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ABSTRACT

This paper presents a numerical evaluation of the performance of three different
boundary element schemes for solving steady-state convection-diffusion problems
with variable velocity fields. Two of these schemes are based on the dual reci-
procity BEM: the first uses the fundamental solution of Laplace’s equation and
treats the whole convective part through the DRM; the other decomposes the ve-
locity field into an average and a perturbation, and uses the fundamental solution
of the convection-diffusion equation for constant velocity. In this case, only the
perturbation is treated using a dual reciprocity approximation. The third scheme
also decomposes the velocity field into an average and a perturbation, but the
effects of the perturbation velocity are included through domain discretization. A
comparison of the performance of the three schemes is presented for two different
problems.

INTRODUCTION

A substantial number of numerical models for the convection-diffusion equation
has appeared in the literature. Most of these models employ either the finite
difference or the finite element methods of solution, and give emphasis on algo-
rithms to suppress the well-known problems of oscillations and damping of wave
fronts intrinsic to these methods [1].

Applications of the boundary element method for convection-diffusion have
shown that the BEM is free from these problems [2-4]. This is due to the correct
degree of “upwind” present in the fundamental solution of the convection-diffusion
equation [5]. The main restriction of the BEM formulation, however, is the
fact that fundamental solutions are only available for equations with constant
coeflicients, or coefficients with very simple variations in space [6].

Formulations for treating problems with variable velocity fields have employed
the fundamental solution of Laplace’s equation and treated the convective terms
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as pseudo-sources [7-9], or using the DRM [10]. Alternatively, the velocity field
can be decomposed into an average and a perturbation, and the fundamental
solution of the convection-diffusion equation employed incorporating the average
velocity. The perturbation field can then be accounted for either by domain
discretization [9,11] or through a DRM approximation [11].

In this paper, an evaluation is carried out on the numerical performance of
three of the above schemes, as follows:

o Scheme 1, developed by Partridge and Brebbia [10], employs the funda-
mental solution of Laplace’s equation and treats the whole convective terms
through the DRM;

¢ Scheme 2, developed by Wrobel and DeFigueiredo [11], adopts the fun-
damental solution of the convection-diffusion equation incorporating the
average velocity and treats the perturbation field using the DRM;

¢ Scheme 3, as scheme 2, uses the fundamental solution of the convection-
diffusion equation with the average velocity but treats the perturbation field
by domain discretization.

The next section presents a brief review of each method; this is followed by
applications to two different problems, for which the performance of each scheme
is compared and evaluated.

BOUNDARY ELEMENT FORMULATION

The two-dimensional steady-state convection-diffusion equation including first-
order reaction can be written in the form

0 J
DV?¢p— 0—‘:—vy6¢—k¢—o (1)
where v; = v (z,y) and v, = vy(z,y) are the components of the velocity vec-
tor v, D is the diffusivity coefficient (assuming the medium is homogeneous and
isotropic) and k represents the reaction coefficient. The variable ¢ can be inter-
preted as temperature for heat transfer problems, concentration for dispersion
problems, etc, and will be herein referred to as a potential. The mathemati-
cal description of the problem is complemented by boundary conditions of the
Dirichlet, Neumann or Robin (mixed) types.

In order to obtain an integral equation equivalent to the above partial differ-
ential equation, a fundamental solution of equation (1) is necessary. However,
fundamental solutions are only available for constant velocity fields.

One possibility is to use the fundamental solution of Laplace’s equation and
treat the convection and reaction terms as pseudo-sources, in the form

v2¢=%( gd’+vygf+k¢> (2)

The equivalent boundary integral equation can be written as [10]:

() 5)—/¢ a"’dr+/¢sa""'dr ! ( a¢’+vyg¢+k¢)¢ 40 (3)

D
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with ¢* the fundamental solution of Laplace’s equation.
Alternatively, the variable velocity components v.(z,y) and v,(z,y) can be
decomposed into average (constant) terms 7, and ¥, and perturbations P, =

P (z,y) and P, = Py(z,y), i.e.

2% (z,y) = U + Px (Ivy)
v (z,y) = Ty + Py(z,y)
This permits rewriting equation (1) as
- 06 _ 04 04 0¢
2, _ = 99 _ 09 - p %¢ o9
DV*¢ - 7, 3. " v 3y k¢ = P, 72 + P By (4)

The above differential equation can now be transformed into the following
boundary integral equation [11]:

c(E)<zS(£)—D/r 0¢dP+D/¢

_/ﬂ( a¢>+ a¢>¢dﬂ (5)

where 7, = V-n, n is the unit outward normal vector and the dot stands for
scalar product.

In the above equation, ¢* is now the fundamental solution of the convection-
diffusion equation with constant coefficients, given by

a¢*

dI‘+/¢¢ 2dl =

86,0 = 2 5¢ 7B Ko(pr)

1
AN
20) T D

and r is the modulus of r, the distance vector between the source and field
points. Function Ko is the Bessel function of second kind of order zero. The
exponential term is responsible for inclusion of the correct amount of ‘upwind’
into the formulation [5].

where

I_[:

DUAL RECIPROCITY APPROACHES

In order to obtain a boundary integral which is equivalent to the domain integral
in equations (3) and (5), a dual reciprocity approximation can be introduced
[12]. Considering initially the non-homogeneous term on the right-hand side of
equation (5), the first step is its expansion into the following series,

¢ 9 L
P,a—x'i'Py‘é;—,;fkak (6)

The above series involves a sequence of known functions fx = fi(z,y) which are
dependent only on geometry, and a set of unknown coefficients ax. With this
approximation, the domain integral in equation (5) becomes
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/Q(P‘%ery >¢>dQ Zak/fkdniﬂ (7)

It is then considered that, for each function fi, there exists a related function
Y, which is a particular solution of the equation

N T T
DV‘I)—v:g;—vy(-?;—k?l)—f (8)

Thus, the domain integral can be recast in the form

[(e321n) -
Q

zak [ (o= w52 - 0,52 k) s7an (9)

Substitutmg expansion (9) into equation (5), and applying integration by
parts to the domain integral of the resulting equation, one finally arrives at a
boundary integral equation of the form

a -
(€)$(€) = D /F 2 1 p /r 65 ar + /F 66" T.dT =
M

3 e [c(f)wk(s)— / e %dr oD / . %

k=1

/r wm‘vndr] (10)

Applying the discretized version of equation (10) to all boundary nodes using
a collocation technique results in the following system of equations:

H¢ - Gq = (Hy - Gn)a (11)

with ¢ = 9¢/0n and n = 9y /0n. In the above system, the same matrices H
and G are used on both sides. Matrices 1 and 7 are geometry-dependent square
matrices, while ¢, q and a are vectors of nodal values.

The next step in the formulation is to find an expression for the unknown
vector a. Applying equation (6) to all M nodes, it is possible to write the
resulting set of equations in the following matricial form,

09 0

+ P

PIE—; yé;

= Fa (12)

where P, and P, are two diagonal matrices with components P;(z;,y;) and
Py(zi,yi),1=1,..., M, while %—% and %? are column vectors.

Writing expression (12) in terms of a and substituting into equation (11)
gives

B 0¢ 0

with
= (Hy - Gn)F!
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It can be noted that matrix S depends on geometry only, once the sequence of
functions fr has been defined. The coefficients of matrices P, and P, are also
known. Thus, there remains to be found an expression relating the derivatives
of ¢ with nodal values of @ to reduce equation (13) to a standard BEM form.
Herein, the algorithm suggested by Partridge and Brebbia [10] is adopted.

By expanding the value of ¢ at an internal point using a similar approximation
to expression (6), one obtains

M
=) febr (14)

Differentiating the above with respect to z and y produces

9o _ 9 fk
%% - kZ_ o (1)
06 _ §~ig
D Sk Tl (16)

Applying equation (14) at all M nodes, inverting the resulting matrix and sub-
stituting the expression for 3 into the matrix forms of equations (15) and (16)
gives

9¢ _ OF__,
32 = axf @ (17)
o6 _ OF__,

R (18)

and equation (13) takes the form

(H-P)¢ = Gq (19)
where 9F 9F
- -1
P=S (P % + Py Y Gy )F

The coefficients of the perturbation matrix P are all known. Thus, once
boundary conditions are applied to equation (19), the resulting system of alge-
braic equations can be solved in standard form.

The DRM scheme for solution of equation (3) is very similar to the above.
The final system of equations has the form

(H-P-R)¢ = Gq (20)

where 9F oF
_ -1
P=S (V T + V, Y5y )F

and
R = SK
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in which V;, V, and K are diagonal matrices containing the values of v; /D, v,/D
and k/D, respectively.

It is important to notice that, although the DRM approximations to equations
(3) and (5) are formally similar, matrices H, G,F, % and n are not the same in
both cases. Matrices H and G depend on the fundamental solution which is
different for equations (3) and (5), while matrices F,+ and n depend on the
choice of approximating function f (which is also different, see [10] and [11]) and
its relation to v (which is given by expression (8) for the case of equation (5),
and by V2 = f for equation (3)).

DOMAIN DISCRETIZATION APPROACH

The domain integral in equations (3) and (5) can also be directly evaluated by
dividing the domain into cells. In this work, this is only considered for equation
(5) since it has been shown in [9] that the Laplace fundamental solution presents
oscillations when implemented in a domain discretization approach. Although it
is possible, and in many cases more convenient, to integrate by parts the domain
integral in (5) to work with internal values of ¢ rather than its derivatives [9,11],
this introduces derivatives of P; and P, into the formulation. For incompressible
fluids this new term, which appears in the form

9P, OP,\ ..
/n(az +3y—)¢¢>dn,

is zero because of mass continuity. However, to keep the formulation general as
the velocity field in our first test problem does not satisfy mass continuity, the
domain discretization formulation was implemented directly using equation (5).

For convenience of the numerical scheme the term between brackets on the do-
main integral of equation (5), P,0¢/8z + P,0¢/0y, is denoted b. This whole term
is then approximated within each internal cell by using interpolation functions
and nodal values. Applying the discretized form of equation (5) to all boundary
nodes then produces the system of equations

Hoé - Gq=Eb (21)

relating boundary values of ¢ and ¢ and internal values of b. This system has to
be complemented by equations for evaluating b. These equations are of the form

06, 06"\ 08 8 96° . 0 o
b(f)_D/( AL a)adl“ D/(aan-l—Pyaa)qu—

/ (P 94" | p, ‘9"") $5ndT — / (P 9 2% )bdQ (22)
7z o\ 7oz T By

The discretized form of this equation, once applied to all internal points, produces
the system

H¢ -Gq=Eb (23)

Because b is not a variable of physical interest, it can be eliminated from (21)
and (23) to produce the final system
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(H-EE 'H)¢ = (G-EE 'G)q (24)

relating only boundary values.

APPLICATIONS

The formulations presented here were applied to the following two cases:

o A one-dimensional problem with uni-directional velocity field depending on
the z—coordinate;

¢ A two-dimensional problem with uni-directional velocity field depending on
the y—coordinate.

In both cases, the diffusivity coefficient D was assumed equal to one, for simplic-
ity. The DRM code with Laplace’s fundamental solution uses quadratic boundary
elements while the others use linear elements.

One-dimensional problem

In this example the velocity v, is a linear function of z expressed as
v(z) = ke +C,

and the vy, component is equal to zero. The governing equation of the problem
then takes the form

v2¢—(kz+cl)g—f—k¢ =0 (25)

A particular solution of equation (25) is given by

p=gest +Ciz (26)

Imposing t_he boundary conditions ¢ = @, at £ = 0 and ¢ = ¢ at z = 1, the
constants ¢ and Cy in (26) can be evaluated as

k
=¢s Cl=ln(ﬂ)-§

and the velocity field becomes:

() ox(r-}

The problem region is modelled as a rectangle with dimensions 1 x 0.7. The
quadratic elements discretization used 20 elements, 9 along each horizontal face
and 1 along each vertical face. In case of linear elements, 38 were used with 17 on
each horizontal face and 2 on each vertical face. The boundary conditions specify
the values ¢, = 300 and ¢, = 10 along the faces z = 0 and z = 1, respectively,
with no flux in the y—direction.

<
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Figure 1: Potential distribution for k =5

A plot of the variation of the potential ¢ along the z—axis is presented in figure
1 for k = 5. In this case, the velocity field is equal to v; = —3.401 £ 2.5. The
DRM formulations did not use any internal point in the approximating series,
while the cell formulation employed 8 linear rectangular cells. It can be seen
that the agreement with the analytical solution is very good, with the Laplace
fundamental solution producing slightly less accurate results.

Figures 2 and 3 present the cases k = 20 (v; = —3.401+10) and k = 40 (v; =
~3.401 + 20). It is obvious that, as the velocity increases, the potential distri-
bution becomes steeper and more difficult to reproduce with numerical models;
thus, more refined discretizations are required. The DRM approximations em-
ployed 30 internal points for k = 20 and 54 for k = 40 while the cell formulation
used 28 cells for both values of k. All solutions are still in good agreement for
k = 20 but oscillations appear in both DRM formulations for k = 40, being more
pronounced with the C-D fundamental solution than Laplace’s. Results with the
cell formulation are very good and display no oscillations whatsoever. It is im-
portant to remark that the cell formulation is convergent as the number of cells is
increased, while both DRM formulations did not display monotonic convergence
with increased numbers of internal points.

Two-dimensional problem

This example considers a uni-directional velocity field in the z—direction depend-
ing on y according to the expression
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Figure 2: Potential distribution for & = 20
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Figure 3: Potential distribution for k = 40
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A2 2
v=(y) = & (v-B)

with A =k — C?. The v, component is again equal to zero and consequently
the equation to be solved reduces to

A2 0¢
V- —~(y-B)Y?—=—-koé =0
b-GW-B)y g ks (27)
A particular solution to the above equation is

— A
¢ :¢eiy2—ABy+Cga: (28)

The value of the constant B defines the symmetry of the velocity field with
respect to the coordinate y. If B = 0.5 the velocity and potential profiles are
both symmetric.

The value of the constant C; is arbitrarily assumed as

_ . 9(1,0)
Cz = In ¢(0’0)

with ¢(0,0) = 300 and ¢(1,0) = 10; the constant B is assumed equal to 0.5. This
gives a symmetric, parabolic velocity field, with minimum at y = 0.5 (v; = 0)
and maximum at the extremes, the value of which is dependent on k.

The problem geometry is defined as a unit square with mixed boundary con-
ditions prescribed according to expression (28), with the potential ¢ assumed
known along the faces z = 0 and z = 1 and the flux 8¢/0n given along the faces
y=0and y=1.

Figure 4 shows results for the potential ¢ along the faces y = 0 or y = 1 for the
case of k = 10 (maximum velocity: v; = —0.181). The boundary discretizations
employed 20 quadratic or 40 linear elements, 5 or 10 along each face, with 18
internal points for the DRM formulations and 10 cells. It can be seen that all
results are in excellent agreement.

Figures 5 and 6 show the cases of k¥ = 30 (maximum velocity: v, = —24.98)
and k = 50 (maximum velocity: v, = —108.57). Although the potential varia-
tion along ¥y = 0 and y = 1 does not depend on k (expression (28) for B = 0),
the internal variations are much steeper in these cases. Both DRM schemes pro-
duce reasonable results for £ = 30, with the Laplace fundamental solution again
displaying slightly larger errors; for k& = 50, however, the C-D algorithm shows
large oscillations while the Laplace fundamental solution does not, although the
errors increase. The cell formulation is in excellent agreement with the analytical
solution in all cases.

CONCLUSIONS

This paper has presented an assessment of three alternative BEM schemes for
solution of convection-diffusion problems with variable velocity fields. The two
DRM algorithms produce satisfactory results when the velocity field is low (i.e.
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Figure 5: Potential distribution for & = 30
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Figure 6: Potential distribution for £ = 50

for diffusion-dominated problems) but may develop oscillations when velocities
are high. Based on our experience, it appears that the main problem arises in the
approximation of the partial derivatives of ¢ rather than ¢ itself; thus, alternative
DRM formulations are being developed to avoid the need to approximate partial
derivatives.

The cell formulation, on the other hand, presented very good results even for
high velocity fields. The formulation, when implemented with the fundamental
solution of the convection-diffusion equation with constant velocity, is convergent
and does not produce oscillations. The solution of problems involving more com-
plex velocity fields, including recirculation zones, will now be attempted with this
formulation.
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