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 

Abstract— Polysomnography is considered the gold standard 

to assess sleep accurately, but it can be expensive, time-

consuming and uncomfortable, specifically in long-term sleep 

studies. Actigraphy, on the other hand, is both cheap and user-

friendly, but depending on the application lacks detail and 

accuracy. Our aim was to evaluate cardio-respiratory and 

movement signals in discriminating between Wake, REM, light 

(N1N2) and deep (N3) sleep. The dataset comprised 85 nights of 

polysomnography from a healthy population. Starting from a 

total of 750 characteristic variables (features), problem-specific 

subsets of 40 features were forwardly selected using the 

combination of a wrapper method (Cohen’s Kappa statistic on 

RBF-kernel Support Vector Machine (SVM) classifier) and filter 

method (minimum Redundancy Maximum Relevance criterion 

on Mutual Information). Final classification was performed using 

an RBF-kernel SVM. Non subject-specific Wake versus Sleep 

classification resulted in a Cohen’s kappa value of 0.695, while 

REM versus NREM resulted in 0.558 and N3 versus N1N2 in 

0.553. The broad pool of initial features gave insight in which 

features discriminated best between the different classes. The 

classification results demonstrate the possibility of making long-

term sleep monitoring more widely available. 

 
Index Terms— biomedical signal processing, data analysis, 

medical information systems, sleep research, supervised learning 
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I. INTRODUCTION 

LEEP can roughly be divided into two main states, labeled 

Rapid-Eye-Movement (REM) and NREM (N1-N2-N3) 

sleep, which alternate in cycles of about 90 minutes [1]. 

NREM sleep, especially deep sleep (N3), is more prominent 

during the first hours of sleep and is essential towards physical 

recovery [2],[3]. REM sleep, linked to dreaming and more 

prominent during the last hours of sleep, acts towards the 

recovery of our mental state [4].  

Demographics show that up to 24 % of the population is 

faced with regular sleep problems [5], due to e.g. insomnia 

(the inability to initiate and maintain sleep), obstructive sleep 

apnea syndrome (OSAS; upper airway collapse during sleep), 

or a mere lack of sleep hygiene. 

Polysomnography (PSG) [6] is considered the gold standard 

in sleep research and allows to assess most aspects of sleep 

accurately. Unfortunately, it requires at least one night in a 

specialized sleep lab. Expert technicians apply an extensive 

amount of sensors to the patient (possibly affecting sleep) and 

evaluate the collected data manually in 30 second intervals. 

Due to the complexity of sleep, dependent on physiological as 

well as psychological factors, great inter-night variability can 

be present, requiring multiple recording nights to prevent high 

incidence of false positives and negatives [7]. These factors 

make the method costly and time-consuming, limiting its 

application on a large scale, especially when long-term 

monitoring is considered. The addition of automatic sleep 

classifiers on PSG signals can lessen the burden of manual 

evaluation for a small drop in accuracy [8]. 

Actigraphy (ACT) [9] on the other hand, which makes use 

of movement information to differentiate between Wake and 

Sleep, is both cheap and user-friendly. Unfortunately, for 

many cases, it lacks detail (such as the REM-NREM 

distinction) and accuracy [10],[11]. No other methods reached 

the point beyond prototype or have been sufficiently validated 

to fill the gap between PSG and ACT [12].  

Over the years however, extensive research has been 

performed on changes in heart rate (HR) and breathing rate 

(BR) across sleep stages and other related events. In 1923, 

MacWilliams et al. [13] were an early pioneer in noting the 

influence of sleeping and dreaming on blood pressure and 

heart activity. In 1956, Brooks et al. [14] published the first 
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definitive measurements of HR variation during sleep in six 

individuals, each observed for 50 nights. In 1964, Snyder et al. 

[15] studied 12 subjects across 30 nights, reporting significant 

differences in blood pressure, HR and BR with varying sleep 

depth. Already in 1973 and 1976, attempts were made to 

distinguish active REM-N1 sleep from quiet N2-N3 sleep 

using HR data [16],[17]. HR and BR are currently known to 

be linked to the autonomic nervous system (ANS), from which 

sympathetic and parasympathetic variations correlate well 

with changes in sleep architecture [18]-[20]. HR and BR can 

be measured reliably using Electrocardiography (ECG) and 

Respiratory Inductance Plethysmography (RIP), limiting the 

amount of sensors attached. 

This paper evaluates the use of heart rate, breathing rate and 

movement information in discriminating between between 

Wake, REM, light (N1N2) and deep (N3) sleep. It presents 

methods and results on data preprocessing, the extraction and 

selection of relevant features and the final classification step.  

 

II. MATERIALS AND METHODS 

A. Data collection 

The dataset comprises a total of 85 nights from a population 

of 36 healthy volunteers (age 22.1 ± 3.2 years), with one to 

four nights per subject. Participants were recruited through 

advertisement. Inclusion criteria were a good general health 

condition, regular sleep-wake schedule and an average of 6 to 

9 hours of sleep per night. Exclusion criteria were sleeping 

disturbances, intake of medication or drugs influencing sleep, 

smoking habits or intake of more than three beverages 

containing caffeine or alcohol. The study was approved by the 

Ethics Committee at the ‘Vrije Universiteit Brussel’. 

For all nights, complete polysomnographic recordings were 

performed (Dream system, Medatec NV, Brussels, Belgium), 

after which experts classified sleep stages (Wake, REM, N1, 

N2, N3) in 30 second epochs according to AASM rules  

(American Academy of Sleep Medicine) [6]. Additionally, HR 

was registered through Electrocardiogram (ECG), BR using 

Respiratory Inductance Plethysmography (RIP) and movement 

(MOV) by the DynaSleep system (Custom8, Leuven, 

Belgium). The latter continuously measures the perpendicular 

indentation of the mattress surface in a 2D-grid of 170 points. 

This allows for a sensitive and accurate registration of body 

movements, twitches and sleep postures, as described by 

Verhaert et al. [21]. 

B. Data pre-processing 

HR was extracted from 200 Hz ECG measurements using 

the Pan-Tompkins algorithm [22]. A search-back post-

processing algorithm was applied to identify and correct false 

positive and false negative R-peak detections. BR was 

extracted by first applying a cubic spline interpolation to the 

raw 200 Hz RIP data, smoothing the breathing signal. This 

allowed for an easy extraction of the valleys and peaks by 

differentiation, identifying inspiration, expiration and total 

breathing length intervals. Again, a search-back post-

processing algorithm was applied to correct false positive and 

false negative peak and valley detections. The 1 Hz movement 

signal was evaluated by 2D integration of the derivative of the 

continuously measured indentation over the mattress surface. 

Normalization was performed by scaling this movement signal 

with the inverse of the subject’s Body Mass Index (BMI). 

Significant body movement events occur when the signal 

raises above the threshold value 3.01, as heuristically 

determined in [21]. Figure 1 visualizes the measurement 

system and shows an example of the movement signal for one 

night, including the MT threshold. 

The interval size of the feature vectors to be classified was 

chosen to be 60 seconds, which is a trade-off between feature 

quality and time resolution. Especially for the breathing rate, 

smaller intervals can lead to unreliable ventilatory features due 

to the slow rhythm of the breathing signal. Also, since the 

lower boundary of the Low Frequency (LF) interval in Heart 

Rate Variability (HRV) analysis is put at 0.04 Hz, and the 

HRV Task Force [23] recommends an interval length of at 

least 10 times the wavelength of the lowest frequency bound 

(which would require an interval length of 250 seconds), the 

chosen 60 second interval is already quite short for HRV 

analysis. An artificial increase in time resolution can always 

be accomplished afterwards using a 60 second moving 

window, with a step size of e.g. 15 seconds. To transform the 

30 second interval PSG-scored hypnogram values to 60 

second interval values, the following decisions were made (in 

 
 
Fig. 1  Visualisation of the 2D measuring grid of the DynaSleep system (Custom8, Leuven, Belgium) on the left. In the center,  an example of the measured 

indentation pattern from a person lying in the right lateral position. On the right, the extracted movement signal for one night, with the MT threshold indicated 

in green. 
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order of priority): 

- intervals containing a significant body movement event 

were stored as MT 

- intervals containing at least one PSG-scored Wake epoch 

were stored as Wake 

- intervals containing at least one PSG-scored REM epoch 

were stored as REM 

- the remaining intervals were stored as NREM 

For example, a 60 second interval containing 30 seconds of 

Wake and 30 seconds of NREM was stored as Wake; a 60 

second interval containing 30 seconds of MT and 30 seconds 

of REM was stored as MT. 

Parts of the data had to be excluded due to bad signal 

registration (e.g. a loose ECG electrode or bad tension of an 

RIP breathing belt) in order to ensure proper training and 

validation data. Given the size of the dataset, two automatic 

signal quality evaluation methods were implemented for 

automatic exclusion analysis. For the ECG, the robust 

Mahalanobis distance between the low frequency energy 

content of every 60 seconds of ECG data was calculated. 

Energy content was estimated by integration of the squared 

wavelet transform coefficients of 10 levels of Daubechies-6 

wavelets (db6) [24], representing the logarithmically spaced 

frequency spectrum between 0.3 and 10 Hz. The robust 

Mahalanobis distance is calculated as 

 
1

( ) ( ) ( ),
T

M r r r
D x x S x 


     (1)  

where x is the multivariate vector containing the 10 energy 

variables for that interval, μr contains the robust average 

values of these 10 energy variables over all intervals of that 

night and Sr is the robust covariance matrix of the data. The 

robust Mahalanobis distance allows for an estimation of the 

similarity of the data in that interval to the complete set of 

intervals. A suitable rejection threshold for ECG intervals 

having a too large Mahalanobis distance was heuristically 

determined at a distance value of 30. Calculations were 

performed using Libra, a Matlab Library for Robust Analysis 

[25], more specifically using the mcdcov function.  

For the RIP, the signal to noise ratio (SNR) of every 

interval was estimated by taking the ratio of the signal and 

noise variances, 
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were the originalSignal is the RIP signal and the 

splinedSignal is the cubic spline interpolated RIP signal. A 

suitable rejection threshold for RIP intervals having a too low 

SNR was heuristically determined at a dB value of 5. At lower 

SNR values, irregularities start to arise in the breathing 

waveforms due to insufficient tension in the breathing belt.  

In the following sections, 57 nights were used for feature 

selection and training of the classification model parameters, 

while 28 nights were used as validation set. No nights from 

the same subject were present in both training and test set to 

ensure that there was no person-specific training possible. 

Overall, 12.00% of the training set 60 second intervals and 

12.09% of the test set 60 second intervals were not included in 

the analysis based on the above described signal quality 

evaluation methods. Table I gives an overview of the amount 

and percentage of accepted intervals for the different sleep 

states. For the MT intervals, never rejected based on the signal 

quality evaluation methods, an equal percentage (respectively 

12.00% and 12.09% for training and test set) was excluded 

from analysis to maintain a balanced data set. Since from 

every interval type a relatively equal amount of data was 

rejected, a realistic distribution of sleep data was ensured. 

C. Feature extraction 

After the data preprocessing step, the following signals 

were obtained, divided in 60 second intervals and labeled with 

their respective sleep states (as defined in section II.B): 

- Start time and length of each beat-to-beat RR-interval 

(HR) 

- Start time and length of each breathing cycle (BR) 

- Start time and length of the inspiratory phase of each 

breathing cycle, expiratory phase of each breathing 

cycle and the ratio between these lengths (BRin, BRout 

and BRinoutratio) 

- The 1 Hz movement signal derived from the DynaSleep 

system (MOV) 

For each of these intervals an extensive number of features 

was defined. The choice of evaluating a broad set of features 

instead of a limited one, will allow to find a more optimal set 

of features, with respect to the specific classification problem 

and population. An overview of the defined features is given 

in table II. For the HR signal, feature types 1 through 8 were 

extracted, giving a total of 81 HR features. The features within 

feature type 4 were calculated by first detrending the HR 

signal by substracting the mean HR value of the previous x 

seconds, with x equal to 150, 600, 1800 and 7200. The 

features within feature type 7 were calculated by integration of 

the squared wavelet transform coefficients of 40 levels of db6 

wavelets representing the linearly spaced frequency spectrum 

between 0.01 Hz and 0.40 Hz. The wavelet transforms were 

executed on the 2 Hz cubic spline interpolated HR signal. The 

features within feature type 8 were calculated by taking the 

natural logarithm of ‘1 + the original feature value’.  

For the BR, BRin, BRout and BRinoutratio signals, the 

same feature types were extracted, except for feature type 7 

and its logarithmic transform within feature type 8, giving a 

total of 65 features each. For the MOV signal, feature types 9 

through 13 were extracted, giving a total of 34 MOV features. 

Movement intensity within feature type 9 through 12 was 

calculated by integrating the MOV signal over each movement 

TABLE I 
OVERVIEW OF THE AMOUNT AND PERCENTAGE OF  

ACCEPTED INTERVALS IN THE FINAL DATASET 

Sleep state 
Training set Validation set 

# % # % 

MT 2107 88.00 987 87.91 

WAKE 1297 86.35 808 88.99 

REM 3470 83.19 1595 85.48 

N1N2 10396 90.76 5113 90.98 

N3 6166 86.74 3045 84.23 

TOTAL 23550 88.00 11574 87.91 
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interval with all its values above a minimal threshold of 0.15 

(to cancel out noise). The values of the different movement 

intensity thresholds were 0, 0.75, 2.5, 7.5 and 25. The window 

sizes used in feature type 13 were 60, 150, 300 and 600.  

In total, this sums up to 375 features per 60 second interval. 

Finally, for each of the previously defined feature types, a 

night-specific normalized version of the feature type was 

defined. For every night in the dataset and for every feature, 

the robust mean and standard deviation were calculated (again 

using Libra [25], more specifically the median and madc 

functions). These parameters were then used to normalize the 

original feature values of every 60 second interval of that 

night, using the formula 

 ,
original

normalized

feature median
feature

madc



 
 
 

  (3) 

This normalization should allow for a better 

interchangeability between features from different subjects 

and from different nights. The final amount of features thus 

sums up to 750. 

D. Feature selection 

 In order to reduce computational cost, complexity and 

noise on the classification result, a subset of features was 

selected on the training set as being most descriptive for the 

targeted classification problem and population. For this 

purpose, a combination of a filter method and wrapper method 

was used. Filter methods are low in computational costs since 

they work independent from a classification algorithm, while 

wrapper methods require parameter training and effective 

classification. As classification algorithm, the libSVM C-

implementation [26] of an RBF-kernel (Radial Basis Function) 

Support Vector Machine (SVM) was used, which requires two 

parameters to train, namely a cost parameter and 

regularization parameter. To save on computation time, the 

wrapper method was thus only used for the evaluation of 

single feature classification performance by calculating a five-

fold cross-validated value of Cohen’s kappa [27].  

For evaluating synergies between features (constructing an 

optimized set of features that work well together), a filter 

method based on mutual information and a minimum 

Redundancy Maximum Relevance-criterion was used [28]. 

The criterion is defined as, 
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a greedy forward selection algorithm with X representing 

the complete set of features xj, S the subset of already selected 

features xi (of size m), c representing the class identifier and I 

the mutual information, defined as 

 
( , )

( ; ) ( , ) log ,
( ) ( )

p x y
I x y p x y dxdy

p x p y
    (5) 

with p(x), p(y) and p(x,y) probability density functions. 

These functions were approximated by an adaptive diffusion-

based kernel density estimator [29]. The left side of figure 2 

shows an example of the probability density functions p(xj,c1) 

and p(xj,c2), used for the calculation of I(xj;c). The more 

overlap, the lower the mutual information will be. The right 

side of figure 2 shows p(xj,xi), used for calculating I(xj,xi). The 

more the distribution follows the diagonal, the higher the 

mutual information between the two features. 

The feature selection process was thus performed in two 

steps. In step one, the previously described wrapper method 

(RBF-kernel SVM) was used in order to obtain a fast 

reduction in feature amount, and this for each of the four 

signal types separately (HR, BR, BRin/BRout/BRinoutratio 

and MOV) in order to ensure the presence of features across 

all signals. As a result, 75% of features having the lowest 

values of Cohen’s kappa were discarded from the feature set, 

as to only keep those features already reaching a decent 

classification accuracy on their own. In step two, a subset of 

10 synergetic features per signal type was selected out of the 

remaining feature set using the previously described filter 

method (mRMR-criterion), leading to a final subset of 40 

features. Further optimization of this set (e.g. by further 

reducing its size, while evaluating the impact on classification 

accuracy) was no part of this study. 

E. Feature classification 

In order to distinguish Wake from Sleep, both at sleep onset 

(the first hour of every night) and during the night (the 

remaining hours of the night), and to distinguish NREM sleep 

from REM sleep and light sleep (N1N2) from deep sleep (N3), 

TABLE II 
FEATURES DEFINED ON THE SIGNALS HR (1-8), BR, BRIN, BROUT, BRINOUTRATIO (1-6, 8) AND MOV (9-13) 

# Feature name Short description 
Amount 

per signal 

1 mean mean length of RR intervals or breath cycles 1 

2 percentiles 2.5, 10, 25, 50 (=median), 75, 90 and 97.5 percentile 7 

3 inter percentile ranges range between percentile 2.5-97.5, 10-90, and 25-75 3 

4 detrended of 1-2-3 by subtracting the mean value of the previous x seconds, x ϵ [150 600 1800 7200]. 44 

5 variance variance of RR intervals/breath cycles 1 

6 median absolute deviation median(abs(xi-median)), with xi = data points of interval; variants by switching median with mean 4 

7 frequency HRV VLF (0.01 – 0.03), LF (0.04 – 0.15), HF (0.16-0.40), LF/HF (absolute and relative) 8 

8 log of 5-6-7 natural logarithm of ‘1 + original feature value’ 13 

9 time to next movement time in seconds until movement signal ≥ intensity threshold x ϵ [0 0.75 2.5 7.5 25] 5 

10 time to previous movement cfr. feature 9 5 

11 time in between movements cfr. feature 9 5 

12 log of 9-10-11 natural logarithm of ‘1 + original feature value’ 15 

13 amount of movements amount of movements within centered window ϵ [60 150 300 600] 4 
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four separate binary classification problems were assessed. 

For this purpose, four separate feature sets were selected, one 

for each classification problem. The results of the different 

binary classification problems were also combined to evaluate 

the complete Wake-Sleep, Wake-REM-NREM and WAKE-

REM-N1N2-N3 classification problems. In all classification 

problems, MT intervals were scored as Wake. 

As already stated in the previous section, classification was 

performed using the libSVM C-implementation of an RBF-

kernel SVM. Its two parameters, the cost (penalizing value for 

misclassifications during training of the classifier) and the 

RBF-kernel parameter gamma, were optimized using five-fold 

cross-validation and gridsearch on the training set. The 

optimal parameters were selected based on a maximal 

averaged value of Cohen’s kappa over the five folds. 

Besides agreements and Cohen’s kappa, also precision and 

recall were calculated. Recall quantifies the amount of class 

one instances (with class one being the smallest of the two 

classes) identified within the complete set of instances, while 

precision quantifies how precise the classifier was in this 

identification. Hence, there is normally a trade-off between 

precision and recall. 

The cost penalizing value parameter of the SVM can have a 

different value for each of the two classes, in order to cope 

with unbalanced datasets in different ways. Increasing the cost 

value for class one will cause an increase in precision (less 

false positives), but a drop in recall (more false negatives). 

Tuning the difference between the cost value of class one and 

two allows to maximize Cohen’s kappa, although for some 

applications one could be more interested in maximizing 

precision or recall itself.  

During the five-fold cross-validated training phase of our 

classifiers, we first optimized this ratio between the cost 

parameter of the two classes, using the default recommended 

values for cost (=1) and gamma (=1/feature amount = 1/40).  

In the next step, using this optimal ratio, the five-fold cross-

validated gridsearch was performed over cost and gamma 

parameters. 

 

III. RESULTS 

Table III gives an overview of the averaged cross-validated 

training results and the test set results for all four classification 

problems. The next subsections will only hold information 

about which features were selected, and thus deemed 

distinctive, for all classification problems. 

A. Wake vs Sleep at onset: <60 min 

As features, mean and percentile features (25th, median, 

75th) were the most important for the HR and BR signal, with 

their average values being higher in Wake compared to Sleep. 

Normalization was important here, proven by the fact that 

7/10 selected HR and 9/10 selected BR features were 

normalized. Detrending was less important (6/10 HR and 3/10 

BR) mainly because no data was present to detrend with from 

before subjects went to bed, thus detrending was done with 

only the data from bed time on. Since no BRinoutratio features 

were selected, the perceived trend in increasing BRout interval 

lengths during sleep onset compared to BRin interval lengths 

was not significantly present enough for all subjects. The 

selected BRin and BRout features followed the same 

characteristics as the selected BR features. As for movement 

features, the logarithmic transform was important (7/10 

selected MOV features) to make its distribution of values 

Gaussian. Selected features were time between higher 

intensity movements (2.5, 7.5, 25; no twitches) and time to the 

last higher intensity movement.  

B. Wake vs Sleep after onset: > 60 min 

As HR features, a raise in heart rhythm was found 

distinctive, characterized by mean and upper percentile 

(median, 75th, 90th, 97.5th) features being selected, coupled 

 
 

Fig. 2  Examples of feature-class (on the left) and inter-feature (on the right) probability density functions used to calculate the mutual information values of the 

mRMR-criterion. More overlap in the feature-class distributions will result in smaller MI between the feature and the classes. The more the inter-feature 

distributions follow the diagonal, the higher their MI will be. 
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to detrending over 150 seconds (selected for 7/10 features; 

9/10 features were detrended). For BR features, it was 

primarily the higher variance (also its variants MAD and IQR) 

that was found distinctive, with again detrending found 

important (8/10; 4/10 was detrended over 150 seconds). 

Overall, normalization was less important here (5/10 HR and 

1/10 BR), probably because longer periods of Wake (like with 

insomnia patients) were not present in the dataset, and periods 

of Wake were thus primarily coupled to a higher amount of 

movement activity, leading to a more similar overall higher 

heart and breathing rhythm for all subjects. There were 7 

BRinoutratio features selected, distributed over variance (and 

its variants) and extreme percentiles at both ends (thus also 

reflecting variance). This probably reflects the difference 

between controlling our breathing more consciously 

(sympathetic) or it being controlled completely unconsciously 

during sleep (parasympathetic). For movement features, again 

the logarithmic transform was important (10/10), and selected 

features were the time to the last movement or time to the next 

movement with at least an intensity of 2.5 (so again no 

twitches). 

C. REM vs NREM 

As HR and BR features, mainly the presence of short 

periods of higher heart and breathing rhythm were found 

distinctive for REM sleep, reflected in the selection of upper 

percentile features (75th, 90th, 97.5th) but no mean. For BR, 

also a higher MAD and IQR in REM was characteristic. 

Normalization was again important (7/10 HR and 7/10 BR), 

together with detrending although this time over a longer 

timeframe of 7200 seconds (7/10 HR and 7/10 BR). There 

were also 3 BRinoutratio features selected (MAD and IQR), 

probably again reflecting the shifting balance between 

sympathetic (REM) and parasympathetic (NREM) activity. 

All other features were BRout features, and no BRin features, 

which seems to tell that the changes in breathing rhythm are 

mainly caused by changes in the expiration phase. Besides the 

necessary logarithmic transform (7/10), selected MOV 

features were all related to the time between movements of 

any intensity, which means also short twitches. 

D. N3 vs N1N2 

As HR and BR features, the presence of a lower heart and 

breathing rhythm within N3 sleep was found distinctive, 

reflected in the selection of lower percentile features (2.5th, 

10th, 25th) but this time also mean and median for HR. For 

BR, also variance, MAD and IQR was selected, them being 

significantly lower in N3 sleep. Normalization of features was 

again important (6/10 HR and 10/10 BR), as was detrending 

(9/10 HR detrended over 600 sec and 5/10 BR). The 

detrending length of 600 seconds is remarkable since most 

periods of N3 sleep lasted longer than 10 minutes, which 

would make a longer detrending period more logical. The next 

possible interval however (1800 seconds) could have been too 

large. Adding more possible interval lengths should be 

considered. No BRinoutratio features were selected; BRin and 

BRout features followed the same characteristics as the 

selected BR features. As for movement features, the 

logarithmic transform (7/10) and the time to the last 

movement of any intensity was important. This means that 

longterm absence of movement is a good predictor for N3 

sleep. 

 

IV. DISCUSSION 

An extensive study of feature extraction, selection and 

classification was presented for Wake-Sleep, REM-NREM 

and N3-N1N2 classification. Table IV compares the obtained 

classification results to similar classification algorithms found 

in literature. The last row of the table lists the presented results 

of this study. It has by far the largest dataset, even with 10% 

of the data being excluded due to noise, mostly caused by the 

RIP-signal for the detection of breathing. The use of a nasal 

thermistor would have led to a better quality signal, but is less 

comfortable for the subject, with more interference of normal 

sleep. The large dataset allowed for a reliable feature selection 

process, algorithm training and classifier validation. The 

resemblance in Cohen’s Kappa values on training and 

validation set (table III) proves the absence of overtraining, 

and thus the reliable interchangeability between different 

healthy subjects and nights. In the case of sleep-disordered 

patients however, separate training data sets will be required 

to classify for example breathing disorder related events as 

apneas or periodic leg movement disorder events. During 

these events, output from the currently presented classifier will 

not be meaningful and should be disregarded. For the case of 

insomnia, a separate training data set with a higher presence of 

wake after sleep onset would probably give a higher 

classification accuracy, since this information was barely 

present in the currently used data set.  

The use of different cost parameter ratios within the 

classifier allowed to optimize the trade-off between false 

positives and false negatives, leading to the highest kappa 

TABLE III 
RESULTS OF THE DIFFERENT CLASSIFICATION PROBLEMS (IN PERCENTAGES) 

 Training set Validation set 

 

WAKE-

SLEEP  

< 60 mina 

WAKE-

SLEEP  

> 60 minb 

REM- 
NREM 

N3- 
N1N2 

WAKE-

SLEEP  

< 60 min 

WAKE-

SLEEP  

> 60 min 

REM- 
NREM 

N3- 
N1N2 

Agreement 90.21 91.14 84.21 78.59 89.55 91.96 86.24 79.48 

Kappa 74.10 66.08 49.27 53.56 76.23 66.55 55.81 55.25 

Precision 78.13 61.54 53.40 72.78 86.75 65.96 55.78 74.99 

Recall 83.33 84.37 65.71 67.88 81.36 77.32 75.30 67.55 
aWake versus Sleep classification problem only using data from the first hour of every night. bOnly using data after first hour. 
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values. In some applications, one can however prefer a higher 

sensitivity, or a higher precision, thus preferring a result with a 

lower kappa value.  

Some authors [30]-[37] used time-dependent a priori 

probabilities to increase the accuracy of their classifiers, 

giving a higher chance to the classifier of scoring Wake, 

REM, N1N2 or N3 sleep in certain parts of the night. 

Although this leads in general to better results for normal 

healthy sleep, it can lead to distorted results when less than 

normal sleep characteristics occur. Others [31]-[32],[36]-[37] 

used smoothing algorithms such as median filters or averaging 

over e.g. 15 minute intervals, either on the classified 

hypnogram or on the feature values themselves. While this can 

improve overall accuracy, it gives rise to a drop in time 

resolution and will likely distort the time location of sleep 

stage transitions. In some applications however, when only a 

rough overview of the sleep stage distribution of a person is 

required, these methods could significantly improve the 

overall correlation between an EEG-based and a cardio-

respiratory based sleep assessment.  

Harper et al. [30] and Devot et al. [31] showed that a 

combination of signals (cfr. their results in table IV), can 

improve classification accuracy significantly. The use broad 

pool of initial features on this combination of signals is one of 

the main factors that contributed to the good classification 

accuracies in this study. A thorough description of the selected 

features is discussed in the results section and can be used to 

optimize future feature starting sets. 

In the REM-NREM classification problem, the absence of 

features regarding the energy spectrum of Heart Rate 

Variability (HRV) is remarkable, since it was the main 

investigated feature in the study of Mendez et al. [32], and 

important in many others. While NREM sleep is associated 

with a decrease in both frequency and power of sympathetic 

bursts, no complete absence of this activity was observed. 

Somers et al. [18] and Bonnet et al. [19] described that 

sympathetic bursts will occur e.g. at locations of K-complexes 

and arousals. Furthermore, during REM sleep, sympathetic 

activity is mainly concentrated during periods of rapid-eye 

movement and complete muscle atonia. In between, there is a 

marked decrease in activity, which makes them looking more 

like NREM periods. The use of short intervals without 

smoothing or averaging could thus lead to false positive and 

negative classifications. While these sympathetic activity 

changes should also have an influence on heart and breathing 

rate rhythm and variance, their impact proves to be less. It 

could be hypothesized that the change in rhythm and variance 

is only a second order effect, thus inherently filtering out the 

more rapid changes in presence and absence of sympathetic 

activity. Further on, since the HRV Task Force [23] 

recommends interval lengths of at least 10 times the 

wavelength of the lowest frequency bound, the chosen 60 

second intervals might just be too short and unreliable for 

frequency HRV analysis.  

Bonnet et al. [19] also described that the shift in HRV (from 

low to high sympathetic activity) already starts a few minutes 

before PSG-scored REM onset, and also lasts a few minutes 

longer than the PSG-scored REM period. In PSG, the epochs 

after REM sleep are usually scored as light N1 sleep, and in 

over 50 percent of the cases the epochs before REM sleep too 

[38]. Interesting is the fact that, when only using EEG activity 

information, sleep stages N1 and REM are almost impossible 

to distinguish. This is one of the reasons why they used to be 

combined to describe a single sleep state. The above could be 

the source of difficult to avoid REM-NREM 

misclassifications. A possible solution would be to combine 

TABLE IV 

OVERVIEW OF SIMILAR CLASSIFICATION ALGORITHMS FOUND IN LITERATURE 

Author Signals Classification Acc Kappa Nights Subject specific Interval length 

Harper [30] 
HR, BR 

HR 

BR 

WAKE-REM-NREM 
85% 
82% 

80% 

- 
- 

- 

25 healthy No 60s 

Redmond [33] 

HR, BR 

HR, BR 
EEG 

EEG 

WAKE-REM-NREM 

79% 

67% 
87% 

84% 

0.56 

0.32 
0.75 

0.68 

37 OSAS 

Yesa 

No 
Yesa 

No 

30s 

Redmond [34] HR, BR 
WAKE-SLEEP 

WAKE-REM-NREM 
89% 
76% 

0.60 
0.46 

31 healthy No 30s 

Canisius [35] HR WAKE-REM-NREM 76% - 18 healthy No 30s 

Devot [31] 

HR, BR, MOV 

HR, BR, MOV 
Actigraphy 

Actigraphy 

WAKE-SLEEP 

96% 

85% 
94% 

78% 

0.70 

0.61 
0.51 

0.39 

9 healthy 

27 insomniacs 
9 healthy 

27 insomniacs 

No 30s 

Kortelainen [36] HR, MOV WAKE-REM-NREM 79% 0.44 18 healthy Nob 30s 

Mendez [32] HR REM-NREM 79% - 25 healthy No 30s 

Migliorini [37] HR, BR, MOV WAKE-REM-NREM 77% 0.55 17 healthy Nob 30s 

This paper HR, BR, MOV 

WAKE-SLEEP 
REM-NREM 

N3-N1N2 

WAKE-REM-NREM 
WAKE-REM-N1N2-N3 

92% 
86% 

79% 

81% 
69% 

0.69 
0.56 

0.55 

0.62 
0.56 

85 healthy No 60s 

aTest and training set information derived from the same night  possible overestimation of subject-specific classification potential 
bTest and training set contain nights from the same individuals  possible overestimation of non-subject-specific classification potential 
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sleep stages N1 and REM again in cardio-respiratory based 

sleep scoring. 

Redmond et al. [33] showed that an automatic classifier 

based on EEG signals has a much smaller drop in accuracy 

when going from subject-specific to non-subject-specific, 

compared to a classifier based on HR and BR. This can be 

related to the greater variability in heart and lung strength and 

capacity among different subjects, compared to a greater 

similarity in brain functioning. While this reveals a possible 

limitation in HR and BR classification accuracy, the current 

results show that sufficiently accurately results are feasible 

whilst using the right features.  

Besides Harper et al. [30] and this study, all other authors 

made use of 30 second intervals instead of 60 second intervals, 

mainly because 30 second intervals are considered the gold 

standard in polysomnography, acting as a reference method. 

The predominant frequencies observed in our brain waves are 

however an order of two greater than the frequencies observed 

in our heart and breathing rhythm, making the choice for 30 

second intervals in cardio-respiratory based sleep scoring less 

obvious. Future work must therefore investigate the influence 

of interval length on feature quality and classification 

accuracy.  

It is important to mention that, due to inter-scorer variability 

present in expert polysomnography, the reference intervals are 

not always correct. Danker-Hopfe et al. [39] reported an inter-

scorer Cohen’s Kappa of 0.7626 in a database of 56 healthy 

and 16 sleep disordered patients, when considering a 5-class 

Wake-REM-N1-N2-N3 classification according to AASM 

rules. Automatic classifiers, even on EEG signals, are still not 

capable of attaining or surpassing this accuracy. They are 

however consistent in the decisions and mistakes they make, 

which is not the case in humans. 

 

V. CONCLUSION 

An extensive study of feature extraction, selection and 

classification was presented, for Wake-Sleep, REM-NREM 

and N3-N1N2 classification. The broad pool of initial features 

gave insight in which features discriminated best between the 

separate classes. Attributes such as normalization and 

detrending proved vital. The use of different cost ratio 

parameters within the classifier allowed for a trade-off 

between sensitivity and precision. Future work will investigate 

the influence of interval length on feature quality and 

classification accuracy, and will evaluate the classification 

method on sleep-disordered patients if the necessary datasets 

can be acquired. 
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