
An evaluation of different symbolic shallow parsing techniques.

Tristan VANRULLEN , Philippe BLACHE

Laboratoire Parole et Langage, UMR 6057 CNRS
Université de Provence, 29 Av. Robert Schuman, 13621 Aix-en-Provence, France

{tristan.vanrullen, blache}@lpl.univ-aix.fr

Abstract
This paper presents an evaluation of four shallow parsers The interest of each of these parsers led us to imagine a parameterized
multiplexer for syntactic information based on the principle of merging the common boundaries of the outputs given by each of these
programs. The question of evaluating the parsers as well as the multiplexer came in the foreground with the problem of not owning
reference corpora. We attempt here to demonstrate the interest of observing the ‘common boundaries’ produced by different parsers as
good indices for the evaluation of these algorithms. Such an evaluation is proposed and tested with a set of two experiences.

1. Introduction

1.1. Why using different parsers
Shallow parsing usually relies on statistical techniques.

In the case of symbolic shallow parsers, the method
consists in using a reduced set of pre-compiled syntactic
information. This information is generally at a very low
level and specified in terms of filtering (e.g. constraint
grammars). In such techniques, the linguistic information
is heavily dependent from the parsing process. One
consequence is that such systems are not modular nor
reusable. There is another important question to be
answered: what is the goal of shallow parsing? The
classical answer is: an efficient and robust bracketing
technique. Robustness is the most important aspect,
shallow parsers must address this point, as well as
efficiency: large and unrestricted corpora have to be
treated. But the answer is not so obvious as for the last
point: bracketing. We think that this constitutes only one
aspect of the kind of information that can be built by
shallow parsers: other kind of information such as
dependency can also, under certain conditions, be built.
Even more generally, we could imagine an integrated
shallow parser generating syntactic (bracketing), semantic
(dependency) and prosodic (intonative contours)
information.

Such a goal absolutely requires for the parser to rely

on high-level linguistic resources. The question is then: is
it possible to develop an efficient and robust parsing
strategy capable of integrating (if necessary) these
different aspects? We propose in this perspective a
strategy relying on a constraint-based representation. In
such approach, all linguistic information is represented by
means of constraints. All constraints being at the same
level, it is then possible to verify only a subset of
constraints. The idea consists in choosing the granularity
of the parser in modifying such subset of constraints to be
verified: there is a proportionality relation between the
dimension of the set of constraints and the level of the
parse. We can choose a very superficial granularity in
verifying only one kind of constraints (for example the
ones describing linearity) or to refine a little bit the parse
in introducing other constraints. The main interest is that
(1) the linguistic resource is the same in all cases (a set of

constraints) and (2) the same system can be used for
different granularity (i.e. different applications).

Such a goal doesn’t mean that efficient and robust

parsing don’t require any more specific techniques. But
we can make some proposals in this direction, for example
implementing a deterministic strategy (ambiguity being in
the end the main problem for parsing).

1.2. Improving parsers improves prosodic
information for text-to-speech applications

Several domains in language technology can be
improved by means of syntactic information. This is in
particular the case for text -to-speech systems in which
intonation generation can be driven with boundaries
indication coming from shallow parsers (cf. [Allen],
[Abney91], [Liberman92], or [DiCristo98]). However, if
such systems have a larger scope than deep analysis
techniques (they are in particular able to treat unrestricted
texts in opposition to sublanguages), they also only
provide poor linguistic information. The techniques
generally used allow a simple chunking useful for some
levels of speech synthesis, but too poor to give an actual
account of more complex prosodic phenomena.

1.3. Several algorithms with a same goal
Some recent works (cf. [Hirshberg01]) showed that a

finer analysis can significantly improve the prosodic
quality. We propose in this paper a technique relying on
the use of several symbolic shallow parsers (or more
precisely deterministic parsers). Its particularity lies in the
fact that it makes use of a linguistic formalism in spite of
traditional stochastic information. Our goal is to improve
quantity and quality of information likely to support
intonation generation by means of surface analyzers. In
this perspective, while preserving robustness and
efficiency of the processing, we based our work on a
linguistic formalism, called Property Grammars (cf.
[Blache01b]) which main interest comes from the fact that
any kind of input, even ill-formed, can be characterized
with syntactic properties.

Three shallow parsers based on this formalism are
presented and compared in this work. A fourth one,
relying on a simple chunking approach is used in terms of
reference.

1.4. Evaluation as a necessary crossroads
This paper addresses in particular the question of the

interest of cascading several parsers in order to improve
the result. Moreover, the evaluation problem itself is part
of the work: due to the lack of a bracketed reference
corpus for French, we present a 'subjective' evaluation
(though automated) of these tools. Two experiences are
described in order to test the behavior of these parsers.

1.5. An overview of Property Grammars
We propose to use a constraint-based formalism

allowing to represent all kind of syntactic information by
means of constraints. This formalism, called Property
Grammars (cf. [Blache01b]) makes use of different types
of constraints. The idea exposed above consists then in
varying the granularity level in choosing the type of
constraints to be verified. Let’s present rapidly this
formalism.

The representation of syntactic knowledge requires
various types of constraints or properties, each one
corresponding to a specific kind of information. There is a
main difference from the usual presentation of Property
Grammars in which the constituency information is not
directly represented. In the following, and for efficiency
reasons, we add this new type of property even if
redundant. The following list presents these properties:

• Constituency (noted Const): Specifies the maximal

set of categories that can appear in a category.
Example: Const(NP)={Det, AP, N, PP, Sup, Pro}

• Obligation (noted Oblig): Specifies the possible
heads. One of these categories (and only one) has to
be realized.
Example: Head(NP) = {N, Pro}

• Uniqueness (noted Uniq): Set of categories that
cannot be repeated in a phrase.
Example: Uniq(NP) = {Det, N, AP, PP, Sup, Pro}

• Requirement (noted ⇒): Cooccurrency between sets
of categories.
Example: N[com] � Det

• Exclusion (noted �): Cooccurrency restriction
between sets of categories.
Example: AP � Sup (in a NP, a superlative cannot
cooccur with an AP)

• Linearity (noted <): Linear precedence constraints.
• Dependency (noted →): Dependency relations

between categories.

One of the originality of this approach is that a

linguistic description is not presented in terms of
grammaticality: parsing an input comes to verify the set of
constraints. It is then possible to characterize each
component of this input with the set of constraints that are
satisfied (plus, eventually, the set of constraints that are
violated). The core mechanism being a constraint
satisfaction one, it is possible to verify only a subpart of
the entire constraint system (in other words, the grammar).

2. Shallow, deep and granular parsers

2.1. A low-level shallow parser
The first technique described in the paper is inspired

by Liberman & Church's Chink/chunk (1991) and by Di

Cristo's Chink/chunk chunker (1998). Let’s call A1 this
algorithm: the result is a segmentation of the text into
chunks, according to a finite-state-automaton based on the
concept of function words which plays the role of
boundaries between blocks. An improvement of the
concept of chunk is proposed, using conjunctions as
neutralizing chunks under construction. For M sentences,
each sentence consisting of Nm words, its complexity has
an order of M*Nm*k (K < 10). That is to say a linear
complexity.

The figure 1 below is the output of this parser for a
sentence taken from the French newspaper 'Le Monde'.

[(bloc)La célébration]
[(bloc)de le dixième anniversaire]
[(bloc)de la mort]
[(bloc)de Max]
[(bloc)Pol Fouchet va commencer]
[(bloc)par un colloque universitaire]
[(bloc)à l' université Sorbonne nouvelle]
[(bloc)centre Censier]
[(bloc)13][(bloc)rue]
[(bloc)de Santeuil]
[(bloc)Paris]
[(bloc)5 e]
[(bloc)salle]
[(bloc)de les périodiques]

figure 1: Output for A1

The three other techniques described in the remaining
of the paper are based on a compiled subset of Property
Grammars birefly exposed below (see [Blache01a] for
implementation aspects). All three build grammatically
annotated blocks by traversing deterministically a
sentence. During the process, blocks are opened
(sometimes recursively) in a stack.

The tagsets used by each of these algorithms are rather
different (depending on the granularity of the parser),
which implies many differences between their results.
These algorithms use different heuristics too. For the first
two, opening and closing chunks depends on the
precompiled grammar; for the last, the entire set of
properties of the 'Property Grammars' is checked for each
word.

2.2. A compiled subset of properties
In the second algorithm A2, a grammar based on left

and right potential corners, and potential constituents of
chunks, is generated with a tool compiling constituency,
linear precedence, requirement and exclusion properties.
In the worst case, for M sentences, each sentence
consisting of Nw words, for a set of C precompiled
categories, its complexity is M*C*(Nw²+Nw)*Constant.
That is to say a polynomial complexity.

Figures 2, 3 and 4 give the outputs of algorithms A2,
A3 and A4 for the same sentence as for fig.1:

[(phrase)
 [(SN)La célébration]
 [(SP)de
 [(SN)le
 [(SA)dixième]
 anniversaire]]
 [(SP)de
 [(SN)la mort]]
 [(SP)de Max Pol Fouchet]
 [(SV)va commencer]
 [(SP)par
 [(SN)un colloque
 [(SA)universitaire]]]
 [(SP)à
 [(SN)l' université Sorbonne nouvelle
 centre Censier 13 rue]]

 [(SP)de Santeuil Paris]
 [(SN)5 e salle]
 [(SP)de
 [(SN)les périodiques]]]

figure 2: output for A2

2.3. The whole set of properties
In A3, the parsing strategy relies on left corners, but

verifies all the properties for each chunk. Finally, the last
parser A4 proposes a deterministic approach relying on
the entire set of constraints proposed in a Property
Grammar. Their complexity is still polynomial as
discussed in a paper not yet published.

[(P)
 [(SN)La celebration
 [(SP)de
 [(SN)le
 [(SA)dixième]]]]
 [(SN)anniversaire
 [(SP)de
 [(SN)la mort
 [(SP)de
 [(SN)Max Pol Fouchet]]]]]
 [(SV)va commencer
 [(SP)par
 [(SN)un colloque
 [(SA)universitaire]]]]
 [(SP)à
 [(SN)l université Sorbonne centre Censier
 rue
 [(SP)de
 [(SN)Santeuil Paris salle
 [(SP)de
 [(SN)les périodiques]]]]]]]

figure 3 : output for A3

[(P)
 [(SN)La célébration
 [(SP)de
 [(SN)le
 [(SA)dixième]]]]
 [(SN)anniversaire
 [(SP)de
 [(SN)la mort
 [(SP)de
 [(SN)Max Pol Fouchet]]]]]
 [(SV)va commencer
 [(SP)par
 [(SN)un colloque
 [(SA)universitaire]
 [(SP)à
 [(SN)l université Sorbonne centre Censier
 rue
 [(SP)de
 [(SN)Santeuil Paris salle
 [(SP)de
 [(SN)les périodiques]]]]]]]]]]

figure 4 : output for A4

3. How to evaluate empirically parsers
without reference corpora

3.1. A brief overview of the problem
The question of evaluating parsers (even shallow) is a

problem in itself. At the difference of POS-tagging, many
aspects can vary from one system to another, including the
output itself. Before presenting more precisely our
systems, we would like to give some general remarks
about evaluating parsers.

Generally speaking, evaluating a system consists in
comparing for a given input its output with a standardized
reference output. In the case of parsing, the reference is a
treebank, the comparison comes in comparing the

respective bracketings. This means first the availability of
a treebank (such resource only exists for few languages).
This also means that the parser as to build the same kind
of information as in the reference corpus. This can also be
problematic. First, bracketing is not totally theory-free.
The second problem is that such resource usually only
indicates one solution. Finally, as explained above,
bracketing is not the only kind of information that we
would like to evaluate.

Moreover, it seems to us interesting not to limit an
evaluation to the comparison of different outputs. It is also
necessary in order to interpret such a comparison, to give
some indications on the resources and the techniques
involved in the system. For example, it is important to
have indication on:

• an indication on the lexical coverage
o number of entries
o representations (lexical features)

• an indication of the syntactic coverage
o the number of categories
o the different syntactic phenomena

• the parsing strategy
o robustness
o efficiency

Our contribution in this paper lies in the possibility of
extracting some evaluation information from a
comparison technique. In other words, we show that
comparing different parsers, provided that the method is
systematic, allow in some cases to give some elements of
evaluation.

3.2. Evaluating and /or multiplexing

figure 5 : To evaluate and/or multiplex parser’s outputs

3.2.1. A multiplexer for bracketed texts
The idea of retrieving the same boundaries within texts

bracketed with different parsers leds us to imagine a
program able to merge in a parameterized way the outputs
of these parsers. The goal is to keep the best information
given by all of them and to let the worst be lost (see figure
5).

This program had to deal with sets of borders, that’s
why its parameters were of two kinds:

• set operators
• union
• intersection
• complement

• weights
• to balance the respective results of each

parser for each syntactic category
• to avoid the errors common to each parser

With such a program, we could exclude the worst and
less significant borders and keep the best ones

3.2.2. An evaluator for the multiplexer as well as for
each parser

But the parameters needed by this program could not
be found without a good evaluation of the output of each
parser.

These two needs are so closely related that we cannot
distinguish them, except in an empirical step energy from
the parameter setting to the evaluation and then in a
retroactive way from the evaluation to the parameter
setting.

Of course, even if all the preceding steps are
automatic, the last one is an expert’s work. while
counting on the effects of the evaluator, we do not have
any more but to check the relevance of its parameters.

 In other words:
• the multiplexer program does the main part of the

evaluation work by distinguishing the common
borders and the less significant or the more
particular: it informs us about the importance of each
parser relatively to the others.

• A human feedback is still needed to improve each
parser’s outputs and the parameters of the
multiplexer.

4. Experiments
The evaluation presented in this paper relies on two

experiments: for each one, a tagged corpus of 13,236
French sentences (from the CLIF project, see
http://www.talana.linguist.jussieu.fr) was used as input.
Two kind of tagging of the lexical categories were used
for these sentences: a manual tagging and an automatic
one (realized with the french version of WinBrill).

The main objective of this experiment is to evaluate
robustness and efficiency of algorithms for unspecified
sentences automatically tagged.

To see better what can be found by such a program, we
only used as parameters the intersection set operator and
the same weight for each parser’s output. Further studies
should refine them.

4.1. First experiment
The first experiment set aims at comparing block

boundaries, according to the algorithm and the tagging.
To do this, we carry out a massive simplification of the
blocks generated by programs A2, A3 and A4 in order to
preserve only boundaries. Then we determine common
borders, which constitutes a simple way of testing them
without a reference corpus for these French sentences.

figure 6 : Is text tagging disturbing parsing?

4.1.1. 2 times 4 different outputs implies 64
evaluations

With a text tagged two times, we get eight outputs
with the four parsers. The data to evaluate give 64 files
were very large.

Because this experiment only aims at proving the good
performance of our parsers with human tagged and
automatically tagged texts, we only expose here the results
of comparing A1 with A2.

Figure 6 shows the experiment procedure, figures 7
and 8 its results.

4.1.2. Results

Algorithm Words per chunk
A1 Human 3.49
A1 with WinBRILL 3.34
A2 Human 2.02
A2 with WinBRILL 1.96

Figure 7: Results of the first experiment: words per
chunk

The table below gives for each comparison between
two bracketed outputs the number common borders
(assuming that hierarchical brackets of A2, A3 and A4 are
first transformed into linear ones by the program)

First eval. A1 Human A1 with WinBRILL A2 Human A2 with WinBrill
A1
Human

100% 92% 82% 77%

A1 with
WinBRILL

89% 100% 75% 81%

A2
Human 50% 47% 100% 82%

A2 with
WinBRILL

45% 50% 80% 100%

Figure 7: Results of the first experiment: common boundaries for two tagging methods
This table can be read this way:
• common boundaries of A1 with human Tagging and

A2 with human tagging represent 82% of the
amount of borders in A1’s bracketed text

• common boundaries of A2 with human Tagging and
A1 with human tagging represent 50% of the
amount of borders in A2’s bracketed text

Results are instructive, but two variables have to be
isolated:
• the difference of behaviour for the same algorithm

with two ways of tagging
• the difference between two algorithms, which

outputs are very different.
It comes out from this experiment that boundary

differences obtained by a same parser for the two
taggers are from 2 to 3%, which indicates that automatic

POS tagging remains relevant for the notion of border
compared to an expert tagging.

This result is highlighted by another statistic given by
the evaluator: the number of words per chunk (see figure
7).

A second conclusion is that the algorithms are

sensitive to the tagging quality (i.e. they react to the
variability).: these results indicate that A1 looses up to
10% of its borders when the tagging is not human, and A2
looses up to 20% of its borders.

A last conclusion is that the algorithms A1 and A2
really have from 47 to 82% common borders (according to
what has already been said, these differences highlight the
availability of using these common borders in order to
harmonize and guarantee the efficiency of the diverse
outputs). This point is discussed in the second experiment.

4.2. Second experiment
The second experiment set aims to compare the three

approaches based on Property Grammars. Common
boundaries are compared, category by category. This
evaluation reveals several interests for each approach.

Figures 9 to 14 show the different data resulting of the
avaluation.
Algorithm A2 A3 A4
Chunks/ sentence 15.03 19.04 18.97
Words/chunk 1.90 1.50 1.50

Figure 9: Statistics for the second experiment

NP A2 A3 A4
A2 100% 54% 45%
A3 100% 100%
A4 100%

Figure 10: NP common borders
VP A2 A3 A4

A2 100% 29% 27%
A3 100% 75%
A4 100%

Figure 11: VP common borders

AP A2 A3 A4
A2 100% 50% 43%
A3 100% 86%
A4 100%

Figure 12: AP common borders

PP A2 A3 A4
A2 100% 57% 49%
A3 100% 85%
A4 100%

Figure 13: PP common borders
COORD A2 A3 A4

A2 - 0% -
A3 100% 0%
A4 -

Figure 14: COORD common borders

Other results resulting of the evaluation are as significant
as those shown in the tables 10 to 13.

The approaches A2 and A3 are rather different (48%

average common categories). That partly comes from
differences between the tagsets (A3 uses categories that
A2 does not know). More precisely, NP, AP, the PP and

VP, have respectively up to 55%, 50%, 57% and 30%
common borders.

A3 is closer to A4, which seeks to satisfy all
constraints (90% average). NP, AP, the PP and the VP,
have respectively up to 100%, 85%, 86% and 71%
common borders.

These results imply two conclusions

• Common borders inform us about the originality or
the conformism of a parser in comparison to another.

• A simple knowledge of what each parser does will
allow us to parameterize the set operations and the
weights associated to each one.

For an example, a guide to read these tables can reside

in the fact that the algorithm A4 has given the best results
in comparison with an expert evaluation of 10 sentences.
It comes that most of the common boundaries A4 shares
with A2 and A3 are carrying great weight and have to be
merged with an ‘intersection’ set operator.

Another information resides in the fact that A3 knows
categories that neither A2 nor A4 knows (see figure 14).
This knowledge implies that COORD category has to be
included in a multiplexing perspective with a weight of
100% and a ‘union’ set operator.

5. Conclusions
Several conclusions can be extracted from these

experiments. In particular, it is possible to calculate
efficiently in a deterministic way the syntactic categories
constituting a sentence. Moreover it is possible to reduce
errors by combining several parsers.

An interesting result for further studies lies in the fact

that common boundaries obtained by two algorithms
eliminates ill-formed and least remarkable boundaries. At
the same time, it, increases the size of the blocks while
keeping stored the linguistic information available.

Finally, the perspective of combining different

approaches allows to propose a parameterized granularity
in balancing the relative importance of different
competing approaches.

Other experiments have to be done in order to know

more things about mu ltiplexing parsers outputs: cascaded
multiplexing will reduce the quantity of chunks per
sentence and cause a loss of data that has to be constrained
and controlled.

6. References

Abney, S. (1991). Parsing by chunks. In Berwick, R.,

Abney, S., Tenny, C. (Eds.). Principle-based parsing.
(pp. 257--278). Kluwer Academic Publishers,
Dordrecht.

Abney, S. (1997). Part-of-speech tagging and partial

parsing. In Young, S., Bloothooft, G. Corpus-Based
Methods in Language and Speech Processing, (pp. 118-
-136). Kluwer Academic Publishers, Dordrecht.

Allen, J., Hunnincutt, S., Carlson, R., Granström, B.
(1979). MITalk-79 : The 1979 MIT text -to-speech
system. In Wolf and Klatt (Eds.), Speech
Communications (pp. 507—510). Papers Presented at
the 97th Meeting of the ASA.

Allen, J., Hunnincutt, S., Klatt, D. (1987). From text to

speech : The MITalk system. Cambridge University
Press.

Blache P. & J.-M Balfourier (2001a). "Property

Grammars: a Flexible Constraint-Based Approach to
Parsing", in proceedings of IWPT-2001.

Blache P. (2001b) Les Grammaires de Propriétés : Des

contraintes pour le traitement automatique des langues
naturelles, Hermès.

Di Cristo A., Di Cristo P, Campione E, Veronis J, (2000).

A prosodic model for text to speech synthesis in
French.

Di Cristo P, (1998). Génération automatique de la

prosodie pour la synthèse à partir du texte. Thèse de
Doctorat.

Hirschberg J., Rambow O (2001). Learning Prosodic

Features using a Tree Representation. AT&T Labs
Research. Eurospeech 2001 - Scandinavia.

Liberman, M., Church, K. (1992). Text analysis and word

pronunciation in text -to-speech synthesis. In Furui, S.,
Sondhi, M.M. (Eds), Advances in Speech Signal
Processing, New York: Dekker, 791-831.

Martin, L.E. (1990). Knowledge Extraction. In

Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society (pp. 252--262). Hillsdale, NJ:
Lawrence Erlbaum Associates.

