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Aakanksha Rana, Giuseppe Valenzise, Frédéric Dufaux

CNRS LTCI, Telecom Paristech, Université Paris Saclay

Abstract—High dynamic range (HDR) imaging has potential to facili-

tate computer vision tasks such as image matching where lighting trans-

formations hinder the matching performance. However, little has been

done to quantify the gains with different possible HDR representations

for vision algorithms like feature extraction. In this paper, we evaluate the

performance of the full feature extraction pipeline, including detection

and description, on ten different image representations: low dynamic

range (LDR), seven different tone mapped (TM) HDR and two HDR

imaging (linear and log encoded) representations. We measure the impact

of using these different representations for feature matching using mean

average precision (mAP) scores on four illumination change datasets. We

perform feature extraction using four popular schemes in the literature:

SIFT, SURF, BRISK, FREAK. With respect to previous studies, our

observations confirm the advantages of HDR over conventional LDR

imagery, and the fact that HDR linear values are not appropriate for

vision tasks. However, HDR representations that work best for keypoint

detection are not necessarily optimal when the full feature extraction is

taken into account.
Index Terms—High dynamic range imaging, tone mapping, descriptors,

feature extraction, illumination change.

I. INTRODUCTION

Many high-level computer vision algorithms based on local visual

features such as object localization, tracking and classification, are

extremely sensitive to changes in appearance of a scene in drastic

illumination transformations. Even in mid-level tasks such as image

matching, adverse lighting conditions can significantly worsen the

performance of the feature descriptors [1]. High dynamic range

(HDR) imaging [2] brings potential to surpass these limitations,

thanks to its wider dynamic range which enables to capture details

in both dark and bright regions.

Essentially, a feature extraction scheme consists of 2 parts:

keypoint detection and descriptor computation. Feature extraction

algorithms look for descriptors with the ability to describe the

distinctiveness of the detected local regions in an image undergone

different transformations (including lighting changes). Traditionally,

these feature extraction algorithms [1] have been extensively ex-

plored with respect to low dynamic range (LDR) imagery, generally

represented with a display-referred 8-bit integer representation. In

contrast, HDR imagery consists of real-valued pixels proportional to

the physical luminance of the scene, expressed in cd/m2. Therefore,

understanding which are the best modalities to apply LDR-based

feature extraction techniques to HDR is an interesting and timely

research question. For instance, HDR pixel values could be used di-

rectly, or could be firstly converted into a compact, 8-bit, displayable

representation – an operation known as tone mapping (TM).

Some recent studies [3–7] have reported gains in terms of keypoint

repeatability by using HDR-based imagery for keypoint detection,

which is the primary block of feature extraction pipeline. These

studies [3–7] have pointed that keypoint detection becomes unstable

in low and high contrast areas of an LDR image. Similar advantages

The work presented in this document was upported by BPIFrance and

Région Ile de France, in the framework of the FUI 18 Plein Phare project.

of HDR representations have also been shown for higher-level tasks

such as tracking [8].

In summary, previous work either focused on evaluating detector

performance only, with different HDR representations [3,5]; or, when

the full feature extraction pipeline was evaluated, only a single

HDR representation was considered [9]. However, a quantitative

comparison of different possible HDR representations, including

descriptors, has not been carried out so far. Therefore, it is difficult

to draw precise conclusions on which is the best HDR representation

(linear values, TMs, etc.) for an image matching pipeline, and how

much is the gain with respect to LDR.

In this paper, we address these questions by conducting a perfor-

mance evaluation of feature extraction algorithms for ten different

HDR representations, including 7 TMs and 2 native HDR repre-

sentations (linear and log-encoded) and standard LDR, using image

datasets with drastic changes in illumination. The main novelty and

contribution of this work is thus to consider the full feature extraction

pipeline and measure the impact of different HDR representations on

both detectors and descriptors. We compute the mean average preci-

sion performance for such a wide spectrum of image representations

using 4 widely used feature extraction schemes: SIFT, SURF, FREAK

and BRISK. We carry out the experimentations on publicly available

datasets [3,4] with diverse lighting variations.

The paper is organized as follows: in Section II we provide the

details of the evaluation setup. We present the experimental results

and discussion in Section III and the conclusions in Section IV.

II. EVALUATION FRAMEWORK

This section is structured as follows: in Section II-A we highlight

the HDR representations used for our evaluation; in Section II-B we

briefly discuss the considered feature extraction schemes, followed by

dataset selection in Section II-C; further, in Section II-D we detail the

feature selection and matching strategy used for descriptors matching.

A. Image Representations

In this evaluation, we consider a total of 10 different image

representations (listed in Table I) including the standard 8-bit LDR,

2 floating point HDR representations (HDRlog and HDRlin) and 7

different 8-bit tone mapping (TM) HDR representations. These TM

techniques consist of 2 global and 5 local TMs. In general, global TM

approaches are based on applying a compression function to all the

pixels of the image, while local techniques computes tone-mapped

pixels taking into account the values of neighboring pixels.

B. Feature extraction

We assess the following 4 popular feature extraction schemes

which employ both gradient-based histograms and computationally

fast binary descriptors.

• SIFT [10]. This classic scheme is constituted of a blob keypoint

detector (based on difference of Gaussians) and a gradient-based



Abbreviations Description

LDR Best exposure LDR image of the scene

RNG(G) A global scaled mapping operator [14]

DR(G) An Adaptive logarithmic mapping [15]

RN(L) A local dodging-and-burning operator [14]

MA(L) Perceptual method for contrast processing [16]

FA(L) Gradient domain HDR compression [17]

CH(L) Spatially non-uniform scaling algorithm [18]

DU(L) A fast bilateral filtering technique [19]

HDRLog Logarithmic encoding in accordance to Weber-Fechner’s law

HDRLin Linear photometric luminance values stored in the HDR file

TABLE I: Different image representations for feature extraction.

Project Room Light Room 2D Lighting 3D Lighting

Fig. 1: Example images from the datasets employed in this work.

descriptor. The SIFT descriptor is a 128-dimensional histogram

formed by concatenation of the image gradients computed on

4x4 grid spatial neighborhood around the detected keypoint.

• SURF [11]. SURF scheme is composed of a computationally

efficient blob type detector mainly based on the Hessian matrix

approximation along with a descriptor computed as the sum of

the Haar wavelet response around the point of interest.

• BRISK [12]. With major focus on computational efficiency,

the BRISK feature extraction is made up of a fast multi-scale

detector and a binary descriptor. The detection module is an

extension of corner-based detectors like AGAST and FAST. The

descriptor is a binary string computed by brightness comparisons

on circular sampling patterns around the detected regions.

• FREAK [13]. Similar to BRISK scheme, it has the same BRISK

detector along with a binary descriptor called FREAK. Similar

to BRISK descriptor, FREAK also uses a concentric rings

arrangement, but the sampling grid is non uniform as inner

circular rings have exponentially more points.

C. Datasets

We considered the following publicly available datasets:

• HDR illumination change datasets by Rana et al. [3] are com-

posed of 2 parts: Project-Room with 8 lighting conditions and

Light-Room with 7 lighting conditions as shown in Figure 1.

These images have challenging lighting transformation scenarios

with complex shaped objects, repeated patterns in texture, stark

shadows and variety of illumination sources.

• 2D and 3D Lighting Dataset by Pribyl et al. [4] shown in Figure

1. It consists of 7 controlled lighting variations in each set. The

2D dataset is composed of a light-dark sectioned poster and the

3D dataset consists of few plain objects with fine geometry.

D. Keypoint Selection and Matching Metrics

Local feature extraction rely primarily on the detected keypoints

and different detectors result in a different number of keypoints.

Therefore, following the detection protocol by Rana et al. [3,4], we

select 400 keypoints with the strongest detector response. In order to

limit the detection in pertinent areas and ensure a fair comparison

for feature extraction at later stages, we exclude keypoints from

background and regions without meaningful objects as in [3,4]. In

addition, we used the conventional detector parameters in [1,11,12]

for LDR and TM image representations.

Next, for the descriptor part we compute standard precision-

recall (PR) curves [1] for measuring the accuracy of matching.

The PR curves are based on the number of true and false matches

obtained for an image pair. A descriptor is said to have a match

if it satisfies the nearest neighbor distance ratio (NNDR) criterion.

According to NNDR, for a descriptor to find a good match, the ratio

between its distance from first best match (dBM1) and its distance

from second best match (dBM2) should be less than threshold

th, i.e., dBM1/dBM2 < th. We use Euclidean distance for

SIFT and SURF, Hamming distance for binary descriptors (FREAK

and BRISK). Two descriptors yield a true positive match if they

correspond to two keypoints which are indeed repeated 1 in the

reference and query images. Similarly, a match is labeled as a false

positive if the corresponding keypoints are not repeated. For PR curve

computation, Recall is defined as the fraction of true positives over

total correspondences, and Precision is given as the ratio of true

positives to the total number of matches. By varying the NNDR th,

we generate a PR curve and measure the area under the PR curve

(AUC), also called as average precision (AP). The mean of APs for

all image pairs is the mean average precision (mAP), which we have

used to compare different representations for each extraction scheme.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Our test setup comprises a total of 29 images (8 Project Room

+ 7 Light Room + 7 2D-Lighting + 7 3D-Lighting) for each image

representation. In the first part of experimental validation, we look

at the overall feature extraction performance, by computing the mAP

over all datasets. To this end, we evaluate matching using a test bench

of 182 image pairs (56 Project Room + 42 Light Room + 42 2D-

Lighting + 42 3D-Lighting). For each image pair, we compute the

PR curve by varying th from 0.0 to 1.0 and record the AP value.

After this, for each format and either feature extraction scheme, a

mAP score is obtained by averaging the APs calculated on such 182

image pairs (see Table II). Higher mAP scores imply better descriptor

matching.

Furthermore, to understand how detector and descriptor contribute

to the overall performance, we expand our analysis to individual

datasets and compute mAP and repeatability rate (RR) measures.

Repeatability Rate is defined as the fraction of repeated points to

the minimum number of detected points in the test or reference

image. In Figure 2, we report side-by-side the mAP and RR for

each extraction scheme for all datasets, respectively. It is evident

that in most of the cases higher RR entails higher mAP scores, i.e.,

having more stable keypoints strongly influences the overall matching

performance. Nevertheless, there are few exceptions, e.g. RN and

FA in 3D-Lighting dataset, discussed later in this Section. In the

following, we examine in detail the main conclusions obtained from

our results.

HDRLin versus all. The results in Table II show that HDRLin

representation is consistently the worst performing using all extrac-

tion schemes. This is coherent with the previous findings in [3,5],

and is mainly due to the low keypoint repeatability, which increases

the probability of false positives. This leads to the first conclusion

1A keypoint is considered to be repeated in the test image if: a) it is detected
as a keypoint in the test image, and b) it lies in a circle of radius ǫ centered
on the projection of the reference keypoint onto the test image. ǫ = 5.0 in
our case
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Fig. 2: Mean average precision (mAP) and mean repeatability rate (mRR) over the four considered datasets and feature schemes. mAP and mRR

are computed on 56 image pairs, for the Project Room dataset, and over 42 image pairs for Light Room, 2D and 3D Lighting datasets.

(a) Feature Matching - FA

(b) Feature Matching - RN

Fig. 3: An example of image matching for two TMs. The true positive and

false positive matches are shown with green and red lines respectively.

The TM in (a) achieves a higher repeatability (24 %) than that in (b);

however, most of the matches in (a) are false positives, thus the AP for

(b) is higher than in (a) (95 % vs. 87 %, respectively).

Repr.
Feature Extraction Schemes

Avg/Repr.
SIFT SURF BRISK FREAK

LDR 55 62 60 61 59.5

RNG 69 70 71 65 67.5

DR 72 72 71 73 72

RN 72 70 73 72 72

MA 74 75 62 62 68.3

FA 68 67 62 66 65.8

CH 68 71 64 66 67.3

DU 64 72 68 71 68.8

HDRLog 75 66 67 68 69

HDRLin 44 30 50 41 41.5

Avg/Schemes 66.8 65.6 65.5 65

TABLE II: Mean Average Precision (mAP %) scores for the 10 considered
representations using 4 feature extraction schemes. Scores are averaged over
4 lighting change datasets. Highest mAP score for each scheme is shown in
bold. Best Avg/Formats and Avg/Schemes scores are double underlined.

of this work, i.e., HDRLin is not appropriate to be used for feature

extraction algorithms, for both detector and descriptor.

HDRLog/TM versus LDR. On average, all HDR formats show

significant gains of (at least) 8% mAP over single LDR exposure (see



Avg/Formats in Table II). This partially accounts to having more false

matches in LDR due to loss in local textural information in lighting

transformations. Another reason which is evident from Figure 2, is

the low repeatability rate which reduces the number of true positives.

HDRLog versus TMO’s. mAP scores obtained from HDRLog

and different TM formats are relatively comparable. This implies

that there are not significant advantages in using a floating-point

HDR representation over 8-bit TMs. Alternative HDR encodings

could improve further mAP scores, such as the PU encoding [20], as

reported for keypoint repeatability in [3]. However, those representa-

tions require photometrically calibrated HDR pictures, which might

not be available in practice.

Comparison with previous studies. Previous studies [3,5] have

reported that local TM approaches such as Fattal or Chiu consistently

provide more stable keypoints (in terms of repeatability) under illu-

mination changes, compared to TMs which are generally considered

good from a perceptual perspective, such as Reinhard. The results of

this work show that those trends are less evident when the overall

feature extraction pipeline is considered. For instance, from Figure 2

we observe that some TMs achieve better repeatability rates but lower

overall mAP scores compared to others formats, e.g., this is the case

for RN and FA tone mappings in Project Room and Light Room

dataset using BRISK and FREAK, or for RN and FA in 3D Lighting

dataset using SIFT. We deduce that in those cases, although the

fraction of repeated keypoints is lower, the corresponding descriptors

are more discriminative, i.e., they yield a lower rate of false positives,

or equivalently, a higher portion of matches are true. Figure 3 shows

an example of image matching for the Project room dataset, using RN

and FA tone mappings and BRISK features. It is clear that, although

the number of matches is lower in RN, they are “better quality”, in

the sense that most of them are true positives. Conversely, in FA,

although the basis of possible matches is larger, most matches are

indeed false, which reduces the average precision as reported by the

mAP scores in Figure 2.

Another important point to note is that these tone mappings

perform well with all feature extraction scheme for different lighting

transformations, with marginal gains for SIFT. In addition to all the

observations, it is also worth mentioning that there is no unanimous

winner amongst these tone mapping techniques for all extraction

criterion.

IV. CONCLUSION

In this paper, we have presented a comprehensive evaluation of

LDR and different HDR representations for image matching under

lighting transformations. The analysis of mean average precision

scores on different scenes confirms the potential of HDR tone map-

ping techniques over single LDR exposures. Furthermore, our study

confirms that the linear high dynamic range values are inappropriate

to be used for visual recognition tasks. More interestingly, we have

also observed that local TMs with very high repeatability rate for

feature detection are not necessarily the best option when the full

feature extraction pipeline is considered. This suggests that there

might be quite a large room for improvement in feature extraction

performance at detection and description stages by designing optimal

tone mapping schemes for HDR, which can ensure high average

precision as well as repeatability rates, and that can be easily fused

with current recognition algorithms.
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