube-

formula solving [27]. The core idea behind the technique is as follows:
Given a finite sequence of character formulas ϕ = (ϕi)i<m and distinct

Boolean variables b = (bi)i<m define Cube(ϕ, b)
def

=
∧

i<m ϕi ⇔ bi. A solution of
Cube(ϕ, b) is an assignmentM of truth values to b such thatM |= ∃χCube(ϕ, b).

Given a solution M of Cube(ϕ, b), let ϕM
def

=
∧

i<m,M|=bi
bi ∧

∧

i<m,M|=¬bi
¬bi.

7

Input: εSFAs A and B over Σ.
Initialize: Eliminate epsilons from A and B.

Let S be a stack, initially S = (〈q0
A, q0

B〉).

Let V be a hashtable, initially V = {〈q0
A, q0

B〉}.
Let ∆ be a hashtable, initially ∆ = ∅.

Search: While S is nonempty, repeat the following.
Pop 〈q1, q2〉 from S.

For each ρ1 ∈ ∆A(q1) and ρ2 ∈ ∆B(q2), let ` = Lbl(ρ1) ∩ Lbl(ρ2), if ` 6= ∅:
Let p1 = Tgt(ρ1), p2 = Tgt(ρ2) and add (〈q1, q2〉, `, 〈p1, p2〉) to ∆.
If 〈p1, p2〉 /∈ V then add 〈p1, p2〉 to V and push 〈p1, p2〉 to S.

Output: A × B = (〈q0
A, q0

B〉, Σ, V, {q ∈ V | q ∈ FA × FB}, ∆).

Fig. 4. Product algorithm. Constructs A × B such that L(A × B) = L(A) ∩ L(B).

We use the following iterative model generation procedure to generate the
set S of all solutions of Cube(ϕ, b). Although the procedure is exponential in (n
in) the worst case due to the inherent complexity of the problem, it seems to
work well in practice [27]. The algorithm assumes that the solver is capable of
model generation, rather than just checking existence of a model, which is the
case for most state-of-the-art constraint solvers and in particular SMT solvers.

Minterm generation with cubes: Input is a nonempty sequence of satisfi-
able character predicates ϕ. Output is the set M of solutions of Cube(ϕ, b).
Initialize: Let M0 = ∅ and ψ0 = Cube(ϕ, b).
Iterate: If ψi has a model M let Mi+1 = Mi ∪{M} and ψi+1 = ψi ∧¬ϕM ,

otherwise let M = Mi and stop.

4.2 Primitive automata algorithms

The algorithms on automata that we are most interested in, and that we will
focus on here, are product A×B and difference A−B, where difference provides
a way of checking subset constraints between regular expressions as well as do-
ing complementation B̄ such that L(B̄) = Σ∗ \L(B) and determinization of B,
Det(B), as special cases. The algorithms assume a representation of SFAs where
move labels are symbolic and use a character set solver that provides the func-
tionality discussed in Section 4.1. Both algorithms also have lazy versions that do
not construct the full automaton: lazy difference is subset checking L(A) ⊆ L(B)
(with witness in L(A) \ L(B) if L(A) (L(B)), and lazy product is disjointness

checking L(A)∩L(B) = ∅ (with witness in L(A)∩L(B) if L(A)∩L(B) 6= ∅). We
do not describe the lazy versions explicitly, since, apart from not constructing
the resulting automaton, they are similar to the eager versions.

The product algorithm is shown in Figure 4. Note that the character set solver
is used for performing intersection and nonemptiness check on labels. The differ-
ence algorithm, shown in Figure 5, makes, in addition, essential use of minterm
generation during an implicit determinization of the subtracted automaton B in
A − B. Intuitively, the algorithm is a combined product and complementation
algorithm. The main advantage of the combination is early pruning of search

stack S by keeping the resulting automaton clean. In our implementation, the
difference algorithm uses a standard set implementation to represent state sets,

8

Input: εSFAs A and B over Σ.
Initialize: Eliminate epsilons from A and B and make B total.

Let q0 = 〈q0
A, State{q0

B}〉.

Let S be a stack, initially S = (q0).
Let V , F , and ∆ be hashtables. Initially V = {q0} and ∆ = ∅.
Initially F = {q0}, if q0

A ∈ FA and q0
B /∈ FB ; F = ∅, otherwise.

Search: While S is nonempty repeat the following.
Pop 〈p, Q〉 from S. Let ∆B(Q) = {ρi}i∈I and let `i = Lbl(ρi) for i ∈ I.
Compute minterms: Compute M as the set of all minterms of the sequence (`i)i∈I . Here

minterms are given as subsets of I. For J ∈ M let `J =
⋂

i∈J `i ∩
⋂

i∈I\J {(`i).

For each minterm J ∈ M:
For each A move ρ ∈ ∆A(p) such that Lbl(ρ) ∩ `J 6= ∅:

Let P = State{Tgt(ρi) | i ∈ J}.
Let q = 〈Tgt(ρ), P 〉.
Add (〈p, Q〉, Lbl(ρ) ∩ `J , q) to ∆.
If q /∈ V then add q to V and push q to S.
If Tgt(ρ) ∈ FA and P ∩ FB = ∅ then add q to F .

Output: A − B = (q0, Σ, V, F, ∆).

Fig. 5. Difference algorithm. Constructs A − B such that L(A − B) = L(A) \ L(B).

denoted by State{. . .} in Figure 5, to represent subsets of automata states. The
difference algorithm uses three different kinds of set data structures, each with
different strengths: character sets, state sets, and hashtables for algorithm vari-
ables, where the character set representation depends on the character set solver.

Note that the difference algorithm reduces to complementation of B when
L(A) = Σ∗, e.g., when A = (q0A, Σ, {q

0
A}, {q

0
A}, {(q

0
A, Σ, q

0
A)}). Then the condi-

tion Lbl(ρ) ∩ `J 6= ∅ above is trivially true, since Lbl(ρ) ∩ `J = `J , for ρ ∈ ∆A.
Consequently, there is no pruning of the search stack S then with respect to A,
and the full complement B̄ is constructed. Moreover, B̄ is deterministic, since
for any two distinct moves (〈p,Q〉, `J , q) and (〈p,Q〉, `J′ , q′) that are added to
∆ above, `J ∩ `J′ = ∅ by definition of minterms. It follows that the difference
algorithm also provides a determinization algorithm for B: construct B̄ as above
and let Det(B) = (q0

B̄
, ΣB̄, QB̄, QB̄ \ FB̄ , ∆B̄).

5 Experiments

In this section we first compare the performance of the product and difference
algorithms with respect to different character set representations and eager vs.
lazy versions of the algorithms. For predicate representation of character sets
we use Z3 as the constraint solver. Integration with Z3 uses the .NET API that
is publically available [32]. All experiments were run on a laptop with an Intel
dual core T7500 2.2GHz processor. We then compare the performance of our
implementation with JSA [5] that is based on a well-established open-source
automata library (dk.brics.automaton).

Our experiment uses a set of ten benchmark regexes that have previously
been used to evaluate string constraint solving tools [12,28]. The regexes are
representative for various practical usages and originate from a case study in [18].
The sizes of the automata constructed from the regexes are shown in Figure 6.

For each pair (Ai, Aj)i,j<10 we conducted the following experiments to com-
pare different character set representations, algorithmic choices, and the effect

9

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

|Q| : 36 30 31 17 11 18 4573 104 2228 42
|∆ε| : 25 15 10 11 4 14 8852 99 3570 32

|∆6 ε| : 36 24 28 15 11 13 148 96 524 40

Fig. 6. Sizes of εSFAs Ai−1 constructed for regexes #i for 1 ≤ i ≤ 10 in [28, Table I],
where each regex is assumed to have an implicit start-anchor ^ and end-anchor $.

Difference

Product

Eager Lazy

Empty Nonempty Empty Nonempty

BDD-ASCII (8).33/.007 (78)36/.008 (8).33/.006 (87)41/.001
BDD-UTF16 (8).56/.02 (78)38/.02 (8).52/.012 (87)41/.01
Pred-ASCII (8)1.6/.06 (78)72/.08 (8)1.6/.06 (87)58/.02
Pred-UTF16 (8)5.5/.12 (78)179/.24 (8)5.3/.12 (87)66/.11

Range-ASCII (8).9/.03 (78)67/.03 (8)1/.03 (87)44/.003
Hash-ASCII (8).9/.03 (78)67/.03 (8)1/.03 (87)45/.003

brics-ASCII (9)32/.015 (72)273/.016
brics-UTF16 (9)39/.11 (72)341/.44

Eager Lazy

Empty Nonempty Empty Nonempty

BDD-ASCII (29)9.7/.001 (26)90/.002 (29)9.7/.001 (26)19/.001
BDD-UTF16 (29)9.7/.001 (26)92/.003 (29)9.7/.001 (26)19/.001
Pred-ASCII (29)10/.003 (26)142/.003 (29)10/.004 (26)25/.007
Pred-UTF16 (29)10/.01 (26)150/.05 (29)10/.01 (26)25/.03

Range-ASCII (29)10/.002 (23)16/.005 (29)10/.002 (26)69/.001
Hash-ASCII (29)10/.002 (23)16/.005 (29)10/.002 (26)70/.001

brics-ASCII (25)66/.015 (19)65/.016
brics-UTF16 (25)66/.03 (19)70/.09

Fig. 7. Experimental evaluation of the SFA algorithms. Each entry in the tables has
the form (n)t/m where n is the number of combinations solved, t is the total time it
took to solve the n instances, m is the median. Time is in seconds. For product, the
eager experiment constructs Ai × Aj for 0 ≤ i ≤ j < 10; the lazy experiment tests
emptiness of L(Ai) ∩ L(Aj) for 0 ≤ i ≤ j < 10. For difference, the eager experiment
constructs Ai − Aj for 0 ≤ i, j < 10; the lazy experiment tests if L(Ai) ⊆ L(Aj)
(L(Ai − Aj) = ∅) for 0 ≤ i, j < 10. Timeout for each instance (i, j) was 20 min.

of the size of the alphabet. For product we ignored the order of the arguments
due to commutativity, thus there are 55 pairs in total, and for difference there
are 100 pairs in total. Figure 7 shows the evaluation results for the difference
algorithm and the product algorithm, respectively. The times exclude the con-
struction time of εSFAs from the regexes but include the epsilon elimination
time to convert εSFAs to SFAs that is a preprocessing step in the algorithms.
The total time to construct the εSFAs for the 10 regexes (including parsing) was
0.33 seconds (for both UTF16 as well as ASCII). For parsing the regexes we use
the built-in regex parser in .NET.

The top columns correspond to the eager vs. lazy versions of the algorithms
and the secondary columns correspond to whether the result is an empty automa-
ton or a nonempty automaton. The rows correspond to the different algorithmic
choices: BDD-X denotes the use of the BDD based solver where X is ASCII

10

or UTF16; Pred-ASCII denotes the use of predicate encoding of character sets
using Z3 predicates over bv

7; Pred-UTF16 denotes the use of predicate encoding
of character sets using Z3 Ite-term encodings of BDDs over bv

16; Range-ASCII

denotes the use of standard range representation for ASCII character sets as
hashsets of character pairs ; Hash-ASCII denotes the use of hashsets of individ-

ual characters as character sets. We excluded the evaluation results for most of
the Range-UTF16 and Hash-UTF16 cases, since too many instances either timed
out or caused an out-of-memory exception. The only case that completed for the
same number of instances was lazy difference with Range-UTF16 character set
representation, but is e.g. 70 times slower in total experiment time compared
to BDD-UTF16. In the difference experiment, 5 instances either timed out or
caused an out-of-memory exception, involving the automata A6 and A8 in all
cases. One of the hardest instances that terminated was checking L(A8) ⊆ L(A9)
that took 14 minutes with Range-UTF16 and 1.3 seconds with BDD-UTF16,
where the minterm generation algorithm is used heavily.

With the BDD representation, the size of the alphabet turns out not to play a
major role in the algorithms, although the BDD sizes are typically considerably
larger for UTF16 (in hundreds or even thousands of nodes) compared to ASCII
(in tens on nodes). This is a useful indication that BDDs work surprisingly
well as character sets and may even work for UTF32 encoding (which we have
not tried). In several non-BDD cases, many individual experiments timed out.
The BDD character set based algorithms are an order of magnitude faster in

the median for UTF16. As expected, all the lazy versions of the algorithms are
faster in the nonempty case. The eager constructions are however needed when
converting the resulting SFAs to symbolic language acceptors for combination
with other theories [28]. Symbolic language acceptors for SFAs are made use
of for example in the parameterized unit testing framework Pex [23], where
regexes are handled in branch conditions of .NET programs using SFAs with
Pred-UTF16 representation of character sets, integration of the algorithms in
this paper into Pex is currently ongoing work.4

Comparison with brics. For this comparison we first serialized the automata
Ai, i < 10, in textual format. This is for two reasons: 1) to provide a fair com-
parison at the level of automata algorithms, i.e., to exclude differences in the
automata constructed from the regexes; 2) to avoid semantic differences regard-
ing the meaning of the notations used in the regexes. In the measurements we
bootstrapped the automata by excluding the time to deserialize and to recon-
struct the automata in brics, but included the time to add epsilon transitions
(that add extra character interval transitions), as this is effectively equivalent to
epsilon elimination using the brics library.

The Java code responsible for the lazy difference experiment is

... construct Ai, Aj, epsAi, epsAj ...
long t = System.currentTimeMillis();

boolean empty = (Ai.addEpsilons(epsAi)).subsetOf(Aj.addEpsilons(epsAj));
t = System.currentTimeMillis() - t;

4 http://www.pexforfun.com/

11

Product Difference

Empty Nonempty Empty Nonempty

BDD-ASCII .022/.001 .024/.001 .32/.005 .33/.001
BDD-UTF16 .022/.001 .024/.001 .54/.015 .78/.002
Pred-ASCII .07/.003 .07/.004 1.6/.06 2/.01
Pred-UTF16 .2/.01 .2/.01 5.2/.12 8.2/.05

brics-ASCII .14/.001 .2/.015 .1/.016 .8/.016
brics-UTF16 .6/.03 1.4/.05 3.6/.05 24.8/.08

Fig. 8. Lazy difference and product experiment times with A6 and A8 excluded. Each
entry is total/median in seconds. For product, 21 instances are empty and 15 instances
are nonempty. For difference, 8 instances are empty and 56 instances are nonempty.

using the bircs.Automaton method subsetOf. The eager experiment used the
bircs.Automatonmethod minus. The code for the product experiment is similar
(using intersection). For running each instance we assigned 1.5GB to the
java runtime (which was the maximum possible). For all cases involving A6,
the product and difference experiments timed out or caused an out-of-memory
exception. For the product experiment all cases involving A8 also timed out.
The instance L(A8) ⊆ L(A8) did not time out using brics, while caused an
out-of-memory exception using our tool during minterm generation.

For a better comparison of the easy cases we conducted a separate experiment
where both A6 and A8 are excluded from the experiments and considered the
lazy versions only. Thus, there are total of 36 product instances and 64 difference
instances. The outcome of this experiment is shown in Figure 8. Let topX denote
the total time for experiment row X and operation op in Figure 8. Then:

tprod
brics−ASCII/t

prod
BDD−ASCII ≈ 7, tprod

brics−UTF16/t
prod
BDD−UTF16 ≈ 43,

tdiff
brics−ASCII/t

diff
BDD−ASCII ≈ 1.4, tdiff

brics−UTF16/t
diff
BDD−UTF16 ≈ 21.

Technique Name Data structure Corresponds to

Christensen, Moller, et al. (JSA) [5] Char. ranges (Java, Unicode) Eager Range

Hooimeijer and Weimer (DPRLE) [11] Single-char. hashset (OCaml; ASCII) Eager Hashset

Hooimeijer and Weimer [12] Char. ranges (C++; ASCII) Lazy Range

Minamide [21,29] Single-char. functional set (OCaml; ASCII) Eager Hashset

Veanes, Halleux, and Tillmann [28] Unary pred. (C# and Z3[32]; Unicode) Lazy predicate

Henriksen, Jensen, et al. [10,30] BDDs C Eager BDD

Fig. 9. Existing automata-based string analyses and, the data structures they use, and
the closest-matching experimental prototype tested in this paper.

6 Related Work

In this section we discuss related work, focusing on automated reasoning tech-
niques; Figure 9 provides a brief overview. DPRLE [11] has two associated imple-

12

mentations: a fully verified core algorithm written in Gallina [6], and the OCaml
implementation used for the experiments. The Gallina specification is designed
primarily to help discharge proof obligations (using Coq’s built-in inversion lem-
mas for cons lists, for example). This specification is of limited interest, since
it is not actually designed to be executed. The OCaml implementation relies
heavily on OCaml’s built-in hashtable data structure. The transition function
is modeled using two separate mappings: one for character-consuming transi-
tions (state -> state -> character set) and one for ε–transitions (state
-> state set). This representation reflects the fact that the main DPRLE al-
gorithms rely heavily on tracking states across automaton operations [11].

The Rex tool provides a SFA representation that is similar to the formal
definition given in Section 3. The core idea, based on work by van Noord and
Gerdeman [22], is to represent automaton transitions using logical predicates.
Rex works in the context of symbolic language acceptors, which are first-order
encodings of symbolic automata into the theory of algebraic datatypes. The Rex
implementation uses the Z3 satisfiability modulo theories(SMT) solver [7] to
solve the produced constraints. The encoding process and solving process are
completely disjoint. This means that many operations, like automaton intersec-
tion, can be offloaded to the underlying solver. For example, to find a string
w that matches two regular expressions, r1 and r2, Rex can simply assert the
existence of w, generate symbolic automaton encodings for r1 and r2, and as-
sert that s is accepted by both those automata. We refer to this as a Boolean

encoding of the string constraints.

The initial Rex work [28] explores various optimizations, such as minimizing
the symbolic automata prior to encoding them. These optimizations make use
of the underlying SMT solver to find combinations of edges that have internally-
consistent move conditions. Subsequent work [27] explored the trade-off between
the Boolean encoding and the use of automata-specific algorithms for language
intersection and language difference. In this case, the automata-specific algo-
rithms make repeated calls to Z3 to solve cube formulae to enumerate edges
with co-satisfiable constraints. In practice, this approach is not consistently faster
than the Boolean encoding.

The Java String Analyzer (JSA) by Christensen et al. [5] uses finite automata
internally to represent strings. The underlying dk.brics.automaton library is
not presented as a constraint solving tool, but it is used in that way. The library
represents automata using a pointer-based graph representation of node and
edge objects; edges represent contiguous character ranges. The library, which
is written in Java, includes a deterministic automaton representation that is
specialized for matching given strings efficiently. This is not a common use case
for constraint solving, since the goal there is to efficiently find string assignments
rather than verify them. Several other approaches include a built-in model of
string operations; Minamide [21] and Wassermann and Su [29] rely on an ad-
hoc OCaml implementation that uses that language’s built-in applicative data
structures.

13

In previous work, we present a lazy backtracking search algorithm for solv-
ing regular inclusion constraints [12]. The underlying automaton representation,
written in C++, is based on the Boost Graph Library [25], which allows for a
variety of adjacency list representations. We annotate transitions with integer
ranges, similar to JSA. The implementation pays special attention to memory
management, using fast pool allocation for small objects such as the abstract
syntax tree for regular expressions. This implementation uses lazy algorithms in-
tersection and determinization algorithms, allowing for significant performance
benefits relative to DPRLE [11] and the original Rex [28] implementation.

Other Approaches. Bjørner et al. describe a set of string constraints based on
common string library functions [2]. The approach is based on a direct encoding
to a combination of theories provided by the Z3 SMT solver [7]. Supported oper-
ations include substring extraction (and, in general, the combination of integer
constraints with string constraints), but the work does not provide an encoding
for regular sets.

The Hampi tool [15] uses an eager bitvector encoding from regular expres-
sions to bitvector logic. The encoding does not use quantification, and requires
the enumeration of all positional shifts for every subexpression. The Kaluza tool
extends this approach to systems of constraints with multiple variables and con-
catenation [24].

The MONA implementation [10] provides decision procedures for several va-
rieties of monadic second–order logic (M2L). MONA relies on a highly-optimized
BDD-based representation for automata. The implementation has seen exten-
sive engineering effort; many of the optimizations are described in a separate
paper [16]. We are not aware of any work that investigates the use of multi-
terminal BDDs for nondeterministic finite automata directly. We believe this
may be a promising approach, although the use of BDDs complicates common
algorithms like automaton minimization. In this paper, we restrict our attention
to a class of graph-based automata representations.

There is a wide range of application domains that, at some level, rely on
implicit or explicit automata representations. Fang et al. [31] use an automaton-
based method to model string constraints and length bounds for abstract inter-
pretation. There is significant work on using automata for arithmetic constraint
solving; Boigelot and Wopler provide an overview [4]. A subset of work on ex-
plicit state space model checking (e.g., [3]) has focused on general algorithms
to perform fast state space reduction. Similarly, there is theoretical work on
word equations that involves automata [1,17], as well as algorithms work on the
efficient construction of automata from regular expressions (e.g., [14]).

7 Conclusions

In this paper we presented a study of automata representations for efficient inter-
section and difference constructions. We conducted this study to evaluate which
combination of data structures and algorithms is most effective in the context

14

of string constraint solving. Existing work in this area has consistently included
performance comparisons at the tool level, but has been largely inconclusive re-
garding which automata representations work best in general. To answer this
question, we re-implemented a number of data structures in the same language
(C#) using a front-end parser that correctly handles a large subset of .NET’s
regular expression language, and using a UTF-16 alphabet. Our experiments
showed that, over the sample inputs under consideration, the BDD-based rep-
resentation provides the best performance when paired with the lazy versions
of the intersection and difference algorithms. This suggests that, future string
decision procedure work can achieve significant direct benefits by using this com-
bination of data structure (BDD) and algorithms (lazy) as a starting point. To
the best of our knowledge, no existing tools currently use this combination.

Acknowledgement We thank Nikolaj Bjørner for discussions that lead to the
BDD character set representation idea and for continuous support with Z3.

References

1. Sebastian Bala. Regular language matching and other decidable cases of the sat-
isfiability problem for constraints between regular open terms. In STACS, pages
596–607, 2004.

2. Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis
for string-manipulating programs. In TACAS’09, volume 5505 of LNCS, pages
307–321. Springer, 2009.

3. Stefan Blom and Simona Orzan. Distributed state space minimization. J. Software
Tools for Technology Transfer, 7(3):280–291, 2005.

4. Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with
finite automata: An overview. In ICLP 2002, pages 1–19.

5. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
Analysis of String Expressions. In SAS, pages 1–18, 2003.

6. Thierry Coquand and Gérard P. Huet. The calculus of constructions. Information
and Computation, 76(2/3):95–120, 1988.

7. Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
TACAS’08, LNCS. Springer, 2008.

8. Patrice Godefroid, Adam Kieżun, and Michael Y. Levin. Grammar-based whitebox
fuzzing. In PLDI ’08, Tucson, AZ, USA, June 9–11, 2008.

9. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In PLDI ’05, pages 213–223, 2005.

10. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACAS ’95,
volume 1019 of LNCS. Springer, 1995.

11. Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints
over regular languages. In PLDI, pages 188–198, 2009.

12. Pieter Hooimeijer and Westley Weimer. Solving string constraints lazily. In ASE
2010: Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering, 2010.

13. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

15

14. Lucian Ilie and Sheng Yu. Follow automata. Information and Computation,
186(1):140–162, 2003.

15. Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: a solver for string constraints. In ISSTA ’09, pages 105–116.
ACM, 2009.

16. Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementa-
tion secrets. International Journal of Foundations of Computer Science, 13(4):571–
586, 2002.

17. Michal Kunc. What do we know about language equations? In Developments in
Language Theory, pages 23–27, 2007.

18. Nuo Li, Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Reggae:
Automated test generation for programs using complex regular expressions. In
ASE’09, 2009.

19. MSDN Library. System.text namespace. In http://msdn.microsoft.com/en-
us/library/system.text.aspx, June 2010.

20. PHP Manual. Pcre; posix regex; strings. In
http://php.net/manual/en/book.strings.php, December 2009.

21. Yasuhiko Minamide. Static approximation of dynamically generated web pages.
In WWW ’05, pages 432–441, 2005.

22. Gertjan Van Noord and Dale Gerdemann. Finite state transducers with predicates
and identities. Grammars, 4:2001, 2001.

23. Pex. http://research.microsoft.com/projects/pex.
24. Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. A symbolic execution framework for javascript. Technical Report
UCB/EECS-2010-26, EECS Department, University of California, Berkeley, 2010.

25. Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley Professional, December 2001.

26. Nikolai Tillmann and Jonathan de Halleux. Pex - white box test generation for
.NET. In TAP’08, volume 4966 of LNCS, pages 134–153, Prato, Italy, April 2008.
Springer.

27. Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. Symbolic automata
constraint solving. In C. Fermüller and A. Voronkov, editors, LPAR-17, volume
6397 of LNCS/ARCoSS, pages 640–654. Springer, 2010.

28. Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic Regular
Expression Explorer. In ICST’10. IEEE, 2010.

29. Gary Wassermann and Zhendong Su. Sound and precise analysis of web applica-
tions for injection vulnerabilities. In PLDI’07, pages 32–41. ACM, 2007.

30. Fang Yu, Muath Alkhalaf, and Tevfik Bultan. An automata-based string analysis
tool for php. In TACAS’10, LNCS. Springer, 2010.

31. Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic String Verification: Com-
bining String Analysis and Size Analysis. In TACAS, pages 322–336, 2009.

32. Z3. http://research.microsoft.com/projects/z3.

16

	An Evaluation of Automata Algorithms for String Analysis

