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Abstract

Background: Recently copy number variation (CNV) has gained considerable interest as a type of genomic/genetic

variation that plays an important role in disease susceptibility. Advances in sequencing technology have created an

opportunity for detecting CNVs more accurately. Recently whole exome sequencing (WES) has become primary strategy

for sequencing patient samples and study their genomics aberrations. However, compared to whole genome

sequencing, WES introduces more biases and noise that make CNV detection very challenging. Additionally,

tumors’ complexity makes the detection of cancer specific CNVs even more difficult. Although many CNV detection

tools have been developed since introducing NGS data, there are few tools for somatic CNV detection for WES

data in cancer.

Results: In this study, we evaluated the performance of the most recent and commonly used CNV detection tools for

WES data in cancer to address their limitations and provide guidelines for developing new ones. We focused on the

tools that have been designed or have the ability to detect cancer somatic aberrations. We compared the performance

of the tools in terms of sensitivity and false discovery rate (FDR) using real data and simulated data. Comparative analysis

of the results of the tools showed that there is a low consensus among the tools in calling CNVs. Using real data,

tools show moderate sensitivity (~50% - ~80%), fair specificity (~70% - ~94%) and poor FDRs (~27% - ~60%).

Also, using simulated data we observed that increasing the coverage more than 10× in exonic regions does not

improve the detection power of the tools significantly.

Conclusions: The limited performance of the current CNV detection tools for WES data in cancer indicates the need

for developing more efficient and precise CNV detection methods. Due to the complexity of tumors and high level of

noise and biases in WES data, employing advanced novel segmentation, normalization and de-noising techniques that

are designed specifically for cancer data is necessary. Also, CNV detection development suffers from the lack of a gold

standard for performance evaluation. Finally, developing tools with user-friendly user interfaces and visualization

features can enhance CNV studies for a broader range of users.
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Background

Recently, biomedical researchers have considered the

impact of genomics variations on human diseases as it

provides valuable insight into functional elements and

disease-causing regulatory variants [1–3]. Specific focus

is drawn on copy number variation (CNV), which is a

form of structural variation of the DNA sequence,

including multiplication and deletions of a particular

segment of DNA (> 1 kb) [4]. The interest and import-

ance of CNVs has risen in a wide collection of diseases

including Parkinson [5], Hirschsprung [6], diabetes mel-

litus [7], Autism [8–10], Alzheimer [11], schizophrenia

[12] and cancer [13]. Specifically, significant effort has

found associations between CNVs and cancers [13–16].

Cancer is well known as a disease of genome and gen-

omic aberrations of interest in cancer are mostly somatic

aberrations, since tumors arise from normal cells with

acquired aberrations in their genomic materials [16, 17].
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CNV is one of the most important somatic aberrations

in cancer [13, 17–19], since oncogene activation is often

attributed to chromosomal copy number amplification,

and tumor suppressor gene inactivation is often caused

by either heterozygous deletion associated with mutation

or by homozygous deletion. Thus identification of som-

atic CNV can have an important role in cancer prognosis

and treatment improvement [20].

Array-based technologies have been used widely since

late 1990s for more than a decade as an affordable and

relatively high-resolution assay for CNV detection [21].

However, array-based technologies have limitations asso-

ciated with hybridization, which results in poor sensitiv-

ity and precision; and with resolution, related to the

coverage and density of the array’s probes. With the

arrival of next generation sequencing (NGS) technolo-

gies [22], sequence-based CNV detection has rapidly

emerged as a viable option to identify CNVs with higher

resolution and accuracy [14, 23, 24]. As a result, recently

whole-genome sequencing (WGS) and whole-exome

sequencing (WES) have become primary strategies for

NGS technologies in CNV detection and for studying of

human diseases. In most cases, CNVs are identified from

WGS data. Yet, WGS is considered too expensive for

research involving large cohort and WES, which is

targeted to protein coding regions (less than 2% of the

genome), is becoming an alternative, cost-effective strat-

egy [25]. Even though WES has several technical issues

[26], it has been emerged as one of the most popular

techniques for identifying clinically relevant aberrations

in cancer [27]. WES, can offer lower cost, higher cover-

age, and less complex data analysis, which are appealing

for clinical application when there are several samples.

Exome represents a highly function-enriched subset of

the human genome, and CNVs in exome are more likely

to be disease-causing aberrations than those in nongenic

regions [28, 29].

Many tools have been developed for CNV detection

using WGS data. However, these methods are not suitable

for WES data since their main assumptions on read distri-

butions and continuity of data do not hold. In addition,

WES data introduce biases due to hybridization, which do

not exist in WGS data and are not considered in the CNV

detection methods. On the other hand, germline and som-

atic CNVs are very different in their overall coverage of

the genome and their frequency across population; and

they need to be identified differently. The characteristics

of somatic CNVs need special consideration in algorithms

and strategies in which germline CNV detection programs

are usually not suited for. In general, germline CNVs cover

small portion of the genome (about 4%) [30], they are

more deletion, and they are common among different

people. However somatic CNVs can cover a majority part

of a genome, can be focal, and are unique for each tumor.

As a result CNV detection methods that are developed for

identifying population CNVs or germline CNVs cannot be

used for identifying somatic aberrations. Also, identifying

somatic CNVs in cancer is very challenging because of the

tumor heterogeneity and complexity: tumor samples are

contaminated by normal tissue, the ploidy of tumors is

unknown, and there are multiple clones in tumor samples.

On top of the tumor samples’ complexity there are experi-

mental, technical and sequencing noise and biases which

makes somatic CNV detection very challenging.

Even though many CNV detection tools and methods

have been developed since introducing NGS data, there

are few tools available for somatic CNV detection for

WES data in cancer. Because of the popularity of WES

in cancer studies and challenges of detecting somatic

CNV using WES data, in this study we focus on CNV

detection methods and tools for WES data in cancer.

The objectives of this study are addressing the limita-

tions of the current tools and methods and providing

guidelines for developing new ones. In this work first,

we briefly explain the CNV detection methods and chal-

lenges for WES data and then introduce the recent CNV

detection tools for WES data. Then we present the

performance analysis of the tools in terms of sensitivity

and specificity of detecting true CNVs, using real data

and simulated data.

Methods
CNV detection methods

In general there are three main approaches to identify

CNV from next generation sequencing data: 1) read

count, 2) paired-end, 3) assembly [31]. In the read depth

(RD) approach mostly a non-overlapping sliding window

is used to count the number of short reads that are

mapped to a genomic region overlapped with the win-

dow. Then these read count values are used to identify

CNV regions. Due to reducing the cost of sequencing

and improving the sequencing technologies more and

more high-coverage NGS data are available; as a result,

RD-based methods have recently become a major

approach to identify CNVs. Paired-end (PE) approach,

which are applied to paired-end NGS data, identifies

genomics aberration based on the distances between the

paired reads. In paired-end sequencing data, reads from

the two ends of the genomics segments are available.

The distance between a pair of paired-end reads is used

as an indicator of a genomics aberration including CNV.

A genomic aberration is detected when the distance is

significantly different from the predetermined average

insert size. This approach is mostly used for identifying

other type of structural variation (beyond CNVs) such as

inversion and translocation. In the assembly approach

short reads are used to assemble the genomics regions

by connecting overlapping short reads (contigs). CNV
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regions are detected by comparing the assembled contigs

to the reference genome. In this methods short reads are

not aligned to the reference genome first. Since in WES

targeted regions are exonic regions, they are very short

and discontinuous across the genome. As a result, the

PE and assembly approaches for identifying CNVs are

not suitable for WES data. Also high coverage of WES

data makes the RD approach more practical. Therefore,

all CNV detection tools for WES are based on the RD

approach.

In general, the RD approach consist of two major

steps: 1) preprocessing, and 2) segmentation. The input

data are aligned short reads in BAM, SAM or Pileup

formats. In the preprocessing step, WES data’s biases

and noise are eliminated or reduced. Normalization and

de-noising algorithms are the main components of this

step. In the segmentation step a statistical approach is

used to merge the regions with the similar read count to

estimate a CNV segment. The most commonly used

statistical methods for segmentation are circular binary

segmentation (CBS) and hidden Markov model (HMM).

In CBS, the algorithm recursively localizes the breakpoints

by changing genomic positions until the chromosomes are

divided into segments with equal copy numbers that are

significantly different from the copy numbers from their

adjacent genomic regions. In HMM the read count

windows are sequentially binned along the chromosome

according to whether they are likely to measure an ampli-

fication, a deletion, or a region in which no copy number

change occurred. Even though other statistical methods

have been introduced for detecting CNVs from WGS

data, these two methods are the most common

methods that are used in the current CNV detection

tools for WES data.

Challenges for detecting somatic CNVs in cancer

Despite improvements to sequencing technologies and

CNV detection methods, identifying CNV is still a chal-

lenging problem. Complexity of tumors and technical

problems of WES add more challenges to identifying

somatic CNVs from WES data in cancer [31, 32]. In this

section we briefly explain the challenges that somatic

CNV identification are faced with in cancer when using

WES data. We divide these challenges into three classes:

challenges due to 1) sequencing data, 2) WES technical

problems, and 3) tumor complexity.

Challenges due to sequencing data

The main assumption of the RD based CNV detection

algorithms is that the read counts and CNV for a

particular region are correlated. However, there are

biases and noise that distort the relationship between

the read count and copy number. These biases and noise

include GC bias, mappability bias, experimental noise,

and technical (sequencing) noise. GC content varies

significantly along the genome and has been found to

influence read coverage on most sequencing platforms

[33, 34]. In the alignment step, a huge number of reads

are mapped to multiple positions due to the short read

length and the presence of repetitive regions in the refer-

ence genome [34, 35]. These ambiguities in alignment

can produce unavoidable biases and error in RD based

CNV detection methods [33]. Furthermore, sample

preparation, library preparation and sequencing process

introduce experimental and systematic noise that can

hinder CNV detection [34, 36].

Challenges due to WES technical problem

The exome capture procedure in the library preparation

process for WES introduces biases and noise that dis-

torts the relation between read count and CNV. In the

WES library preparation, the hybridization process pro-

duces biases. In addition, the distribution of read in the

exonic regions is not even, which is another source of

bias [37]. It is very common that in some genomic

regions the read count is very low. This low read counts

affect the statistical analysis for calling CNVs and as a

result produce noise in the CNV detection algorithms.

Challenges due to tumor complexity

Complexity of cancer tumor also distorts the relation-

ship between read count and CNV and as a result pro-

duces noise. The tumor complexity includes tumor

purity, tumor ploidy, and tumor subclonal heterogeneity.

Tumor samples are mostly contaminated by normal

cells. Therefore, mapped read on a particular region are

not all belong to tumor cells. As a result, read count

values do not completely reflect copy number of tumor

cells and the tumor normal copy number ratio is less

than the real value. This introduces difficulties in calling

copy number segments. A threshold for calling CNV will

depend on tumor purity, which is usually unknown.

There are a few tools available to estimate tumor purity

[38, 39]. Aneuploidy of the tumor genome is observed in

almost all cancer tumors [40], which creates difficulties

in determining the copy number values. The normal

tumor read count ratio is corresponding to the average

ploidy, which is usually unknown in the tumor sample.

It is observed that multiple clonal subpopulations of

cells are present in tumors [41]. Due to their low

percentage in a sample, it is hard to determine the sub-

clones. This intra-tumor heterogeneity or multiple

clonality distorts the CNV and makes calling CNV

segments complicated.

CNV detection tools

AS of August 2016, we have identified fifteen sequence-

based CNV detection tools (Additional file 1: Table S1)
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for WES data. Several studies have already evaluated and

compared the performance of CNV detection tools for

WES data [31, 32, 42]. However, the focus of their work

has not been on cancer. In this work, we restricted the

analysis and comparison of CNV tools to those that have

been used or have the ability to detect cancer specific

aberrations (somatic aberrations). Due to the fast advan-

cing sequencing technologies, we also focused on the

widely used and more recent tools. Out of the available

CNV detection tools for WES data, we chose the tools

that fit the criteria of (1) ability to detect somatic aberra-

tion, (2) using read depth (RD) method and (3) was pub-

lished in the recent years or commonly used. Six tools

meet the above criteria: (1) ADTEx [25], (2) CONTRA

[43], (3) cn.MOPS [44], (4) ExomeCNV [45], (5) VarS-

can2 [46], and (6) CoNVEX [47]. ADTEx and CoNVEX

were developed by the same group using a similar

method, which ADTEx is the modified version of the

CoNVEX. As a result, we only considered ADTEx. More

recent tools, such as CANOES [48], ExomDepth [49],

and cnvCapSeq [50], are not used specifically for cancer;

therefore we did not consider them in this study. The

list of the tools that we considered in this study and

their general characteristics are provided in Table 1.

ADTEx [25] is specifically designed to infer copy num-

ber and genotypes using WES from paired tumor/nor-

mal samples. ADTEx uses both read count ratios and B

allele frequencies (BAF) to detect CNV along with their

genotypes. It addresses the problem of tumor complexity

by employing BAF data, if these data are available. For

normalization, ADTEx first calculates the average read

count of exonic regions for both tumor and normal, and

then computes the ratios of read counts for each exonic

region. ADTEx also uses the Discrete Wavelet Trans-

form approach as a preprocessing step to reduce the

noise of read count ratio data. It uses the HMM method

for segmentation and CNV call. Two HMMs are used in

the detection algorithm: one to detect CNVs in combin-

ation with BAF signal to estimate the ploidy of the

tumor and predict the absolute copy numbers, the other

to predict the zygosity or genotype of each CNV seg-

ment. When the BAFs of tumor samples are available,

they fitted the HMM for different base ploidy values. To

determine the base ploidy, ADTEx selects the SNPs

which overlaps with each exonic region, segments BAFs

using CBS algorithm, estimates B allele count for differ-

ent ploidy levels, and finally uses the distances between

B allele counts to provide the best fit for base ploidy.

CONTRA [45] is a method used for CNV detection

for targeted resequencing data, including WES data. It is

designed to detect CNV for very small target regions

ranging between 100 to 200 bp. The main difference

between CONTRA and the other method is that it cal-

culates and normalizes the read count and log ratio for

each base (not a window or exon). This allows for better

GC normalization and log ratio calculations for low

coverage regions. After calculating base-level log ratios,

it estimates region-level log ratios by averaging the base-

level log ratios over the targeted regions (exons in

WES). Then, it normalizes the region-level log ratios for

the library size of control and normal samples. The

significant values of the normalized region-level log

ratios are calculated by modeling region-level log ratios

as normal distribution. For detecting large CNVs span-

ning multiple targeted regions (exons), CONTRA per-

forms CBS on region-level log-ratios. To call a CNV

segment, at least half of the segment has to have overlap

with the significant region-level CNVs. This method

addresses the problems of some very low coverage

regions and sequencing biases (GC bias), which are due

to uneven distribution of reads in WES.

The main difference between cn.MOPS [44] and other

tools is that it can use several samples for each genomics

region to have a better estimate of variations and true

copy numbers. cn.MOPS uses non-overlapping sliding

window to compute read counts for genomic regions.

To model read count, it employs a mixture of Poisson

distribution across the samples. The model is used to

estimate copy number for each genomic region.

cn.MOPS does not calculate ratios of case and control.

Instead it uses a metric that measure the distance

between the observed data and null hypothesis, which is

all samples have copy number of 2. If CNV differs from

2 across the sample, the metric is higher. This metric is

used for segmentation by CBS per sample. At each gen-

omic position, cn.MOPS uses the model of read counts

across samples, so it is not affected by read count alter-

ation along chromosomes. By using Baysian approach,

cn.MOPs can estimate noise and so it can reduce the

false discovery rate (FDR).

ExomeCNV is designed specifically for WES data

using pairs of case-control samples such as tumor-

normal pairs. It counts the overlapping reads for exons;

and by using these read counts for tumor and normal, it

computes the ratio of read counts for each exonic

regions. Hinkley transformation (ratio distribution) is

used to infer the normal distribution for the read count

ratios. After finding ratios of tumor and normal for

exonic regions, CBS is used for segmentation. If the

tumor purity is given in advance, ExomeCNV will use it

to compute copy numbers. It also can detect loss of het-

erozygosity (LOH) if BAF data is given. ExomeCNV

divides the average read count by the overall exome

average read count to normalize the average read count

per exon.

VarScan2 [46] is also specifically designed for the

detection of somatic CNVs in WES from tumor–normal

pairs. To compute the read counts of bases, the
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algorithm considers only high quality bases (phred base

quality ≥20) for tumor and normal samples individually.

It does not use a sliding window or exons to generate

read count data. Instead, it calculates tumor to normal

read count ratios of the high quality bases that full fill

the minimum coverage requirement. Then, in each

chromosome, consecutive bases that their tumor to nor-

mal read count ratios do not change significantly, based

on the Fisher’s exact test, are binned together as a

genomic region to generate read count data. For each

genomic region, copy number alterations are detected

and then are normalized based on the amount of input

data for each sample. A segmentation algorithm in not

embedded into the VarScan2 tool and CBS algorithm is

recommended for the segmentation of the genomic

regions.

Data sets

In this work, we used real and simulated WES data to

evaluate CNV tools’ performances.

Real data

We used ten breast cancer patient tumor-normal pair

WES datasets from the cancer genome atlas (TCGA) to

evaluate the performance of the CNV detection tools. The

list of samples is given in the Additional file 1: Table S2.

The WES data were generated by the Illumina Genome

Analyzer platform at Washington University Genome

Sequencing Center (WUGSC). The aligned BAM files of

these 20 samples (10 tumor-normal pairs) were down-

loaded from The Cancer Genomics Hub (CGHub),

https://cghub.ucsc.edu/index.html. We also used array-

based CNV data from the same 10 tumor samples as a

benchmark for the CNV detection tools evaluation. We

downloaded SNP-array level 3 data from the Affymetrix

genome-wide SNP6 platform from the TCGA data

portal website (https://portal.gdc.cancer.gov/projects/

TCGA-BRCA) for the 10 tumors.

Simulated data

To evaluate the performance of the tools, we have also

used benchmark datasets generated by a CNV simulator,

called VarSimLab [51]. VarSimLab is a simulation soft-

ware tool that is highly optimized to make use of exist-

ing short read simulators. Reference genome in FASTA

format and sequencing targets (exons in the case of

WES) in BED format are inputs of the simulator. A list

of CNV regions that are affected by amplifications or de-

letions is randomly generated according to the simula-

tion parameters. The CNV simulator manipulates the

reference genome file and the target file before generat-

ing short reads that exhibit CNVs. The output consists

of: (i) a list file that contains the synthesized amplifica-

tions and deletions in txt format, (ii) short reads with no

CNVs as control in FASTQ format, and (iii) short reads

with synthesized CNV as case in FASTQ format.

We used VarSimLab to generate simulated short reads

of length 100 bp for chromosome 1. We generated syn-

thesized datasets with 3 M, 2 M, 1 M, 0.5 M, 0.1 M,

0.05 M, 0.01 M reads to simulate different coverage

values (approximately from 0.2X to 60X in exonic

regions). For each coverage value, we generated 10 data-

sets (70 datasets in total). These simulated data with

known CNV regions were used to evaluate the perform-

ance of the CNV detection tools in terms of sensitivity

and specificity for identifying CNV regions.

Comparison methods

To evaluate the performance of the tools in terms of

sensitivity, false discovery rate (FDR) and specificity for

detecting CNVs we compared their detected CNVs with

the benchmark CNVs. For this comparison, we utilized

two approaches: 1) gene-based comparison, and 2)

segment-based comparison. Gene-based comparison

analysis indicates the performance of the tools on calling

CNVs only on exonic regions, which are the targets of

the WES. However, segment-based analysis indicates the

performance of the tools on overall calling CNV

segments across the genome.

Gene-based comparison

For the gene-based comparison, we first annotated the

detected CNV segments in the benchmark and samples

for both real data and simulated data. We used

“cghMCR” R package from Bioconductor [52] to identify

CNV genes using Refseq gene identifications. The aver-

age of the CNV values of the overlapping CNV segments

for each gene is used as the gene CNV value. A thresh-

old of ± thr for log2 ratios was used for calling CNV

genes, that is: amplification for log2 ratios > thr, deletion

for log2 ratios < − thr, and No CNV for log2 ratios

between - thr and thr.

For each tool, we computed sensitivity, specificity

and FDR separately for amplification and deletion. If

we name the detected CNV value for a specific gene

as CNVtest and the benchmark CNV value of the

gene as CNVbench, then we can define True Positive

(TP), False Positive (FP), True Negative (TN) and

False Negative (FN) for amplified and deleted genes

as given in Table 2.

The sensitivities or true positive rates (TPRs), speci-

ficities (SPCs) and FDRs are calculated using the

following equations for both amplified and deleted

genes.
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TPR ¼
TP

TP þ FNð Þ
; ð1Þ

FDR ¼
FP

TP þ FPð Þ
; ð2Þ

and

SPC ¼
TN

FP þ TNð Þ
ð3Þ

For each tool we calculated TPRs, SPCs, and FDRs of

the tools for all datasets and used their average values.

Segment-based comparison

For the segment-based comparison, we focused on com-

paring the CNV segments between detected CNVs and

benchmark CNVs. Similar with the gene-based CNV

comparison, we used a threshold (thr) to call amplified,

deleted and no CNV segments. Comparing CNV regions

between detected CNVs and their corresponding bench-

mark CNVs is more complicated than comparing CNV

genes. Detected CNV segments, unlike CNV genes, have

different sizes and different start and end positions com-

pared to those of benchmark CNV segments. We used

“GenomicRanges” R package from Bioconductor [52] to

obtain overlapping regions between detected CNVs and

benchmark CNVs. If an amplified/deleted segment of a

sample, which has CNV > thr/ CNV < −thr, has an over-

lap of 80% or more with a benchmark amplified/deleted

segment it was considered as TP. If we cannot find an

overlap of 80% or more between a detected CNV region

and any benchmark CNVs, the detected CNV segment

was consider as FP. An amplified/deleted segment in the

benchmark that does not have an overlap of 80% or

more with any detected amplified/deleted regions was

called FN. Since the regions with no CNVs cover very

large sections of a genome we did not calculate TN

regions. Therefor for segment-based comparison we

calculated TPRs and FDRs as eqs. 1 and 2. If we name a

CNV segment of samples as TestSeg and a CNV segment

of benchmark as BenchSeg, we can calculate TPs, FPs

and FNs as shown in Table 3.

Results and Discussion

Real data

Gene-based comparison

The average sensitivity, specificity and FDR of the 5

CNV detection tools on real breast cancer WES data are

shown in Table 4 (The CNV results of the tools for the

real samples are given in Additional files 2, 3, 4, 5 and 6).

Thresholds of ±0.2 were used to call CNV genes. In

summary tools show moderate sensitivities (~50% to

~80%), fair specificities (~70% to ~94%) and poor FDRs

(~30% to 60%) on detecting CNV genes. Of the five

tools, ExomeCNV was found to outperform other tools

with the highest sensitivity rate of 83.67% for amplifica-

tion and 81.3% for deletion. VarScan2 (FDR = 26.87%,

SPC = 92.71%) and ADTEx (FDR = 41.80%,

SPC = 94.18%) show the best FDR and specificity for

detecting amplified and deleted genes (Table 4). Exo-

meCNV employs a minimum power/specificity parameter,

and it makes a call on a specific exon if the desired power/

specificity is achieved by the coverage of that exon. That is

likely the reason of its better performance.

In general, tools show higher FDRs in detecting

deleted genes compared to detecting amplified genes.

ADTEx, CONTRA, and cn.MOPS show similar rate of

sensitivity for detecting the true amplified CNV genes

(about 50%). The high FDRs of the tools might be

Table 4 Overall performance of the CNV detection tools using

the gene-based comparison approach for real data

Method ADTEx CONTRA cn.MOPS ExomeCNV VarScan2

Amplification

Sensitivity 51.53% 54.37% 58.03% 83.67% 69.11%

FDR 33.70% 53.52% 57.36% 38.79% 26.87%

SPC 89.84% 83.06 66.54% 82.07 92.71%

Deletion

Sensitivity 50.14% 64.95% 52.81% 82.94% 76.77%

FDR 41.80% 64.86% 61.35% 45.31% 51.91%

SPC 94.18% 78.86% 78.08% 87.26% 82.52%

In the table, bold value in each line represents the best value of each

performance measure

Table 2 Computing TP, FP, TN and FN for Gene-Based comparison

of the performance of the tools

Amplification CNVbench > thr CNVbench < thr

CNVtest > thr TP FP

CNVtest < thr FN TN

Deletion CNVbench < (− thr) CNVbench > (−thr)

CNVtest < (−thr) TP FP

CNVtest > (−thr) FN TN

Table 3 Computing TP, FP and FN for Segment-Based comparison

Amplification BenchSeg CNV > thr BenchSeg CNV < thr

TestSeg CNV > thr TP if they have overlap
>80% of TestSeg

FP if they have overlap
>80% of TestSeg

TestSeg CNV < thr FN if they have overlap
>80% of TestSeg

…

Deletion BenchSeg CNV < − thr BenchSeg CNV > −thr

TestSeg CNV < −thr TP if they have overlap
>80% of TestSeg

FN if they have overlap
>80% of TestSeg

TestSeg CNV > −thr FN if they have overlap
>80% of TestSeg

...

Zare et al. BMC Bioinformatics  (2017) 18:286 Page 7 of 13



partially due to using array-based CNV results as bench-

mark CNVs. Array-based technologies suffer from low

resolution due to probe intensities, which results in

detecting large CNV regions and missing the detection

of small CNV regions.

To examine the consistency of the tools’ results, we

compared the CNV calls of the genes for each sample

across the tools. Figure 1 shows the CNV calls of 55

breast cancer related genes [53, 54] for the breast cancer

samples used in this study. It can be seen that there is

no strong consistency among the tools in calling these

breast cancer related genes for each sample. There are

few genes that are called as amplified or deleted in each

sample by all the tools. Many genes are called as ampli-

fied by some tools, deleted by some other tools and no

CNV by the rest. As can be seen from Fig. 1, sample 3

has a few amplified or deleted CNV regions compared

to other samples; thus, we removed it for the rest of ana-

lysis. Figure 2a and b show the Venn diagram of the

average of the number of truly detected deleted and

amplified genes by the tools from all the samples. As

can be seen, a small fraction of true amplified and true

deleted genes are common across all the tools. Only 946

genes out of 4849 true amplified genes in union, and

569 genes out of 4104 true deleted genes in union are

common across the tools, which show low consistency

among the tools.

Segment-based comparison

Average sensitivities and FDRs of the CNV detection

tools based on the segment-based comparison analysis

are given in Table S3 in Additional file 1. We considered

an overlap of at least 80% between the detected CNVs

and benchmark CNVs to call TPs and FPs. We also used

thresholds of ±0.2 to call CNV regions. Sensitivities and

FDRs of the segment-based analysis are almost similar

to the sensitivities and FDRs of the gene-based analysis.

However, we observed that tools that can detect larger

CNV segments show better performance. This is most

likely due to use large benchmark CNV regions from the

array-based technologies. ExomeCNV and cn.MOPS

show the highest sensitivities for detecting CNV

Segments; and cn.MOPS and VarScan2 show the lowest

FDR for detecting CNV Segments (Additional file 1:

Table S3). ExomeCNV and cnMOPS also detect a

greater percentage of large CNV segments (Fig. 3a).

The CNV size distributions and the number of the

detected CNVs from the breast cancer samples by the

five tools are shown in Fig. 3. There is no strong

consistency among the tools on the size and number of

detected CNVs as well. Tools that detect larger CNV

segments detect lower number of CNVs and tools that

detect shorter CNV segments detect more CNVs (Fig. 3a

and b). That indicates a high level of errors in CNV

break point (CNV segment edge) detection. In Fig. 3a,

Fig. 1 CNV call of 55 breast cancer related genes. Blue: deletion, Red: amplification, and light yellow no CNV call. Order of tools from left to right: 1:

ADTEx, 2: ExomeCNV, 3: CONTRA, 4: cn.MOPS, and 5: VarScan2
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cn.MOPS and ADTEx show a tendency to detect larger

CNV segments. CONTERA detects shorter CNV

segments. Only about 1% of its detected CNVs regions

are larger than 1000 K.

We also examined the computational complexity of

these CNV detection tools by comparing their execution

times. In order to compare the running time of the tools,

we run the tools using one of the breast cancer sample

for 5 times and averaged their execution times. The runs

performed on a single node of the same computer clus-

ter. Figure 4 shows the average execution times of the

tools on the real dataset. In Fig. 4, you can see that while

ADTEx takes the longest time, cn.MOPS is the fastest

tool among the five tools. The running times of the

other three tools are almost comparable.

In summary, ADTEx has a moderate sensitivity and

better FDR. Similar to cn.MOPS, it is capable of detect-

ing larger CNV regions, but it detects CNVs with a

wider range of sizes. ADTEx is the most recently devel-

oped tool for CNV detection. Different from the other

four tools, it employs two HMMs for calling CNVS and

a denoising method for preprocessing. Its detection

method is more computationally expensive compared to

the other tools. CONTRA has a moderate sensitivity and

FDR, with a wide range of detected CNVs sizes. Its

performance outperforms the other tool using simulated

data. Because CONTRA was developed based on empir-

ical relationships between log-ratios and read count data,

it relies on the case sample being largely copy number

neutral. But this might not be true for cancer data, and

results in poor performance for real cancer data.

cn.MOPS also has a moderate sensitivity and FDR for

the gene-based comparison approach. cn.MOPS can

apply to multiple samples at once for a better

normalization, which can improve its performance. It

shows better performance in detecting CNV segments.

cn.MOPS detects larger CNV regions, and is the fastest

tool. ExomeCNV has higher sensitivity and moderate

FDR. Its better sensitivity can be due to its additional

step to call CNV at individual exon before segmentation

process. In general, ExomeCNV shows better overall

performance in comparison to the other tools. Its execu-

tion time is comparable with other tools as well. In this

study we did not use BAF data. Using BAF data can

improve its performance too. VarScan2 has higher sensi-

tivity and better FDR for both amplification and deletion

in the gene-based comparison analysis. Even though

VarScan2 did not show the best performance, it shows

Fig. 3 Characteristics of the detected CNV regions by the 5 tools. a Size distributions of CNV segments. b Number of detected CNV segments

Fig. 2 Venn diagrams of the average of the number of truly detected CNV genes from the 5 tools, (a) amplified genes, (b) deleted genes
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stable overall performance and ease of use with a

comparable execution time.

Simulated data

The advantages of using simulated data are that: 1) we

have a known list of benchmark CNVs that can be used

as a gold standard for calculating accurate sensitivities

and FDRs, and 2) we can investigate the effect of cover-

age on the detection power of the tools. Since the price

of sequencing directly depends on the coverage of the

data (or number of reads), knowing the minimum cover-

age of data needed for accurate CNV detection is

important. It is useful to notice that even though simu-

lated data harbor sequencing noise and biases, tumor

related distortions have not simulated in the synthesized

data. As a result, CNV detection tools show superior per-

formance on synthesized data compared to real tumor

data. We generated 7 sets of 10 simulated paired-end

WES data for chromosome one. Each set has different

numbers of 100 bp reads of 3 M, 2 M, 1 M, 0.5 M, 0.1 M,

0.05 M, 0.01 M. Thresholds of ±0.5 were used to call

CNV genes and segments for simulated data.

Gene-based approach

Figure 5a and b show sensitivity (TPR) verses 1- specifi-

city (FPR) of the tools in calling amplified and deleted

genes respectively, when changing the number of reads

in chromosome 1 from 0.01 M to 3 M. In calling ampli-

fied genes, CONTRA was found to outperform other

tools with the highest sensitivity rate especially for lower

coverage values. Its base-level log2 ratio approach gives

it the advantage of working well for low coverage data.

In calling deleted CNV genes, the five tools showed

comparable performance in terms of sensitivity and

FDR. As expected, we can see that the detection power

of the tools decreased with lowering the coverage

(Fig. 5a and b). We also noticed that the performance

of the tools is not improving significantly by increas-

ing the number of read more than about 0.5 M for

chromosome 1 (almost the coverage of 10X for the

exonic regions).

Segment-based approach

Segment-based analysis of the performance of the tools

using the simulated data showed that VarScan2 and

cn.MOPS have the highest sensitivity for detecting ampli-

fied CNVs, and Varscan2 and ExomeCNV have the lowest

FDR in detecting deleted CNVs, as shown in the

Additional file 1: Table S4. The five tools show almost the

same FDR for detecting amplified and deleted CNV seg-

ments. They have high sensitivities and low FDRs espe-

cially for high coverage values. As expected, we observed

that the overall performances of the tools are better for

higher coverage values (Additional file 1: Table S4).

In addition, we analyzed False Negative, False Positive

and True Positive CNV segments regarding their lengths.

Fig. 5 Sensitivity (TPR) versus 1- specificity (FPR) of the tools for different coverage values, using simulated data, for (a) amplified genes, and (b)

deleted genes. Since CONTRA could not generate the proper output for the coverage of 0.01 M, its results for coverage of 0.05 have not been shown

Fig. 4 Average execution times of the tools from 5 runs on a real

breast cancer dataset
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We observed that in general FN and FP segments have

significantly shorter lengths compared to TP segments

(with p-value <0.05 using Wilcoxon test) for all of the

tools. The boxplots of the lengths of FP, FN, and TP CNV

segments for all the tools and for amplification and dele-

tion are given in Additional file 1: Figures S1 and S2). It

can be concluded that the power of all the tools in detect-

ing short CNVs is low and they detect many false short

CNVs and miss many true ones. The length of a CNV

segments is indirectly related to the local coverage of the

segment. Therefore, mis-detection of short and low cover-

age segments is one of the major reasons for poor

performance of the tools.

Conclusions

In this study, we surveyed CNV detection tools for WES

data in cancer. We focused on CNV detection for WES

data because WES is a more affordable and a more

popular sequencing technique in translational research

compared to WGS. Despite the popularity and preva-

lence of WES data, detecting CNV using WES data is

challenging. CNV detection using WES data requires

different approaches compared to the CNV detection

using WGS data due to different type of noise and biases

and sparsity of exonic regions. Also, in this study we

concentrated our efforts on studying CNV detection

tools that can apply to or designed for cancer. Cancer

tumors harbor somatic aberrations and tumors are com-

plex due to tumor ploidy, normal cells contamination

and subclonal heterogeneity. As a result, studying CNVs

in cancer requires different approaches compared to

studying germline CNVs or population CNVs.

We evaluated the performance of the five most recent

and commonly used CNV detection tools (Table 1) for

cancer WES data in terms of sensitivity, FDR and speci-

ficity of detecting CNV genes and CNV segments. For

the performance evaluation, we used real breast cancer

data as well as simulated data. The comparative analysis

of the performance of the tools on real data shows that

the tools have moderate detection power (sensitivity)

while show low precision (or poor FDR). The poor FDRs

show that the tools generate many false positives.

There are some important reasons for having low

sensitivity and specificity of CNV detection tools. First

reason is related to the inability of accurate detection of

CNV breakpoints for WES date. Percentage of exons in

genome is about 1.1% to 1.4% and some of the real

breakpoints are outside of the captured target regions

[55]. Second, all of these tools are based on the RD

approach that uses the depth of coverage (read count)

information for detecting CNV. This method has low

resolution and power in detecting small CNVs due to

low values of read count data [42]. Third reason is the

lack of appropriate preprocessing methods such as bias

removing, de-noising and normalization. It is assumed

that there is a shared bias between tumor and normal

read count data, which can be removed by calculating

the ratio of tumor and normal coverage. But this

assumption can lead to potential problems. The noise of

a local region is not considered in this assumption.

Therefor in computing ratio values of depth of coverage

between tumor and normal samples, noise is amplified.

It has been shown that CNV detection tools do not per-

form well for low quality and noisy samples [56], which

indicates a need for using more advanced preprocessing

and detection (segmentation) methods.

Also, the characteristics of the detected CNV segments

(size, number, orientation) are different across the tools

that show inconsistency in the segmentation of the CNV

regions. In addition, the consensus CNVs across the

tools is low which can be the result of the high FDRs as

well. Using synthesized data resulted in the better

performance of the tools because tumor complexity

(ploidy, normal contamination, clonal heterogeneity) has

not been simulated on the synthesized data. That shows

the importance of considering tumor complexity in

CNV detection in cancer.

Even though tumor complexity play an important role

on the accurate detection of CNVs, there are only two

tools, ADTEx and ExomeCNV, that partially address

tumor complexity by employing BAF information – re-

garding tumor ploidy- in their CNV detection methods.

However, tumor subclonal heterogeneity and tumor purity

have not been addressed by any tools. Incorporating extra

information such as allelic frequency and a model of

tumor purity can help to improve true detection of CNVs.

Using the simulated data, we also investigated the

effect of coverage on the detection power of the tools.

Coverage of sequencing, or the number of reads, is pro-

portional to the cost of sequencing. High coverage is

important to call somatic aberration, especially for som-

atic mutations, but it costs more as well. In this study,

we observed that the tools’ performances do not

improve significantly by increasing the coverage more

than about 10X on exonic regions. Although, the tools

use different preprocessing methods, they used HMM

and CBS for segmentation of CNV regions, which are

adopted from CNV detection for microarray technolo-

gies. New segmentation approaches that can effectively

use characteristics of WES data in cancer, such as tumor

complexity and sparsity of exonic regions, need to be

developed. In addition, even though it is well known that

read count data suffer from noise there is only one tool,

ADTEx, that uses a noise cancellation method- based on

the discrete wavelet transform technique - to reduce

noise before segmentation. Also, somatic CNV detection

methods typically utilize matched normal DNA as a

means for identifying true somatic variations from
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germline variations and reducing background sequen-

cing biases. Developing appropriate and effective noise

cancelation and normalization methods is required to

detect CNVs more accurately. Utilizing techniques from

other fields such as statistical image/signal processing

can help to address these challenges.

One of the challenges we faced in this study was

usability of the tools. One of the problems is the mis-

match of the tools with the newer version of their

dependencies. In addition, all of the CNV detection tools

are command line based software tools without user-

friendly user interfaces. The lack of user-friendly user

interface makes the tools’ utilization difficult for

researcher with limited expertise in computer systems.

Visualization is also very important to study CNVs. Most

of the tools offer commands for plotting CVNs with very

limited features. However, embedding advanced and

user-friendly visualization features to the CNV detection

software tool can be very useful.

Finally, the lack of a CNV gold standard to accurately

evaluate the performance of the tools is another chal-

lenge in developing CNV detection tools. An effort on

developing a gold standard for CNV detection can

significantly help CNV detection tool development.

In summary, the moderate sensitivities and poor FDRs

of the current CNV detection tools for WES data in

cancer indicate the need for developing more efficient

and precise CNV detection methods. CNV detection

tools with user-friendly user interfaces and visualization

features can extremely enhance CNV studies. Also, util-

izing advanced novel segmentation, normalization and

de-noising techniques that are designed specifically for

cancer data is necessary.
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