
28

An Evaluation of High-Level Mechanistic Core Models

TREVOR E. CARLSON, Ghent University
WIM HEIRMAN, Intel, ExaScience Lab
STIJN EYERMAN, Ghent University
IBRAHIM HUR, Intel, ExaScience Lab
LIEVEN EECKHOUT, Ghent University

Large core counts and complex cache hierarchies are increasing the burden placed on commonly used
simulation and modeling techniques. Although analytical models provide fast results, they do not apply to
complex, many-core shared-memory systems. In contrast, detailed cycle-level simulation can be accurate but
also tends to be slow, which limits the number of configurations that can be evaluated. A middle ground
is needed that provides for fast simulation of complex many-core processors while still providing accurate
results.

In this article, we explore, analyze, and compare the accuracy and simulation speed of high-abstraction
core models as a potential solution to slow cycle-level simulation. We describe a number of enhancements to
interval simulation to improve its accuracy while maintaining simulation speed. In addition, we introduce
the instruction-window centric (IW-centric) core model, a new mechanistic core model that bridges the gap
between interval simulation and cycle-accurate simulation by enabling high-speed simulations with higher
levels of detail. We also show that using accurate core models like these are important for memory subsystem
studies, and that simple, naive models, like a one-IPC core model, can lead to misleading and incorrect results
and conclusions in practical design studies. Validation against real hardware shows good accuracy, with an
average single-core error of 11.1% and a maximum of 18.8% for the IW-centric model with a 1.5× slowdown
compared to interval simulation.

Categories and Subject Descriptors: C.4 [Computer Systems Organization—Performance of Systems]:
Modeling Techniques; B.8.2 [Performance and Reliability]: Performance Analysis and Design Aids

General Terms: Performance, Experimentation, Design

Additional Key Words and Phrases: Interval simulation, interval model, performance modeling, design space
exploration, multicore processor

ACM Reference Format:
Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout. 2014. An evaluation
of high-level mechanistic core models. ACM Trans. Architec. Code Optim. 11, 3, Article 28 (July 2014), 25
pages.
DOI: http://dx.doi.org/10.1145/2629677

This work is supported by Intel and the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT). Additional support is provided by the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no.
259295. Experiments were run on computing infrastructure at the Intel HPC Lab, Swindon, UK, and the
VSC Flemish Supercomputer Center.
Authors’ addresses: T. E. Carlson, S. Eyerman, and L. Eeckhout, Department of Electronics and Informa-
tion Systems, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; emails: trevor.carlson@
elis.ugent.be; lieven.eeckhout@elis.ugent.be; W. Heirman and I. Hur, Intel ExaScience Lab, Kapeldreef 75,
B-3001 Leuven, Belgium.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/07-ART28 $15.00

DOI: http://dx.doi.org/10.1145/2629677

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1145/2629677

28:2 T. E. Carlson et al.

1. INTRODUCTION

With increasing numbers of cores being placed on a single processor die, it is becoming
more difficult to analyze the performance of next-generation, multicore systems. To
speed up investigations of these future platforms, we need to be able to quickly and
accurately estimate the performance of workloads running on these microarchitec-
tures. Our toolbox today consists of a number of options. One methodology—analytical
modeling [Karkhanis and Smith 2004; Taha and Wills 2008]—uses a fast, high-level
approach to understanding application performance. Interval modeling [Eyerman et al.
2009] is an example of an analytical, mechanistic model that can quickly and reliably
predict the performance of single-threaded workloads on modern machines. Neverthe-
less, understanding the performance of multithreaded applications on future multicore
processors is a task that goes beyond the ability of current analytical models. Microar-
chitectural simulation, therefore, is required for accurate performance modeling of
modern multithreaded workloads.

Although traditional cycle-level simulation techniques [Emer et al. 2002;
Hardavellas et al. 2004; Loh et al. 2009; Binkert et al. 2011; Patel et al. 2011] pro-
vide sufficient detail, they can be very slow and result in a large simulation bottleneck
where accurate microarchitectural evaluation of a meaningful number of configura-
tions can take a significant amount of time. Several solutions have been proposed to
address this issue, including workload sampling [Sherwood et al. 2002; Wunderlich
et al. 2003; Ardestani and Renau 2013; Carlson et al. 2013, 2014], and simulation
acceleration through software optimization [Sanchez and Kozyrakis 2013] and FPGA
hardware [Krasnov et al. 2007; Chiou et al. 2007; Chung et al. 2008; Pellauer et al.
2011].

An orthogonal approach is to design higher-level simulation methodologies that pro-
vide reduced simulation times while maintaining accuracy. The one-IPC core model is
a simplistic high-level model that may lead to misleading results and conclusions, as
we show in this work. Statistical simulation [Oskin et al. 2000; Nussbaum and Smith
2001; Eeckhout et al. 2003, 2004] abstracts parts of the core using statistical methods.
Mechanistic performance models, on the other hand, use insight from analytical core
models to perform fast and accurate simulation. By starting with higher-level simula-
tion methodologies during early discovery, and then moving to more detailed models as
enhancements are refined during the design cycle, one can more easily bridge the gap
between fast and relatively accurate simulation with more accurate, detailed simula-
tion that can be significantly slower. Figure 1 provides an illustration of this process.

In this work, we enhance existing high-level core models as well as introduce a
new, more accurate core model that allows for fast simulation while maintaining accu-
racy compared to real hardware. We first provide an overview of interval simulation
[Genbrugge et al. 2010], a high-level mechanistic core model that produces fast and
accurate simulation results. We present improvements that build on interval simula-
tion as well as extend it in a new direction for higher simulation accuracy. We extend
the original interval simulation model to take into account limited execution units
and improve its handling of overlapping memory accesses through a more detailed
dependency analysis of memory accesses. These modifications improve accuracy for a
range of workloads at a minimal increase in simulation time. In addition, we present a
new high-level core model that combines the insights from interval modeling with a de-
tailed simulation model of the instruction window, or reorder buffer (ROB). We call this
methodology instruction-window centric (IW-centric) simulation. Although the original
interval simulation methodology calculates the instruction-level parallelism (ILP) of
an application analytically, IW-centric simulation models micro-op dependency and is-
sue timing in detail. This provides additional accuracy with respect to fine-grained

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:3

Fig. 1. A design waterfall example. On the left, analytical models can help us evaluate a large number of
designs. Detailed, RTL simulations, on the right, take much longer to simulate but are designed to verify
a final implementation. Interval simulation and IW-centric simulation take a middle-ground approach,
allowing for the evaluation of a large number of configurations while still providing good accuracy.

events with a small reduction in simulation speed. Through more accurate modeling,
the IW-centric model can be used as a step closer to cycle-level simulation. A secondary
benefit of the IW-centric core is that it is constructed like a traditional processor core,
which allows straightforward modifications without additional high-level modeling. All
models are integrated in Sniper [Carlson et al. 2011] and are available for download at
http://snipersim.org.

More specifically, we make the following contributions in this work:

—We improve the accuracy of interval simulation by taking into account contention
between micro-ops that are ready for execution. Issue contention allows interval
simulation to more accurately model modern processors by modeling these structural
hazards.

—We present an improvement to dependency analysis tracking in interval simulation
by differentiating between instructions or micro-ops that depend on long-latency
loads and those that are not for MLP determination.

—We introduce the IW-centric core model, which is a new speed versus accuracy trade-
off point between interval simulation and traditional detailed cycle-level core model
simulations. Compared to real hardware, IW-centric simulation improves accuracy
over interval simulation while maintaining high simulation speed.

—We present a detailed analysis of the trade-offs between the one-IPC, interval sim-
ulation and the IW-centric simulation models, and demonstrate that simple, naive
models like the one-IPC model can lead to misleading and incorrect conclusions in
practical design studies.

—We validate these core models against real hardware and show single-core average
errors of 11% for the IW-centric model and 24% for interval simulation.

This article is organized as follows. We first discuss high-level core models that are
used to provide a speed versus accuracy trade-off for microprocessor simulation. Next,
we present improvements to interval simulation and introduce a new core model—
IW-centric simulation—that improves accuracy with respect to hardware. Finally, we
provide an evaluation of these core models for both speed and accuracy, and discuss
how core model resolution affects microarchitecture design conclusions.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

http://snipersim.org

28:4 T. E. Carlson et al.

Fig. 2. Interval modeling and simulation technique taxonomy. Interval modeling uses mechanistic perfor-
mance modeling techniques to provide application performance estimates. Interval simulation and IW-centric
simulation build on these insights to provide a more accurate representation of core timing, including timing
for multicore simulation.

2. CORE-LEVEL ABSTRACTIONS

There are a variety of high-level core abstractions, from a simple one-IPC model to the
IW-centric core model introduced in this work. Figure 2 presents a taxonomy breakdown
of the interval model-derived simulation techniques. Next, we provide an overview of
one-IPC, interval modeling, interval simulation, and IW-centric simulation. These mod-
els are typically integrated in a functional-first simulator, where the functional model
executes instructions and generates a dynamic instruction stream, potentially broken
up into micro-ops. The core model receives this instruction stream and computes the
time required to execute these instructions, querying branch prediction and memory
hierarchy simulators to discover miss events.

2.1. One-IPC Models

A one-IPC core model is a cycle-by-cycle simulation technique where the core model
executes a single instruction per cycle in the absence of long-latency miss events, like
long-latency loads or front-end cache misses and branch mispredictions [Jaleel et al.
2008; Miller et al. 2010]. A one-IPC model attempts to simulate the performance of a
typical out-of-order, multi-issue processor, but at a much higher level of abstraction, and
therefore can simulate a core’s performance at high simulation speed. These models,
therefore, provide a faster way to simulate large, multi- and many-core systems that
would otherwise not be feasible when using cycle-level core detail.

Unfortunately, there are a number of limitations that occur because of the use of one-
IPC core models. One-IPC models do not faithfully model out-of-order MLP [Glew 1998;
Chou et al. 2004] effects where multiple outstanding memory accesses are sent to the
memory subsystem. Additionally, these models do not evaluate the amount of exposed
ILP during the execution of the application itself. Issuing independent off-chip memory
requests is one important way to hide the effects of long-latency memory requests that
would normally stall an out-of-order core’s forward progress. Additionally, the ILP
exposed by the core will dictate the request rate as seen by the memory subsystem.

Because of these limitations, there has been an effort to develop both processor
modeling techniques (interval modeling) as well as more advanced multicore simulation

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:5

Fig. 3. A comparison between the estimation of IPC with interval modeling (left) and interval simulation
(right). The simulation-based models take a dynamic sequence of micro-ops and adjust the core IPC over
time.

techniques that use the insight from interval modeling to provide fast yet still accurate
simulation.

2.2. Interval Modeling

The interval model [Eyerman et al. 2009] is an analytical core modeling technique
designed to estimate the performance of applications using the most important factors
of a balanced out-of-order core. The interval model exposes the effects of both ILP and
MLP, and has shown good accuracy as compared to simulated program execution.

The interval model models core performance as a collection of intervals, composed of
a period of executing instructions followed by a stalling event that causes the normal
flow of execution to halt. The performance of the microprocessor core is analyzed at
the dispatch stage, in contrast to the issue stage that was the focus of previous work
[Karkhanis and Smith 2004]. At each miss event, the interval model estimates the
penalty to apply to create an interval. Figure 3 illustrates this process. By combining
a number of microarchitectural parameters with application characteristics, such as
miss rates and the interval lengths between them, and the average window drain
time after a branch misprediction, a performance prediction can be made. Using these
parameters, the interval model was shown to have low error, around 7% for a four-issue
machine, compared to cycle-level simulation of a single core [Eyerman et al. 2009].

Interval modeling is a good way to understand application performance of single-core,
single-threaded applications on out-of-order machines. Nevertheless, interval modeling
does not allow for modeling multiprogram and multithreaded workloads running on
multi- and many-core processors.

2.3. Interval Simulation

Interval simulation [Genbrugge et al. 2010] is an extension of the interval model to al-
low for the simulation of multicore processors using the insights of the interval model.
The major advantage of interval simulation over interval modeling is the ability to sim-
ulate multicore platforms. There is a tight relationship between core performance and
the performance of shared resources, as the core performance affects the rate at which
requests are sent to the memory hierarchy, which in turn affects core performance.
This can be difficult to capture in a stand-alone offline analytical model. Interval sim-
ulation bridges this gap. Multiprocessor interval simulation is enabled by combining
the insights from interval simulation for core performance with a detailed performance
model of the memory hierarchy. An additional advantage of interval simulation is that
the instructions (or micro-ops) are held and processed just one time and in program

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:6 T. E. Carlson et al.

Fig. 4. A diagram of the new and old windows of interval simulation. Recently dispatched micro-ops (old
window, left) allow us to predict the performance of upcoming instructions. Upcoming micro-ops (new window,
right) are used to determine MLP.

order. This simulation technique allows for speedups of more than 10× when compared
to M5 [Binkert et al. 2006], with an average error of 4.6% [Genbrugge et al. 2010].

2.3.1. New and Old Windows. The new window and old window are structures that allow
for the approximation of performance in the interval simulation methodology. Figure 4
provides a representation of these two queues. Each window contains as many micro-
ops as would exist in the ROB of an out-of-order processor. In the absence of miss
events, such as long-latency loads, the ILP exposed by the ROB of an out-of-order
processor will determine the current performance of the core (along with the core’s
maximum dispatch width). In interval simulation, the application ILP is determined
using the old window. The old window contains a list of the most recently dispatched
micro-ops, and the ILP exposed by the processor is computed by analyzing the critical
path through this collection of micro-ops. MLP and other overlap effects (e.g., a branch
miss hidden under long-latency load miss) are extracted from the new window. The
new window, representing the upcoming micro-ops, remains full at all times to allow
for the identification of MLP.

To determine how much progress can be made each cycle, the old window is analyzed
using Little’s law [Little 1961]. The instantaneous IPC is calculated as the number
of micro-ops in the entire old window divided by the latency of the micro-ops on the
critical path [Genbrugge et al. 2010]. By repeating this process for each micro-op (and
accumulating the leftover work for future micro-ops), we can accurately estimate the
application’s ILP during the nonpenalty portion of an interval.

In addition to baseline application ILP, the performance impact of miss events also
needs to be taken into account. The interval model distinguishes between front-end
and back-end miss events; in the following sections, we will discuss how to account for
each type of event.

2.3.2. Front-End Stalls. Front-end cache miss stalls, according to the original interval
model, can be approximated by adding a penalty equal to the time it takes to resolve an
I-TLB, or I-cache miss. Therefore, if a cache miss occurs, the resulting N cycle penalty is
attributed to the level in the memory hierarchy where the hit occurs, and we estimate
the penalty of the miss on the core as stalling dispatch for N cycles. This resulting
delay occurs because the processor is unable to dispatch additional useful micro-ops
while waiting for the next instruction to be fetched and decoded.

For branch mispredictions, we can estimate the performance penalty as the sum of
two components. The first is the latency from dispatch up to the execution of the branch
to detect the wrong prediction, and the second component is the time it takes to refill
the front-end pipeline with instructions from the correct path. In interval simulation,
we approximate the latency to determine the correct branch target as the critical path
in the old window at the time that we dispatch the branch instruction. The front-end
refill time is a constant defined by microarchitectural parameters.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:7

2.3.3. Back-End Stalls. Back-end stalls, such as serialization and long-latency loads, are
modeled using the insights from the interval model. A long-latency load instruction is
one that causes the processor to stall because the core is not able to commit a load that is
waiting for the result from the cache hierarchy. When this occurs, the core experiences
a penalty that is equivalent to the load’s miss latency [Eyerman et al. 2009]. As long-
latency off-chip requests stall the forward progress of out-of-order processors, it is
beneficial to issue as many of these independent requests in parallel, as it can lead
to execution time reductions [Glew 1998; Chou et al. 2004]. MLP is the measure of
the amount of simultaneous off-chip requests. To extract MLP in interval simulation,
we scan the new window after dispatching each long-latency load to determine if there
are upcoming independent loads that could be issued. Any dependent load in the
window (e.g., in pointer-chasing applications) would not be issued until the original
load has completed. Nevertheless, the out-of-order core can expose additional loads,
issuing those loads whose inputs do not depend on the result of a prior long-latency
load in the window. By iterating over the new window, we can issue independent loads,
exposing application MLP. The processor penalty for multiple independent overlapping
long-latency loads exposed as MLP is treated as the penalty of a single long-latency
load.

Serialization instructions incur a penalty equal to the processor window drain time.
Other second-order effects, such as overlapping I-cache/I-TLB and independent branch
mispredictions with long-latency loads, are also taken into account by interval sim-
ulation. Additionally, serialization instructions that are encountered while handling
MLP halt the detection of additional overlapped long-latency loads and drain the old
window.

3. INTERVAL SIMULATION IMPROVEMENTS

Through the mechanistic modeling of modern out-of-order microprocessors, we are able
to both better understand how they operate and use those assumptions to improve mi-
croprocessor simulation. In the next sections, we introduce several interval simulation
enhancements to improve simulation accuracy.

3.1. Functional Unit Contention Modeling

Interval simulation [Genbrugge et al. 2010] assumes that a microprocessor is balanced
with respect to its ROB size and dispatch width. This means that the front-end, back-
end, and supporting structures, such as execution units, and load and store buffers
have been sized to be large enough for a typical application.

Unfortunately, there exist classes of applications that fall outside of this realm.
For example, on Intel’s Nehalem architecture, there is only a single issue port for
64-bit floating-point multiply instructions. With a microbenchmark tailored to use
only 64-bit multiplications, the maximum number of independent multiplies that can
be maintained will be just one per cycle and not the four micro-ops that the processor
was designed to dispatch. Therefore, when using interval simulation to model the
performance of this microbenchmark, the result will not be what is expected. Interval
simulation will report that the performance is four times higher (corresponding to the
dispatch width of four micro-ops per cycle) than the machine can actually perform.
Similar effects can occur with any instruction that can only be issued to a limited
number of execution ports.

To be able to account for the discrepancy between dispatch width and issue capabil-
ities, and therefore reduce simulation error, we propose resource contention modeling
for interval simulation to improve the resulting accuracy with a negligible reduction
in simulation performance.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:8 T. E. Carlson et al.

Fig. 5. An example of port-based issue contention in the updated interval simulation model. The window
represents the interval simulation’s old window for a ROB size of 20. The old window contains 15 micro-ops;
the port number from which this micro-op can issue is shown as Pn, where n is the port number and G
represents ports 0, 1, and 5. Micro-ops are inserted from the right.

Issue contention is modeled in the interval simulation model by extending the old
window analysis in a new direction. Instead of only using Little’s law to determine
the current IPC of the application, we also take into account the utilization of other
resource-sensitive units, such as pipelined and nonpipelined execution units and issue
ports. By updating the effective dispatch rate calculation to take into account these
additional restrictions, it can be determined how many execution units or ports are
being used. Although out-of-order processors are able to schedule events whenever
there is an issue slot available, if too many resources are used at a given point in time,
the performance of the processor will be reduced accordingly.

The dispatch rate of a processor in the absence of miss events is estimated with
interval simulation using Little’s law. The dispatch rate of the processor is computed
as the number of instructions in the ROB (typically the entire ROB in the absence of
miss events) divided by the critical path length:

Rdispatch = N/Lcriticalpath.

We model this in interval simulation as the number of micro-ops in the old window
divided by the critical path length. This formula computes the instantaneous micro-ops/
cycle that a processor can handle assuming an infinite dispatch width. Taking into
account the dispatch width allows us to model a more realistic architecture. To maintain
higher accuracy, the leftover portion of the dispatch rate is collected and used for
dispatch at a later time:

Rdispatch = min(Wdispatch, N/Lcriticalpath).

Finally, to take into account resource contention in a processor, we also keep track of
the resource utilization of each micro-op. We extend interval simulation by keeping
track of the number of issue slots that are used in the old window. The number of
resources used in the old window puts a limit to the number of micro-ops that can
be issued along the critical path. Each Sn is equal to the minimum number of cycles
required to simulate the number of instructions for each contention component. For
example, if we would like to model a single issue port for 64-bit pipelined floating-point
multiplications, then for an ROB with 32 64-bit multiply operations, the minimum
execution time for those operations will be 32 cycles, or 1 cycle per instruction per issue
port. We can build a minimum execution time necessary to execute the collection of
instructions by taking into account each microarchitectural restriction. The effective
critical path is then extended by the number of resources required by the processor at
that time:

Lcriticalpathcontention = max(Lcriticalpath, S1, S2, . . . , Sn)
Rdispatch = min(Wdispatch, N/Lcriticalpathcontention).

A detailed example of issue port contention in the interval simulation model is shown
in Figure 5. In this example, the ROB window size (W) of the system is 20, and the
number of micro-ops in the old window (N) is 15. We assume that the maximum
dispatch rate (Wdispatch) is 4, and we use a value for the critical path (Lcriticalpath) of 4.
Additionally, we have several micro-ops that issue to different ports. There are nine
generic micro-ops (PG) that can issue to ports 0, 1, or 5; five micro-ops that issue to

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:9

port 2 (P2); and one that issues to port 3 (P3):

W = 20
N = 15
Wdispatch = 4
Lcriticalpath = 4
NG = 9
N2 = 5
N3 = 1.

We first calculate the effective dispatch rate (instantaneous micro-ops per cycle, or
μPC) using the original method provided by interval simulation. We then update the
calculation taking into account issue contention:

Rdispatch = min(Wdispatch, N/Lcriticalpath)
Rdispatch = min(4, 15/4)
Rdispatch = min(4, 3.75)
Rdispatch = 3.75

Lcriticalpathcontention = max(Lcriticalpath, S1, S2, S3, . . .)
Lcriticalpathcontention = max(4, ceil(NG/3), N1, N2)
Lcriticalpathcontention = max(4, 3, 5, 1)
Lcriticalpathcontention = 5

Rdispatch = min(Wdispatch, N/Lcriticalpathcontention)
Rdispatch = min(4, 15/5)
Rdispatch = min(4, 3)
Rdispatch = 3.

The resulting improvement in accuracy is apparent. In this example, the instanta-
neous performance with issue contention is 3 μPC, whereas without issue contention,
we would see a core performance of 3.75 μPC—a 25% faster result.

In interval simulation [Genbrugge et al. 2010], a very low error of 4.6% compared to
the M5 simulator was shown compared for a four-wide Alpha processor. This processor
contains a sufficient number of execution units to prevent the issue stage from becoming
a bottleneck in general and is therefore a balanced microarchitectural design. In recent
microarchitectures, however, trade-offs are made in the number of execution units,
which prevent some combinations of micro-ops from being executed in a single clock
cycle. When comparing simulation results to real hardware, simulation models must be
able to take these microarchitectural imbalances into account if good, absolute accuracy
is to be expected.

3.2. Refilling the Window After Front-End Miss Events

In steady state, according to Little’s law, the rate at which instructions enter the ROB
(dispatch) equals the rate at which they leave the ROB. The interval model computes
the latter by analyzing the critical path, which determines the rate of execution and
applies Little’s law to state that the effective execution rate equals the effective dispatch
rate. After a miss event, the old window is flushed to denote the fact that the ROB no
longer has independent on which instructions to operate. As instructions are dispatched
into the ROB, the parallelism exposed by it increases and the effective execution rate
picks up.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:10 T. E. Carlson et al.

For applications where miss events are few, or spaced many instructions apart, this
assumption holds and core performance can be estimated with good accuracy. However,
in some applications, miss events and the associated start-up effects begin to dominate.
This becomes a problem when miss events are spaced so closely that the ROB did not
have a chance to be refilled—a situation that can cause relatively high errors in the
original interval simulation method.

The solution to this problem is to recognize that after front-end miss events, Little’s
law is not applicable and dispatch can occur at the maximum rate, until the ROB (at
this point represented by the contents of the old window) is filled up. We therefore
modify the interval simulation model to dispatch at the machine width, rather than
the effective dispatch rate computed through analysis of the critical path, as long as
the old window is not full.

3.3. Modeling of Overlapped Memory Accesses

One drawback of using the interval model is that all memory accesses are sent to the
memory hierarchy in program order, which may not represent the actual ordering seen
by the memory hierarchy when out-of-order execution reorders loads with respect to
other memory operations. In addition, many higher-abstraction level simulators such
as Sniper [Carlson et al. 2011] or the atomic (synchronous) memory access mode in
gem5 [Binkert et al. 2011] complete the simulation of each memory access in a single
function call, updating all structures (e.g., cache tags) immediately. These implemen-
tations approximate memory access timing, which makes it difficult to properly detect
overlapping memory accesses in the memory subsystem itself.

We update the interval simulation model to improve modeling of overlapping accesses
in two ways. Both changes affect the marking of overlapped accesses and occur when
scanning the window of upcoming micro-ops when the model searches for independent
loads that can be hidden under an initial long-latency load.

3.3.1. Pending Hits. A first area for improvement arises when two independent loads
access the same cache line that initially was not present in the last-level cache. The
first access will be a long-latency event, as the data has to be fetched from DRAM. The
second access, if made in short succession, will be a pending hit—that is, the cache
line in question has already been requested from DRAM, but the request has not yet
completed. A synchronous memory hierarchy, however, will return this second access
as a hit (simulation of the first access was already completed, leaving the cache line
allocated in the L1 cache). A similar problem was also encountered by Chen and Aamodt
[2011], who add support for pending hits in an offline analytical performance model.
To properly delay the second load, when marking micro-ops in the window looking for
overlapping accesses, we check for independent loads that access the same cache line
and mark the second load as dependent. This way, keeping the second load’s latency as
the L1 hit latency, it will complete a few cycles after completion of the first long-latency
load.

3.3.2. Dependents of Independent Long-Latency Loads. The second case occurs when a
chain of dependent loads, that is in itself independent of the initial long-latency load,
contains a long-latency load inside of it. Consider the situation where a long-latency
load A stalls the processor. The new window contains two additional loads B and C,
where C depends on B but both are independent of A. In the original interval simulation
model, both B and C would be marked as independent loads and would hence have been
allowed to be fully hidden underneath resolution of the original load A.

However, if load B is itself also of long latency, it will not complete until after A
completes. Load C, and all instructions depending on it, could therefore also not be
assumed to be hidden under the long-latency event caused by A. To handle this case,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:11

Table I. Microarchitectural Configuration

Component Configuration
Processor 1 and 2 sockets, 4 cores per socket
Core 2.66GHz, 4-way dispatch, 128-entry ROB
Branch predictor Dothan [Uzelac and Milenkovic 2009], 8 cycles penalty
L1-I 32KB, 4 way, 4 cycle access time
L1-D 32KB, 8 way, 4 cycle access time
L2 cache 256KB per core, 8 way, 8 cycle
L3 cache 8MB per 4 cores, 16 way, 30 cycle
Main memory 65ns access time, 8GB/s per socket
Interprocessor bus QPI, 12.8GB/s per direction

we update the interval simulation model such that when checking the new window for
overlapping loads, we do not mark loads as overlapped once they depend on a newly
found long-latency load.

4. IW-CENTRIC SIMULATION

Interval simulation has been shown to be both a fast and accurate way to simulate the
effects of microarchitectural changes on performance [Genbrugge et al. 2010; Carlson
et al. 2011]. Nevertheless, there are some limitations that make extending the inter-
val simulation model difficult. For example, extending interval simulation to support
functional unit contention (Section 3.1) required the development of a new core mod-
eling methodology to accurately estimate the timing of the microprocessor. Evaluating
a system that consists of a variety of core configurations would become much more
difficult if new modeling advances were needed for each core type. Therefore, a new
core model that provides both higher fidelity with respect to core and cache hierar-
chy models would benefit the community if it were able to more accurately model a
microarchitecture while still providing simulation speedup compared to detailed cycle-
level processor models. We therefore introduce IW-centric simulation as this middle
ground that provides more detail to allow for future core microarchitectural changes
without modeling updates, while continuing to provide faster simulation speeds than
traditional cycle-level simulators.

4.1. Overview

IW-centric simulation builds on many of the insights of interval simulation [Genbrugge
et al. 2010]. Although the cache hierarchy and branch predictors continue to be simu-
lated in detail (as is done in interval simulation), many structures such as the fetch and
decode logic, additional hardware structures for issuing instructions such as the issue
queue, and register renaming, as well as the commit stage, are not simulated in detail
because of the assumption of a balanced processor microarchitecture. In addition, we
assume a fixed penalty from the discovery of a mispredicted branch to the dispatching
of new instructions (Table I), and we do not simulate the impact of wrong-path instruc-
tions on the cache and branch predictors. The key change required to enable higher
accuracy in IW-centric simulation is to model the extraction of ILP by the processor in
a more accurate way. Instead of approximating the ILP based on Little’s law, where
the out-of-order performance is estimated by processing instructions in order, the IW-
centric model estimates performance by processing micro-ops out of order, in a way
similar to how a real processor would issue them.

The IW-centric model replaces the new and old windows of the interval simulation
methodology with a new structure that is sized as large as the ROB. Each dispatched
micro-op is contained in this structure and is awaiting the results of the operations on
which they depend. As the results are completed, additional micro-ops are issued to

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:12 T. E. Carlson et al.

each functional unit, potentially out of order. A major difference between the IW-centric
model and the interval model is that the complexity of the issue logic increases as the
size of a processor’s ROB grows. Additionally, the IW-centric model needs to monitor
all input dependencies of each micro-op, with the cost of potentially checking micro-
ops multiple times during their lifetime, increasing simulation costs over that of the
interval simulation model. Because of this added complexity, the simulation time for
IW-centric simulation increases; however, at the same time, accuracy is also improved.

4.2. Implementation Details

Many of the assumptions in the IW-centric core model use or extend those that have
been established by interval simulation but allow for a more detailed simulation of
application ILP. IW-centric modeling continues to be a dispatch-oriented model, where
the dispatch stage of the processor is modeled in detail, and all penalties relate to
this stage in the pipeline. Front-end events are handled in a way similar to interval
simulation. When there is a branch misprediction or an I-cache or I-TLB miss, the
processor waits for the front-end refill to complete before dispatching new instructions.
Interval simulation estimates the branch penalty as the sum of the branch resolution
time and the front-end refill penalty. In IW-centric simulation, the branch resolution
time is modeled naturally by issuing the branch at the correct time, and only the
front-end refill penalty needs to be added. Instruction decode is not modeled directly
but is assumed to be able to keep up with the maximum dispatch rate in the absence
of front-end miss events. The maximum number of micro-ops to dispatch per cycle is
properly handled and is defined by the core microarchitecture. Loads are executed at
issue time, and no special handling needs to take place for long-latency loads. Because
the time of the next event can be easily tracked, the core can fast forward time when
there are no events to be processed. All overlapping miss events are handled directly
through register and memory dependency analysis. Issue port contention is modeled
directly in the IW-centric model. Issue port occupancies are monitored and instruction
issue is delayed until a free issue slot is available.

CPI stacks [Emer and Clark 1984; Zagha et al. 1996; Emma 1997] are a first-order
method for understanding the causes of performance loss in an out-of-order processor
without requiring additional simulation runs. Interval simulation allows for the com-
putation of CPI stacks through the insights of interval modeling in a very easy way that
is a direct result of the modeling itself. Although IW-centric simulation borrows many
insights from interval simulation, the method for CPI stack computation needs to be
modified because it is no longer possible to attribute the causes of all miss events (es-
pecially back-end events) directly. We therefore calculate CPI stacks in a similar (and
more complex) way to a model that is suited to performance analysis on real hardware
[Eyerman et al. 2006]. If the microarchitected dispatch width is limiting the forward
progress of the core, we attribute the loss of cycles to this CPI stack component. For
front-end miss events, such as a branch misprediction, we also attribute the number of
cycles that it takes to restart the core directly to the component that caused the delay.
This occurs because the out-of-order processor can no longer make forward progress
and the reason for the delay is clear. For back-end miss events, the true cause of the
delay is not as straightforward to determine. Therefore, we approximate the cause of
the stall to the type of instruction present at the head of the window (serialization,
load/store, floating-point, etc.). The rationale for this choice is that the most likely
cause of the delay is the instruction at the head of the window.

In addition to timing model details, there are other factors that can contribute to the
results of the timing simulation. Multicore simulation takes place by first functionally
executing the instructions for each core and then by feeding the instructions into

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:13

each individual core model. This results in a timing model that is slightly behind the
natively executed instructions by a maximum of the number of instructions in the
ROB of the target microarchitecture. Additionally, because of this direct functional
execution, cache and branch predictor pollution, which normally occurs in out-of-order
processors because of wrong-path instruction execution, is not present in this model.

5. EVALUATION AND METHODOLOGY

5.1. Simulation Infrastructure

We implemented the three core models described earlier, one-IPC, interval simula-
tion, and the IW-centric core model, as well as the enhanced interval model with
issue contention, in the Sniper multicore simulator [Carlson et al. 2011]. Sniper is
an execution-driven, user-level simulator that uses functional-first simulation with
timing feedback based on the Pin dynamic instrumentation framework [Luk et al.
2005] and the Graphite simulation infrastructure [Miller et al. 2010]. It implements
parallel simulation to improve simulation speed, keeping threads synchronized using a
quantum-based barrier synchronization with a quantum of 100ns. The Wisconsin Wind
Tunnel II [Mukherjee et al. 2000] uses a similar approach but guarantees functional
and timing correctness by keeping the quantum between barriers small enough to
prevent causality violations. Instead of using this more conservative approach, Sniper
allows for causality violations in exchange for much greater simulation speed in a
similar fashion to SlackSim [Chen et al. 2010].

We use these core models to simulate the execution of a variety of benchmarks.
All core models utilize the same branch predictor and cache models, making a direct
comparison between them possible. We also compare simulated results to running the
same application on real hardware, which allows us to evaluate the accuracy of each
core model in addition to its simulation performance.

We model a dual-socket, quad-core per socket configuration that approximates an
Intel Nehalem–based server machine. Processor cores are four-wide, have a 128-entry
ROB, and run at 2.66GHz. Each core has private L1 instruction and data caches in
addition to a unified private L2 cache, and all four cores in a package share a L3
cache and DRAM controller. Two quad-core processors are connected using a coher-
ent QPI connection and make up a single shared-memory machine. Microarchitec-
tural parameters can be found in Table I. When modeling issue contention, we as-
sume that the architecture has a number of issue ports that accept a subset of all
micro-ops. Additionally, each issue port can accept a single micro-op for execution per
clock cycle. In the Nehalem microarchitecture, there are five modeled issue ports in
total. One is dedicated to loads, and a second one can be used only by stores. The
other three ports are specialized for branches, floating-point additions, and floating-
point multiplications, respectively, and in addition accept all types of integer instruc-
tions. The complete mapping of micro-ops to issue ports is configured according to
Fog [2013].

The core processor models are configured as either the one-IPC core model, interval
simulation core model, or the IW-centric core model. Both the interval and IW-centric
models support optionally enabling functional-unit issue contention by enabling the
modeling described in Section 3.1 for the interval model or by directly accounting for
execution unit occupancy on a cycle-by-cycle basis in the IW-centric model. By compar-
ing simulations with and without this option, we will be able to gauge the increase in
accuracy of this additional modeling step. Both the bus and DRAM contention models
are configured to use history-list–based contention [Miller et al. 2010]. The simulation
models and model-specific parameters are configured as listed in Table II.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:14 T. E. Carlson et al.

Table II. Simulator Configuration Options

Component Configuration
Core models IW-Centric, Interval, and One-IPC
Core issue contention models Enabled, disabled
Bus contention model History-list
DRAM contention model History-list
Synchronization method Time-based barrier
Synchronization interval 100ns
OS emulation Futex replacement
Reschedule cost (cycles) 1k @ 1 core, 10k @ 2 cores

15k @ 4 cores, 25k @ 8 cores

Table III. Benchmarks and Input Sets

Benchmark Input Set
barnes 32,768 particles
cholesky tk29.O
fmm 32,768 particles
fft 4M points
lu.cont 1,024×1,024 matrix
lu.ncont 1,024×1,024 matrix
ocean.cont 1,026×1,026 ocean
ocean.ncont 1,026×1,026 ocean
radiosity –room
radix 1M integers
raytrace car –m64 –a4
volrend head
water.nsq 2,197 molecules
water.sp 2,197 molecules

5.2. Hardware Validation

Hardware validation of Sniper with its respective core models was performed on a dual-
socket server based on the Intel Xeon X5550 processor. Benchmark threads are each
pinned to their own core using the pthread_setaffinity_np() API. In configurations with
one, two, or four threads, we allocate threads to the first socket, whereas eight-thread
configurations use both sockets. SpeedStep and Turbo Boost are disabled to ensure that
the processor cores always run at the intended 2.66GHz frequency. Finally, we disable
both hyperthreading (simultaneous multithreading (SMT)) and hardware prefetchers,
as these are also not yet validated in Sniper.

5.3. Benchmarks

For validation and evaluation, we use the SPLASH-2 benchmarks [Woo et al. 1995].
SPLASH-2 is a well-known benchmark suite that represents high-performance,
scientific codes. Table III provides more details on these benchmarks and the inputs
that we have used. The benchmarks were compiled with GCC 4.3.2 in 64-bit mode
with –O3 optimization and with the SSE and SSE2 instruction set extensions enabled.
On real hardware, we measure the length of time that each benchmark took to run its
parallel section (region of interest) through the use of the Read Time-Stamp Counter
(rdtsc) instruction. A total of 30 runs on hardware were completed, and the average
was used for comparisons against the simulator. In addition, performance counter
information was collected using the perf stat infrastructure. This allowed us to validate
microarchitectural characteristics such as branch misprediction and cache miss rates.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:15

Fig. 6. Single-core IPC on real hardware and simulated using a variety of core models and benchmarks.
Models without issue contention enabled are labeled (nc) for no issue contention.

Table IV. Single-Core Average Absolute Execution Time Errors and
Average Absolute Differences for Each Simulation Model

MPKI Average
Execution Time Absolute Difference

Core Model avg. abs. err. max. abs. err. bp L3
IW-Centric 11.11 18.76 0.17 0.09
IW-Centric (nc) 21.83 33.62 0.17 0.09
Interval 24.29 41.61 0.17 0.09
Interval (nc) 31.76 42.89 0.17 0.09
One-IPC 92.05 182.04 0.19 0.09

6. SIMULATION ACCURACY COMPARISON

In this section, we characterize Sniper’s simulation accuracy when compared to our
dual-socket Intel Nehalem server. We will vary the core model, comparing one-IPC
modeling to interval simulation and the IW-centric core model while keeping the mem-
ory hierarchy and branch predictor constant. This comparison allows us to keep all of
our infrastructure the same to isolate the differences between the core models.

6.1. Absolute Accuracy Comparison

Starting with single-core results, Figure 6 compares the IPC obtained by real hardware
with that predicted by the different core models. The (nc) variants of IW-centric and
interval simulation disable modeling of issue contention. Unsurprisingly, the one-IPC
core model incurs large errors (92% on average with a maximum of 182%; Table IV)
and generally underestimates performance on benchmarks where ILP can be exploited
to obtain an execution speed of more than one instruction per cycle. On applications
with MLP such as ocean, the one-IPC model does not allow for multiple simultaneous
outstanding memory requests and serializes their latency. Alternatively, performance
of the radix benchmark suffers because of dependency chains through instructions with
nonunit latency; here, the one-IPC model overestimates execution speed. In contrast,
the more advanced IW-centric and interval simulation models can provide a much more
accurate estimation of execution speed (24.3% for interval simulation and just 11.1%
for IW-centric on average, with maximum errors of 41.6% and 18.8%, respectively).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:16 T. E. Carlson et al.

Table V. Average and Maximum Absolute Errors Across the Simulation Models

IW-Centric IW-Centric (nc) Interval Interval (nc) One-IPC
Number of Cores avg. max. avg. max. avg. max. avg. max. avg. max.
1 11.11 18.76 21.83 33.62 24.29 41.61 31.76 42.89 92.05 182.04
2 9.68 18.79 20.56 34.64 22.15 41.50 29.52 42.57 90.26 162.78
4 14.77 39.19 22.38 39.96 21.76 40.72 28.32 42.37 78.40 150.06
8 20.79 40.32 27.06 43.89 25.91 41.56 31.11 45.08 54.58 100.26

For some benchmarks, including lu.cont and lu.ncont, pressure on execution units
is quite high, so taking issue-contention modeling into account significantly improves
accuracy for these applications. This is especially important for benchmarks with high
IPC, which are unrestricted by other hardware components such as memory latency.
On average, enabling issue contention modeling improves average accuracy of interval
simulation from 31.8% to 24.3%.

In addition to IPC error, Table IV shows a comparison of simulated branch mispre-
diction and cache miss rates as compared to real hardware. These do not depend on
the core model used and are in any case quite low.

6.2. Multicore Scaling Comparison

Moving on to multicore results, Figure 7 plots the speedup obtained for different core
counts, both on real hardware and as predicted using the different core models. Most
benchmarks, including, for instance, the barnes and fmm applications, exhibit good
scaling on real hardware, as an increase in core count leads to an almost linear increase
in performance. This behavior is predicted correctly by all core models.

Notable exceptions are the two variants of ocean. This application has a large dataset
and is DRAM bandwidth bound; running this benchmark with more than two threads
does not provide an additional benefit in performance. This fact is predicted correctly by
the IW-centric and interval simulation core models. In contrast, the one-IPC model does
not take MLP into account but stalls the core on each DRAM access, underestimat-
ing effective DRAM bandwidth pressure and hence overestimating the application’s
scalability.

Other benchmarks, such as lu.ncont, scale well up to four cores, whereas the eight-
core version sees only limited gains. This is because beyond four cores, the second
processor chip is being used, which incurs intersocket communication over the QPI
links. On real hardware, contention on these links limits performance. The interval and
IW-centric core model predict this correctly. However, the one-IPC core model predicts
perfect scaling. This is again because the one-IPC model predicts per-core performance
too low (by a factor of 2.5×, see Figure 6), which in turn leads to the simulated cores
generating a request rate made to the QPI that is too low. The QPI bus is therefore
not saturated when being driven by the one-IPC model, which incorrectly leads to the
prediction of favorable scaling on the dual-socket run of lu.ncont.

This difference in relative (scaling) accuracy can in fact be correlated with each
core model’s absolute accuracy. Although architects usually claim to require only
relative simulation accuracy, scaling often largely depends on contention of shared
resources such as DRAM and QPI bandwidth, which in turn requires request rates
and thus core performance to have a certain level of absolute accuracy. Analyzing the
summary of absolute accuracy provided in Table V, we can see that the IW-centric
core model has very good accuracy (11.1% on average, with a maximum of 18.8%)
for single-core results. Error goes up with increasing core count, mostly because of
modeling errors in Sniper’s memory hierarchy, which dominates performance for four-
and eight-core results leading to a 20.8% average error with a maximum of 40% for
the radix benchmark. This benchmark experiences large numbers of TLB misses, and

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:17

Fig. 7. Relative performance speedup predictions for the SPLASH-2 applications from one to eight cores.

queuing delays caused by the write-back of evicted dirty cache lines push the limits
of the level of detail provided in the memory hierarchy. Looking at the other core
models, interval simulation starts off at an average 24.3% error for single-core results.
With increasing core count, the memory subsystem again starts to dominate results,
reducing the contribution of the core model somewhat and leading to an eight-core
error of 25.9% with a maximum, again for the radix benchmark, of 41.6%. Finally, the
one-IPC core model starts off with a 92.0% average error (up to 182.0%) for single-core
results, whereas the eight-core error is slightly lower; due to the one-IPC model’s
inaccurate pressure on the memory subsystem, average error is still high at 54.6%.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:18 T. E. Carlson et al.

Fig. 8. Average simulator speed, in KIPS, for a variety of simulation models. Models without issue contention
enabled are labeled (nc) for no issue contention. Core-level issue contention adds very little simulation
overhead but can greatly improve accuracy.

7. SIMULATION SPEED COMPARISON

In Figure 8, we show the average simulation speed (in 1,000 simulated instructions
per second of wall time, or KIPS, aggregated over all simulated cores) across a number
of different core models while changing the size of the simulated system from single-
core to dual-socket quad-core (8 cores in total). All simulations were done on an Intel
Xeon E5-2650L (Sandy Bridge)-based system running at 1.80GHz. This machine has
16 cores, so parallelism in the simulator can optimally be exploited, as each simulator
thread (running the timing model for one simulated core) can run on its own private
host core.

Keeping in mind the accuracy of each core model, we can see a clear trade-off of
simulation speed versus accuracy. Concentrating on single-core simulations first, the
one-IPC core model runs the fastest at over 2.5 MIPS on average, and up to 5.5 MIPS
for the fmm benchmark. The interval model’s much greater accuracy comes at a cost
in simulation speed but still reaches 680 KIPS on average, whereas the more detailed
IW-centric core model reaches a single-core simulation speed of around 450 KIPS. An
interesting observation is that issue contention, when implemented as described in
Section 3.1, does not affect simulation speed much but can significantly improve accu-
racy on several benchmarks. This can be clearly seen in Figure 9, which plots simulation
speed against accuracy (average absolute error to real hardware for all single-threaded
workloads): disabling issue contention modeling (the (nc) variants) adds around 10%
in additional modeling error but does not significantly improve simulation speed. Com-
paring IW-centric, interval, and one-IPC models provides the architect with a clear
choice of core models with different simulation speed over accuracy trade-offs.

For multicore simulations, the memory hierarchy and synchronization bottlenecks
inside the simulator start to become important—both for modeling shared resources
such as LLC and DRAM components, and for keeping local clocks of each simulated core
synchronized. Using the interval simulation core model, a speedup of more than 2×
can be achieved when simulating an eight-core system, where the simulation model
of each core can run on its own host core. When using the one-IPC model, the core
model itself is too simple to have any effect on execution time; here, simulation speed
is limited by the memory subsystem, which is shared between the simulated cores
and therefore can provide only limited parallel speedup. Finally, the IW-centric core

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:19

Fig. 9. Simulation speed versus modeling error of all core models for single-core runs.

Table VI. Microarchitectural Configuration for Private and
Shared L2 Cache Configurations Used for One-IPC versus

Detailed Core Model Comparisons

Component L2 Configuration
private shared

Size 256KB per core 1MB per 4 cores
Associativity 8 way 16 way
Access latency 8 cycles 30 cycles

model shows limited speedup because of bottlenecks in memory allocation. Whereas
the one-IPC and interval simulation core models do not dynamically allocate memory,
the IW-centric model—as currently implemented in Sniper—relies heavily on dynamic
memory allocation, which, in combination with Pin’s memory allocator, leads to poor
scalability on multiple host cores. Using better allocation techniques such as circular
buffers or pool allocation should alleviate this problem.

8. CORE MODEL RESOLUTION AFFECTS MICROARCHITECTURE CONCLUSIONS

Although one-IPC core models are often used to reduce simulation time during mi-
croarchitectural evaluations, this increase in performance comes with a trade-off. The
one-IPC models do not model a number of key core properties that can be crucial to
being able to make accurate design decisions when comparing numerous different mi-
croarchitectural design choices. The key differences of a one-IPC model and a modern
out-of-order core model are the ability to model both application ILP, and therefore
the memory request rate appropriately, as well as the MLP, or the amount of memory
parallelism of an application.

To demonstrate some of the limitations of using one-IPC models to evaluate processor
performance, we show that even when modifying only the caches of a system (a memory
hierarchy study), we still need the resolution in ILP and MLP to be able to accurately
predict microarchitectural performance trends (relative accuracy).

Our experimental configuration is based on the original configuration in Table I
but with slight modifications. For our baseline configuration, we assume four cores,
with two levels of cache using a private hierarchy, with the L2 of each core at 256KB
(Table VI). We compare the configuration with a shared L2 cache across all four cores
(Table VI). In this configuration, the total cache capacity remains the same, at 256KB
per core, but the latency to access the shared L2 cache goes up to 30 cycles from 8.

Figure 10(a) shows the percentage change in miss rates between the private and
shared cache systems, where negative (lower) changes show fewer misses in the shared
L2 configuration. We see that across all benchmarks, a shared L2 cache configuration

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:20 T. E. Carlson et al.

Fig. 10. A comparison of L2 miss rates and application execution time of shared versus private caches, as
predicted by the one-IPC, interval, and IW-centric core models.

reduces the number of L2 misses significantly when compared to the private L2 cache
configuration—up to a 75% reduction in some cases. This is caused by the fact that
the shared configuration can avoid the data duplication that is present in the private
caches and therefore has a higher effective capacity. More importantly, we see that the
cache miss rate changes are stable across all of the core models considered.

When taking application execution time into account, however, the core models no
longer agree. Moving from private to shared caches, a reduction in cache miss rate
avoids expensive DRAM accesses, but this comes at the cost of a significant increase
in latency of (much more common) L2 hits. How this trade-off affects total application
execution time will depend on the relative occurrence of both events, and on how much
of the corresponding latency can be overlapped by the core. In Figure 10(b), the rela-
tive execution time changes are presented between the private L2 and shared L2 cache
configurations. A negative value represents a execution time decrease (or improved
application performance). According to both the interval and IW-centric core models,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:21

most applications prefer the shared L2 cache configuration, which reduces their execu-
tion time by more than 5% on average, with a maximum of around 20%. This indicates
that most of the latency increase incurred in the common case (i.e., shared L2 hits) is
overlapped by the out-of-order core, whereas the reduction in DRAM misses (which are
too long to be fully overlapped with useful work) directly corresponds to improved ap-
plication performance. However, the one-IPC model predicts a very different scenario,
with only a few applications showing slight performance improvements. On average,
the results show that applications will run longer when using a shared L2 cache—a
completely different conclusion. This is because the one-IPC model cannot correctly
determine how much of the L2 latency can be overlapped and overestimates its impact
on application execution time.

In other words, the one-IPC core model concludes that private caches are best, as
the increase in L2 hit latency for shared caches cancels out the reduction in latency
caused by avoiding DRAM accesses. In contrast, the more detailed models show that
shared caches are the better option because the increased L2 hit latency can be hidden
almost completely by out-of-order execution. This experiment clearly shows that even
when performing experiments that seem to only affect the memory subsystem, certain
aspects of the core cannot be ignored but need to be modeled faithfully. As indicated
by the results of Figure 10, interval simulation poses the right balance for this type
of research, as it is able to make the same conclusions yet eschews modeling the more
intricate but less important details of the core that are included in the IW-centric core
model.

8.1. Selecting an Appropriate Core Model

The decision of which core type to use largely depends on the type of study being
conducted. In this section, we present several example situations to guide this choice
while conducting microarchitectural research or development.

One should choose the appropriate core model with the appropriate capabilities for a
given experiment. For example, if one is studying heterogeneous multicore machines,
such as a big.LITTLE configuration [Greenhalgh 2011], using a one-IPC core model
will not provide sufficient fidelity to compare the performance of two different classes
of processors. Additionally, if one would like to investigate the impact of the size of the
MSHRs of a core (and its MLP), then using the one-IPC core model, which does not
model MLP, will not be sufficient for this study. Accordingly, using interval simulation
to study detailed front-end pipeline changes might not be the best match, as the front-
end pipeline in the interval simulation model is assumed to be able to keep up with the
requirements of the maximum dispatch rate of the processor.

During early-stage research where fast iterations can speed discovery, overly detailed
models can stand in the way of quickly converging on a final design. Therefore, while
conducting early research, it might be acceptable to start with higher-level simulation
techniques, especially if one can use techniques that provide large simulation speed
improvements. After the discovery phase has been completed, the move to more detailed
models can occur (along with the updated details necessary for the new features) to
validate the design (see Figure 1 for an example). This design methodology can also
occur before the use of a simulator is needed, with simple proof-of-concept models and
formulas. Similarly, as a design moves closer to physical implementation, more detail
is required to verify both the accuracy of the result, as well as the ability to construct
the new design in a way that meets stated goals. Although there is no one answer to
the question of which models to use, we demonstrate that caution needs to be taken
when using very high level models like one-IPC core models, especially when trying to
compare small performance differences.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

28:22 T. E. Carlson et al.

9. FUTURE WORK

9.1. Validation of New Components

In the most recent version of Sniper, we have implemented a number of new compo-
nents, such as in-order and SMT cores, through updates to the IW-centric core model.
These new models were straightforward to implement as a part of the IW-centric core,
as the software model of the core operates like a traditional processor and does not
require additional analytical modeling enhancements. In addition to simulating new
types of cores, we have also added a stride prefetcher and DRAM cache to the memory
subsystem of Sniper.

Although the components developed for the memory hierarchy of Sniper apply to
both core models, developing SMT for interval simulation requires a new analytical
model that takes into account the sharing of several components, such as the fetch
and decode stages, the ROB, and the functional units. As many modern processors
implement SMT, implementing such a model would allow us to better understand the
performance characteristics of these cores.

One additional option for follow-up work would be to validate the SMT and mem-
ory hierarchy components against modern hardware platforms to better match the
characteristics of the hardware and determine the resulting accuracy.

9.2. Comparison to Cycle-Level Simulators

The improved accuracy of the IW-centric core model leads to an important question
about high-level simulation methodologies. We find that this higher accuracy can be
attributed to the more detailed simulation of the processor core. Taking this one step
further, it would be interesting to compare the speed and accuracy of Sniper to that
of more detailed cycle-level simulators. For example, detailed industrial simulators
tend to run at speeds between 1kHz and 10kHz, whereas cycle-level simulators run at
speeds between 10s and 100s of KIPS [Chiou et al. 2007]. Two cycle-level simulators,
Flexus [Hardavellas et al. 2004] and gem5 [Binkert et al. 2011], perform at 25 KIPS
[Adileh et al. 2012] and 200 KIPS [Beckmann et al. 2011], respectively. Unfortunately,
direct comparisons between simulators are not always possible or straightforward. For
example, one cycle-level simulator, MARSSx86, achieves an average of 160 KIPS when
simulating the SPEC CPU2006 benchmark suite and an average of 200 KIPS when
simulating parallel multithreaded workloads [Patel et al. 2011; Ghose et al. 2012]. In
addition, they show an average absolute error of 23% when comparing the SPEC2006
benchmark suite to an Intel Xeon E5620 [Ghose et al. 2012]. Sniper simulates 2× to
3× faster and has a similar accuracy, but there are additional variables that need to be
taken into account to perform an accurate comparison, such as enabling the same level
of detail and simulating the same collection of benchmarks and microarchitecture.
More work is therefore necessary before we will be able to compare the accuracy of
different simulation options with real hardware.

In addition to comparing simulation results to hardware, high-level models have
also been compared to detailed cycle-level simulation models. By integrating interval
simulation into gem5 (then M5), Genbrugge et al. [2010] show that when compared to
using gem5’s detailed core model, interval simulation performs an order of magnitude
faster with an average error of 4.6%.

Through the addition of new core models, and other features such as prefetchers,
Sniper now allows for the simulation of a larger selection of microarchitectural options.
A next step for future work will be to compare both the simulator performance and the
simulated workload results to allow microarchitects to better understand the trade-offs
being made when choosing between simulation models.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

An Evaluation of High-Level Mechanistic Core Models 28:23

10. CONCLUSION

The microarchitectural trends of modern computer systems continue to push the limit
of simulation technology. With larger caches, larger numbers of cores, and increasingly
complex memory hierarchies, the complexity and therefore simulation time required
to accurately simulate these architectures has increased. There is a desire for faster
simulation throughput, and therefore faster core models are one way to move closer to
this goal.

To meet these ever-increasing time constraints, there could be a push to move toward
using faster, naive core models, such as one-IPC models, to determine the optimal next-
generation microarchitectural configurations. We show though that core models like the
one-IPC model can lead to misleading and incorrect results and conclusions in practical
design studies. These simple models do not properly take into account individual core
ILP or MLP, which in turn leads to large discrepancies both from an absolute accuracy
and a relative accuracy perspective.

In this work, we provide an overview of fast and accurate high-level core models for
use in microarchitectural simulation. We first describe two enhancements to interval
simulation, issue contention, and improved dependency analysis tracking. With these
enhancements, we demonstrate how more accurate results can be obtained with almost
the same simulation performance. We also introduce a new core model, the IW-centric
model, that improves accuracy compared to interval simulation while maintaining
high simulation speed. Through the use of interval simulation and IW-centric core
models, one can speed up microarchitectural simulation while maintaining accuracy
of the resulting architectural performance evaluation. Both core models provide good
absolute accuracy (11.1% for IW-centric and 24.3% for interval simulation) and provide
fast simulation speeds (with IW-centric performing just 1.5× slower than interval
simulation).

ACKNOWLEDGMENT

We thank the anonymous referees and associate editor for their valuable feedback and suggestions.

REFERENCES

A. Adileh, C. Kaynak, P. Lotfi-Kamran, and S. Volos. 2012. CloudSuite on Flexus. Retrieved July 22, 2014,
from http://parsa.epfl.ch/simflex/doc/CloudSuite-on-Flexus-isca12.pdf.

E. K. Ardestani and J. Renau. 2013. ESESC: A fast multicore simulator using time-based sampling. In
Proceedings of the International Symposium on High Performance Computer Architecture (HPCA). 448–
459.

B. Beckmann, N. Binkert, A. Saidi, J. Hestness, G. Black, K. Sewell, and D. Hower. 2011. The gem5 Simulator.
Retrieved July 22, 2014, from http://www.gem5.org/dist/tutorials/isca_pres_2011.pdf.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. 2011. The gem5
simulator. SIGARCH Computer Architecture News 39, 2, 1–7.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. 2006. The M5 simulator:
Modeling networked systems. IEEE Micro 26, 52–60.

T. E. Carlson, W. Heirman, K. V. Craeynest, and L. Eeckhout. 2014. BarrierPoint: Sampled simulation
of multi-threaded applications. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 2–12.

T. E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulations. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). 52:1–52:12.

T. E. Carlson, W. Heirman, and L. Eeckhout. 2013. Sampled simulation of multi-threaded applications. In
Proceedings of the International Symposium on Performance Analysis of Systems and Software (ISPASS).
2–12.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

http://parsa.epfl.ch/simflex/doc/CloudSuite-on-Flexus-isca12.pdf.
http://www.gem5.org/dist/tutorials/isca_pres_2011.pdf.

28:24 T. E. Carlson et al.

J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois. 2010. Adaptive and speculative slack
simulations of CMPs on CMPs. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 523–534.

X. E. Chen and T. M. Aamodt. 2011. Hybrid analytical modeling of pending cache hits, data prefetching, and
MSHRs. ACM Transactions on Architecture and Code Optimization 8, 3, 10:1–10:28.

D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe, and H. Angepat. 2007. FPGA-
accelerated simulation technologies (FAST): Fast, full-system, cycle-accurate simulators. In Proceedings
of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 249–261.

Y. Chou, B. Fahs, and S. Abraham. 2004. Microarchitecture optimizations for exploiting memory-level par-
allelism. In Proceedings of the International Symposium on Computer Architecture (ISCA). 76–87.

E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai. 2008. A complexity-effective architecture for ac-
celerating full-system multiprocessor simulations using FPGAs. In Proceedings of the 16th International
ACM/SIGDA Symposium on Field Programmable Gate Arrays (FPGA). 77–86.

L. Eeckhout, R. H. Bell Jr, B. Stougie, K. De Bosschere, and L. K. John. 2004. Control flow modeling in
statistical simulation for accurate and efficient processor design studies. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA). 350–361.

L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. 2003. Statistical simulation: Adding efficiency
to the computer designer’s toolbox. IEEE Micro 23, 5, 26–38.

J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan. 2002. Asim: A performance model framework. Computer 35, 2, 68–76.

J. S. Emer and D. W. Clark. 1984. A characterization of processor performance in the VAX-11/780. In
Proceedings of the 11th Annual International Symposium on Computer Architecture (ISCA). 301–310.

P. G. Emma. 1997. Understanding some simple processor-performance limits. IBM Journal of Research and
Development 41, 3, 215–232.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. 2006. A performance counter architecture for com-
puting accurate CPI components. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 175–184.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. 2009. A mechanistic performance model for super-
scalar out-of-order processors. ACM Transactions on Computer Systems 27, 2, 42–53.

A. Fog. 2013. Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-Operation
Breakdowns for Intel, AMD and VIA CPUs. Retrieved July 22, 2014, from http://www.agner.org/
optimize/instruction_tables.pdf.

D. Genbrugge, S. Eyerman, and L. Eeckhout. 2010. Interval simulation: Raising the level of abstraction in ar-
chitectural simulation. In Proceedings of the 16th IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 307–318.

K. Ghose, A. Patel, F. Afram, H. Zheng, and J. Tringali. 2012. MARSS: Micro Architectural Systems
Simulator. Retrieved July 22, 2014, from http://cloud.github.com/downloads/avadhpatel/marss/Marss_
ISCA_2012_tutorial.pdf.

A. Glew. 1998. MLP yes! ILP no! In Proceedings of the ASPLOS Wild and Crazy Idea Session.
P. Greenhalgh. 2011. big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. ARM white paper.
N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and A. G.

Nowatzyk. 2004. SimFlex: A fast, accurate, flexible full-system simulation framework for performance
evaluation of server architecture. SIGMETRICS Performance Evaluation Review 31, 4, 31–34.

A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. 2008. CMP$im: A pin-based on-the-fly multi-core cache
simulator. In Proceedings of the 4th Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), co-located with ISCA 2008. 28–36.

T. Karkhanis and J. E. Smith. 2004. A first-order superscalar processor model. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA). 338–349.

A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz. 2007. RAMP Blue: A message-passing
manycore system in FPGAs. In Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL). 54–61.

J. D. Little. 1961. A proof for the queuing formula: L = λW. Operations Research 9, 3, 383–387.
G. Loh, S. Subramaniam, and Y. Xie. 2009. Zesto: A cycle-level simulator for highly detailed microarchitecture

exploration. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’09). 53–64.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. 2005.
Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 190–200.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

http://www.agner.org/optimize/instructiontables.pdf.
http://www.agner.org/optimize/instructiontables.pdf.
http://cloud.github.com/downloads/avadhpatel/marss/MarssISCA2012tutorial.pdf
http://cloud.github.com/downloads/avadhpatel/marss/MarssISCA2012tutorial.pdf

An Evaluation of High-Level Mechanistic Core Models 28:25

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal. 2010.
Graphite: A distributed parallel simulator for multicores. In Proceedings of the 16th IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 1–12.

S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill, D. A. Wood, S. Huss-Lederman, and
J. R. Larus. 2000. Wisconsin wind tunnel II: A fast, portable parallel architecture simulator. IEEE
Concurrency 8, 4, 12–20.

S. Nussbaum and J. E. Smith. 2001. Modeling superscalar processors via statistical simulation. In Proceed-
ings of the 10th International Conference on Parallel Architectures and Compilation Techniques (PACT).
15–24.

M. Oskin, F. Chong, and M. Farrens. 2000. HLS: Combining statistical and symbolic simulation to guide
microprocessor designs. In Proceedings of the 27th International Symposium on Computer Architecture
(ISCA). 71–82.

A. Patel, F. Afram, S. Chen, and K. Ghose. 2011. MARSS×86: A full system simulator for ×86 CPUs. In
Proceedings of the Design Automation Conference (DAC). 1050–1055.

M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. 2011. HAsim: FPGA-based high-detail multicore
simulation using time-division multiplexing. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA). 406–417.

D. Sanchez and C. Kozyrakis. 2013. ZSim: Fast and accurate microarchitectural simulation of thousand-core
systems. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA).
475–486.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 2002. Automatically characterizing large scale program
behavior. In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 45–57.

T. Taha and D. Wills. 2008. An instruction throughput model of superscalar processors. IEEE Transactions
on Computers 57, 3, 389–403.

V. Uzelac and A. Milenkovic. 2009. Experiment flows and microbenchmarks for reverse engineering of branch
predictor structures. In Proceedings of the 2009 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 207–217.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA). 24–36.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. 2003. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA). 84–95.

M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. 1996. Performance analysis using the MIPS R10000
performance counters. In Proceedings of the 1996 ACM/IEEE Conference on Supercomputing (SC).
Article No. 16.

Received December 2013; revised March 2014; accepted May 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 3, Article 28, Publication date: July 2014.

