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Abstract

Purpose Breast cancer computer-aided diagnosis (CADXx)
may utilize image descriptors, demographics, clinical obser-
vations, or acombination. CADx performance was compared
for several image features, clinical descriptors (e.g. age and
radiologist’s observations), and combinations of both kinds
of data. A novel descriptor invariant to rotation, histograms
of gradient divergence (HGD), was developed to deal with
round-shaped objects, such as masses. HGD was compared
with conventional CADx features.

Method HGD and 11 conventional image descriptors were
evaluated using cases from two publicly available mam-
mography data sets, the digital database for screening mam-
mography (DDSM) and the breast cancer digital repository
(BCDR), with 1,762 and 362 instances, respectively. Three
experiments were done for each data set according to the type
of lesion (i.e., all lesions, masses, and calcifications), result-
ing in six scenarios. For each scenario, 100 training and test
sets were generated via resampling without replacement and
five machine learning classifiers were used to assess the diag-
nostic performance of the descriptors.

Results Clinical descriptors outperformed image descriptors
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in the DDSM sample (three out of six scenarios), and combin-
ing the two kind of descriptors was advantageous in five out
of six scenarios. HGD was the best descriptor (or compara-
ble to best) in 8 out of 12 scenarios, demonstrating promising
capabilities to describe masses.

Conclusions The combination of clinical data and image
descriptors was advantageous in most mammography CADx
scenarios. A new descriptor based on the divergence of the
gradient (HGD) was demonstrated to be a feasible predictor
of breast masses’ diagnosis.

Keywords Breast cancer - Image descriptors -
Clinical data - Machine learning classifiers -
Computer-aided diagnosis (CADx) -
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Introduction

According to the World Health Organization, breast cancer
is the second most common form of cancer in the world,
with over 1.5 million predicted diagnoses in 2010 and caus-
ing more than half a million deaths per year [1]. In the Euro-
pean Union, it is responsible for one in every six deaths from
cancer in women [2]. Breast cancer has a known asymp-
tomatic phase that can be detected with mammography [3],
and therefore, mammography is the primary imaging modal-
ity for screening.

Double-reading (two radiologists independently read the
same mammograms) has been advocated to reduce the
proportion of missed cancers and it is currently included
in most of the screening programs [4]. However, double-
reading incurs in additional workload and costs. Alterna-
tively, computer-aided detection/diagnosis (CADe/CADXx)
systems may assist a single radiologist reading mammograms
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providing support to her/his decisions [5,6]. CADe systems
focus on the detection of suspicious lesions, while CADX sys-
tems aim at classifying lesions identified by the radiologist.
In this work, we will focus on CADx.

CADx systems typically rely on machine learning clas-
sifiers (MLC) to provide diagnosis [7,8]. In order to train
a MLC for breast cancer diagnosis, a set of predictors
is required describing the observation. Ideally, predictors
should have high discriminant power that allows inferring
if a given observation is from a malignant finding or not.
This is, however, a changeling topic that has gathered the
focus of research of several sciences, from medicine to com-
puter vision. Thus, several types of predictors may be used
for inferring the diagnosis. Here, we focus on two particu-
lar types of predictors: (1) clinical data: information about
the patient (e.g. age, gender) and observations of radiolo-
gists about the mammograms (e.g. breast density, abnormal-
ities); and (2) image descriptors: a set of statistics computed
from the mammograms that may help characterizing lesions.
Image descriptors can be further divided into two categories:
(1) general, if they describe features that are transversal to the
different kinds of lesions, and (2) lesion-specific, if they only
make sense for a given type of lesion, such as the regularity
of the contour of a mass [8], or the number of microcalcifi-
cations inside a cluster [7].

In this study, we focus on the combination of general
image descriptors and clinical data. General image descrip-
tors have the advantage of being applicable to all kinds
of lesion and not requiring rigorous contours outlining the
lesions, as opposed to shape descriptors that are often used
to describe masses [8]. Since general image descriptors only
require a region containing the lesion, they are convenient to
use in clinical settings where radiologists have very limited
amount of time for analyzing cases (e.g. screening). Sev-
eral works have explored different kinds of general image
descriptors for characterizing breast lesions. These descrip-
tors typically describe the region of the mammogram by
their distribution of grey levels or by features related to tex-
ture. In [9,10], statistics over grey levels are used to dis-
criminate between normal and abnormal tissue. In [11,12],
Zernike moments are computed to describe masses. Several
works [13-19] use Haralick features [20] to classify calci-
fications and masses trough texture. Other texture descrip-
tors that are often used include the grey-level run length
analysis [17,18,21] and features from the grey-level dif-
ference matrix [19,21]. Multi-scale approaches have also
shown promising results and include the use of Gabor fil-
ter banks [15,22], Wavelets [23-26], and Curvelets [27]. In
previous work, we have also explored the combination of
intensity and texture descriptors [5]. The reader is addressed
to [7,8] for a comprehensive review of the area. To the
best of our knowledge, descriptors based on the spatial
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distribution of the gradient such as histograms of oriented
gradients (HOG) [28] have not been applied to breast can-
cer.

Despite the large amount of research on image descriptors
for breast lesion classification, the main focus is typically the
evaluation of performance of the descriptors in a standalone
point of view, i.e., the image descriptors are the only predic-
tors used to train MLC. While these studies are important for
understanding the discriminative power of the image descrip-
tors, we believe that it is essential to know how MLC based in
these descriptors behave in the presence of relevant clinical
data and if these two distinct types of data can complement
each other to provide more accurate diagnosis.

This work presents a comparative study of four groups
of image descriptors (intensity, texture, multi-scale texture
and spatial distribution of the gradient). These descriptors
are computed from rectangular regions of interest (patches)
of mammographic images containing a lesion and combined
with patients’ clinical data to train machine learning classi-
fiers (MLC) for breast cancer diagnosis (Fig. 1). Within the
last group of descriptors, we tested the popular HOG descrip-
tor [28] and we propose a novel descriptor that is especially
designed for round-shaped objects, such as masses. The pro-
posed descriptor, histograms of gradient divergence (HGD),
enables to capture patterns of the gradient that are invariant
to rotation.

The main goals of this study are to compare the perfor-
mance of image descriptors in the presence and absence of
clinical data, and understanding the contribution of these two
types of data in the performance of MLC. In particular, we
test the hypotheses that (1) combining image descriptors and
clinical data enables achieving better results than the stand-
alone clinical data or the standalone image descriptors, (2)
the relative performance of the image descriptors is not nec-
essarily the same when clinical data are also fed to the MLC,
and (3) the suitability of a given descriptor dependents on the
type of lesion. In addition, we propose and evaluate a new
image descriptor, the HGD.

Materials and methods

This section describes the evaluation methodology of image
descriptors for breast cancer diagnosis in the presence and
absence of clinical features. This evaluation is done within
the context of training machine learning classifiers to predict
the diagnostic of a lesion based on a set of features com-
puted from a region of the mammogram containing the lesion
(Fig. 1). This section starts by describing the data sets that
were utilized on the experiments, followed by a brief expla-
nation of the image descriptors that were evaluated, and ends
with the definition of the experimental study.
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Fig. 1 TIllustration of the training and classification processes. For
training a classifier, first, image features are computed from a set of
patches (1). Then, the computed features (optionally coupled with clin-
ical data) together with the biopsy results of the radiographed lesions
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are used to train the classifier (2). Having a classifier properly trained,
the diagnosis of a new lesion may be predicted from the image features
of the new lesion’s patch (optionally coupled with clinical data) (steps
3 and 4)

Fig. 2 Distribution of breast 800
densities in the data sets 700 [ ] O Malignant |
(7] .
4] @ Benign
o 600 —
£ 500
S 400
S
S 300
E 200
Z 100 L1
o] N = = —
<25% 25-50% 50-75% >75% <25% 25-50% 50-75% >75%
DDSM Sample ‘ BCDR-FO1 ‘
Data sets 1400
@ 1200 O Malignant |
Two data sets were used in this study, namely a sample of D 4000 m Benign |
the digital database for screening mammography (DDSM) E 800
[29] and the BCDR-FO1 data set of the breast cancer digital § 600
repository (BCDR) [5,30]. These public repositories' were 2
selected because they provide the highest number of anno- E 400
tated mammograms with biopsy-proven diagnostic. Both Z 200
data sets include, for each case, the age of the patient, the 0 H
density of the breast (BI-RADS scale) (Fig. 2), and the con- DDSM Samp'e‘ BCDR-FO1 ‘ DDSM Samp'e‘ BCDR-FO1
tour of the lesions in one or two mammograms per breast, Masses ‘ Calcifications ‘

mediolateral oblique (MLO) and craniocaudal (CC). Both
data sets were originality built from film mammograms that
were scanned to produce digital images. The two data sets
differ in the resolution of the images, the number of grey
levels, the number of cases and in the included observations

1" BCDR-F01 from BCDR is now available for download at http://bcdr.
inegi.up.pt.

Fig. 3 Distribution of the most common abnormalities in the data sets

of radiologists, and therefore, they are described separately.
Figure 3 shows statistics for the two data sets regarding the
number of malignant and benign cases for the most common
types of lesions: masses and calcifications.
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DDSM

A total of 1,762 segmentations were extracted from DDSM
from the benign volumes 1, 5, 6, and 13 and cancer vol-
umes 1, 2, 5, 9, and 15. These volumes correspond to all
the volumes of the scanner LUMISYS with the exception
of volume ‘Benign 14’, which was left out for achieving a
balanced number of benign and malignant cases. Thus, the
DDSM sample for this study is composed by 913 segmenta-
tions of benign findings and 849 of malignant findings. The
LUMISYS scanner is the scanner with the highest resolution
of DDSM (50 microns), producing images with an average
size of 3,118 x 5,001 pixels and 3,600 grey levels. For conve-
nience, the images used in this study were obtained from the
IRMA project (courtesy of TM Deserno, Dept. of Medical
Informatics, RWTH Aachen, Germany) where the original
LJPEG images of DDSM were converted to 16 bits PNG
format [31,32]. The average patient age at the time of the
study is 57.7 years old, ranging from 31 to 89. In addition to
the age of the patient and density of the breast, the DDSM
data set also includes the subtlety of the lesion (an integer
number ranging between 1 and 5). Regarding the observa-
tions of the radiologists about the lesions, DDSM stores if
there are masses or calcifications and characterizes the shape
and margins of masses as well as the type and distribution
of calcifications using keywords of the BI-RADS glossary.
For this study, this information was encoded by creating two
binary attributes indicating the presence/absence of masses
and calcifications, as well as an additional binary attribute for
each possible keyword. This sparse representation allows for
multiple findings per lesion (e.g. a mass with calcifications)
and multiple keywords characterizing an aspect of a lesion
(e.g. the margins of mass can be simultaneously obscured, ill
defined, and spiculated). Summarizing, the clinical data for
each instance of the data set built from DDSM include a total
of 35 attributes: 32 binary attributes describing the lesions,
two ordinal attributes for breast density and lesion subtlety,
and one numerical attribute for storing the age of the patient
at the time of the study.

BCDR (BCDR-FO01)

BCDR-FOL1 is the first data set being released to public of
the Breast Cancer Digital Repository (BCDR) [5,30]. This
data set is composed by cases of Portuguese female patients
with mean age of 54.4 years old, ranging from 28 to 82. The
mammograms of this data set were digitized with lower res-
olution than DDSM resulting in images of 720 x 1,167 pix-
els with 256 grey levels. BCDR-FO1 has a total of 362 seg-
mentations from which 187 are from benign findings and
the remainder 175 from malignant findings. In addition to
the patient age and breast density, the data set includes a
set of selected binary attributes for indicating abnormali-
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ties observed by radiologists, namely masses, microcalcifica-
tions, calcifications (other than microcalcifications), axillary
adenopathies, architectural distortions, and stroma distor-
tions. Thus, the clinical data for each instance of the BCDR-
FO1 data set include a total of eight attributes per instance: six
binary attributes related to observed abnormalities, an ordi-
nal attribute for breast density, and a numerical attribute that
contains the patient age at the time of the study.

Image descriptors
Intensity descriptors

Intensity statistics This descriptor is a set of statistics calcu-
lated directly over the grey levels of the pixels belonging to
the patch. Previous work on detection and classification of
breast cancer has used the mean value and the standard devi-
ation as descriptors (e.g. [9,10]), but higher order statistics
have been explored such as the skewness and kurtosis (e.g.
[9]). Here, we include these statistics (mean, standard devi-
ation, skewness and kurtosis), together with the minimum
and maximum intensity value of the patch, making a total of
six features. This combination of features was successfully
explored in previous work [5].

Histogram measures Gonzales et al. [33] describe six mea-
sures based on statistical moments that are calculated from
the grey-level histogram of the patch. These measures are
the average intensity, contrast, smoothness, skewness, unifor-
mity and entropy. In comparison with the previous descriptor
(Intensity statistics), these measures are calculated from the
histogram of the patch (instead of directly from the grey lev-
els of the patch) and also differ by including a measure of
uniformity of the histogram and a measure of randomness
(entropy), while not including neither kurtosis nor the grey-
level limits (minimum and maximum). This descriptor was
explored in [34] for breast tissue classification and in [35]
for content-based retrieval of mammograms.

Invariant moments Hu [36] proposed a set of seven fea-
tures based on statistical moments that are invariant to trans-
lation, scale, and orientation of the observation. Invariant
moments have been explored by [35] for content-based
retrieval of mammograms. As suggested by [33], a loga-
rithmic function was used to decrease the range of each
moment.

Zernike moments Zernike moments [37] are constructed
using a set of complex polynomials that describe a unitary
disc (radius=1). A descriptor of a circular patch may, thus,
be defined by the coefficients of the polynomials. In con-
trast to statistical moments and invariant moments, Zernike
moments have an orthogonal basis guaranteeing independent
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coefficients. In addition, they remain invariant to translation,
rotation, and scale. The first polynomial (order 0) has only
one term with coefficient equal to the average pixel intensity,
while higher order polynomials add detail to the description
of the patch. Zernike moments have been previously used for
classifying breast masses (e.g. [11,12]) and for retrieval of
similar masses from a database (e.g. [38]).

Texture descriptors

Haralick features Haralick features [20] describe the tex-
ture of a patch and are computed from the grey-level
co-occurrence matrix (GLCM). The GLCM is a 2D his-
togram measuring the joint probability of two grey levels
(g1, g2) occurring at a given distance d and at a given direc-
tion 0. Thus, the element GLC M (g1, g2) represents the num-
ber of times a pixel with intensity g; appears together a pixel
with intensity g», with d and 6 being fixed parameters. Typ-
ically, 0 is 0°,45°,90°, or 135° and the d is a city block
distance >1 pixel. Additionally, intensities may be grouped
in B bins. From this matrix, a set of 14 features is computed.
Haralick et al. proposed computing these features for the four
directions and averaging the results in order to achieve some
invariance to rotation. Several studies have included GLCM
features for classifying microcalcifications (e.g. [ 13—-16]) and
masses (e.g. [15-19]).

GLRL Grey-level run length (GLRL) analysis [39] com-
putes the occurrence of sets of consecutive collinear pix-
els with given length (/) and direction (0) for a given grey
level (g). Occurrences are stored in a GLRL matrix with
the element GLRL (I, g) representing the number of times
sequences of pixels with length / is associated with the grey
level g. Grey levels are grouped in B bins and GLRL matri-
ces are computed for four directions (6 = 0°, 45°,90°, and
135°). A set of 11 features is calculated for each direc-
tion, rendering 44 features. In [21], GLRL features were uti-
lized for classifying microcalcifications and in [17,18] for
masses.

GLDM The grey-level difference matrix (GLDM) stores the
occurrences of absolute differences between pairs of grey lev-
els (Ag) separated by a given distance (d) in a given direction
(), with the element GLDM (d, Ag) being the number of
times the grey-level difference Ag is observed at a distance
d. Grey levels are grouped in B bins and GLDM matrices are
computed for four directions (8 = 0°, 45°, 90°, and 135°).
A set of five features (mean, contrast, entropy, angular sec-
ond moment, and inverse difference moment) is calculated
for each matrix, rendering twenty features. GLDM features
were used in [21] for classifying microcalcifications and in
[19] for masses.

Multi-scale texture descriptors

Gabor filter banks Considering the spatial domain, Gabor
filters can be described as a Gaussian kernel modulated by a
sinusoidal plane wave [40]. These filters are often used for
edge detection as they allow to detect edges in a given orien-
tation (¢) and at a given frequency (). In addition, by adjust-
ing the standard deviation of the Gaussian envelope (0), it is
possible to adjust the degree of blurring. Several approaches
have been explored in the literature for applying Gabor filters
to the classification of both masses and microcalcifications
(e.g.[15,22]). Here, a set of descriptors was produced by cal-
culating the mean, standard deviation, energy and entropy of
the magnitude of the complex response of a set of Gabor
filters with different orientations (@), frequencies (1), and
scales (o).

Wavelets In signal theory, a discrete wavelet transform
enables to decompose a discretized signal in two sets of
coefficients: approximation and detail [33]. While approx-
imation coefficients are the result of a low-pass filter that
provides a coarse approximation of the original signal,
detail coefficients result from a high-pass filter that extract
local variations of the signal. By repeating the discrete
wavelet transform over the approximation coefficients, one
is able to extract multi-scale representations of the signal.
Regarding the 2D discrete wavelet transform, the decom-
position of an image originates an approximation image
and three detail images (horizontal, vertical, and diagonal),
all with half the width and height of the original image.
Iterating over the approximation images enables computing
representations at multiple scales, from which features can be
calculated. Computing wavelet representations requires the
definition of the filters and the number of levels of decom-
position (L). Wavelets have been used previously by either
selecting the highest coefficients of each level (e.g. [23,24])
or by computing statistics of the coefficients of each level
(e.g. [25,26]). The first option is typically employed in data
sets where all the patches have the same size, and therefore,
the number of coefficients remains the same for all patches.
Here, the second option was chosen since it enables using the
original patches of the lesions independently of their sizes.
The same statistics used on Gabor filters (i.e. mean, stan-
dard deviation, energy and entropy) were applied to each
sub-image that resulted from the wavelet transform.

Curvelets The curvelet transform is a higher dimensional
generalization of the wavelet transform designed to repre-
sent images at different scales and different angles [41].
It was proposed to cope with some of the limitations of
wavelets, and in fact, when compared to wavelets, it offers
additional advantages such as optimal sparse representa-
tion of objects with edges, optimal image reconstruction in
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severely ill-posed problems, and optimal sparse representa-
tion of wave propagators [42]. In [27], the authors have shown
that curvelets outperform wavelets when classifying radi-
ographed patches of the breast. Curvelets require the defini-
tion of two parameters: the number of scales and the number
of angles. At the end, for each scale, several sub-images are
available depending on the chosen number of angles. Here,
for each sub-image, the mean, standard deviation, energy
and entropy were calculated, like in the previous multi-scale
textures descriptors.

Spatial distribution of the gradient

Histograms of oriented gradient Histograms of oriented gra-
dients (HOG) describe patches through the distribution of the
gradient [28]. Patches are divided into a grid of blocks (e.g.
3 x 3), and each block is described by a histogram of the
orientation of the gradient. Each histogram has a predefined
number of bins dividing the range of possible orientations
(from O to 2 radians, or from O to 7 radians), and the value
of each bin is calculated by summing the magnitude of the
gradient of the pixels which have gradient direction within
the limits of the bin. Finally, histograms may be normalized,
with the most common option being the L1 and L2 norm [28].
HOG is a very popular descriptor in Computer Vision based
on the local descriptor of the Scale Invariant Feature Trans-
form (SIFT) [43]. It has been successfully used, for instance,
in human detection and face recognition (e.g. [28,44]). How-
ever, to the best of our knowledge, it has never been used
before for describing breast lesions. Here, we propose fit-
ting an HOG to the patch of a lesion to describe the lesion.
This makes the descriptor dependent on the orientation of the
object. Invariance to rotation could be implemented by calcu-
lating the dominant orientation of the gradient and by rotating
the rectangular patch before calculating the descriptor. How-
ever, as in [28], we choose to use patches in its original orien-
tation because, for several cases, part of the rotated patches
would fall out of the image, or bounding boxes of the rotated
patches were much larger than the original bounding box.
Nevertheless, HOG is expected to perform well describing
masses since they are especially suited for describing shape.
Both normalized and non-normalized variants are tested with
different number of blocks as well as histograms with differ-
ent number of bins.

Histograms of gradient divergence In this work, we propose
a novel image descriptor that introduces the concept of gra-
dient divergence to measure shape regularity invariantly of
rotation. The descriptor, named histograms of gradient diver-
gence (HGD), is based on the principle that round-shaped
objects with regular and continuous border, such as a circles
and ellipses, have the gradient of their boundaries pointing
to the centre of the object (assuming light filled objects on
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a dark background). For such objects, we may say that the
gradient converges to the centre.

Assuming that the object is centred on the patch, we pro-
pose measuring the gradient divergence of a pixel P as the
angle between the vector of the intensity gradient on P and
a vector with origin on P pointing to the centre of the patch
(Fig. 4). In addition to account for divergence of the gradi-
ent, our descriptor also considers the distance of the pixel to
the centre through the use of regions. For allowing compact
representations, R concentric regions are created, with each
region being described by a histogram of gradient divergence
with B orientation bins. Invariance to rotation is naturally
achieved by using circular concentric regions and by storing
the divergence of the gradient instead of the orientation of
the gradient.

In this work, all the regions of an HGD descriptor have
equal number of pixels and do not overlap, which simplifies
parameterization since only the number of regions needs to
be known to determine their limits. Nevertheless, the inner
and outer radius of each region could be manually specified.

To emphasize strong variations of intensity, the contri-
bution of every divergence angle to a histogram is given
by the magnitude of the gradient. At the end, and like in
HOQG, the histograms may be normalized. In the experiments
reported here, three modalities were tested: no normalization,
L2 norm, and division by the maximum bin of all histograms
of the descriptor.

This descriptor is especially suited for masses and aims at
describing the regularity of their shape. Two or more regions
enable to capture variations of divergence at the border of
masses and at the core, which allows describing regularity of
the border and detecting spiculations (Fig. 4).

Evaluation

Descriptors were compared based on their classification per-
formance using several machine learning classifiers available
on Weka version 3.6 [45], namely Support Vector Machines
(SVM), Random Forests (RF), Logistic Model Trees (LMT),
K Nearest Neighbours (KNN), and Naive Bayes (NB). For all
classifiers with the exception of NB (which is parameterless),
threefold cross-validation was performed on the training set
for optimizing the classifiers parameters. Linear SVM was
chosen for simplicity and speed with regulation parameter
C ranging from 1072 to 10°. The number of trees of RF
was optimized between 50 and 400, with each tree having
log,(A) + 1 randomly selected attributes, where A is the
number of attributes available in the current data set. On
LMT, the number of boosting iterations was also optimized.
Finally, the number of neighbours (K) of KNN varied from
1 to 20, and the contribution of each neighbour was always
weighted by the distance to the instance being classified.
The WEKA configurations of the classifiers are available on
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Fig. 4 Illustration of the proposed descriptor (HGD), with 2 regions
and 8 bins for patches of a blurred disk (a); a mass with well-defined
borders from BCDR-FO1 (b); an artificially generated spiculated shape
(c); and a spiculated mass from BCDR-FO1 (d). The second column
shows a sparse representation of the gradient (red arrows) and the ref-
erence (convergence) vectors (blue arrows). The third column shows the
gradient divergence vectors, which have magnitude equal to the gradi-

Online Resource 1. For all classifiers, attribute range nor-
malization [0, 1] was performed as pre-processing with the
minimum and maximum values of the attributes found in
the training set and then applied to both training and test
sets.

For computing the image descriptors, rectangular patches
of the lesions were created by extracting the part of the mam-
mogram within the bounding box of the outlines provided
by both data sets. For all descriptors, with the exception of
Gabor filters and Zernike moments, the features were com-
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ent and orientation equal to the angular difference between the gradient
and reference vectors (horizontal, left to right vectors means zero diver-
gence). The last column shows the histograms of the two regions of the
descriptor (L2-norm normalization). Histograms have 8 bins, with the
first (zero divergence) pointing to the right, and the remaining following
anti-clockwise. The descriptor is formed by grouping the values of each
of the 16 bins in a single vector

puted using the patch on its original size. Due to compu-
tational requirements, the patches used to compute Gabor
filters were resized so that the larger dimension would be
of exactly 128 pixels, while keeping the aspect ratio. As for
Zernike moments, the patch was resized to 128 x 128 also
due to computational requirements and because this descrip-
tor requires the patch to be of equal width and height.
Three scenarios were evaluated concerning the input of
the classifiers: (1) standalone clinical data (i.e. 35 attributes
for the DDSM data set and 8 attributes for BCDR-F01),
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Table 1 Descriptors’

. Descriptor
parameters explored in the

Parameter

Values

experiments Zernike moments Polynomial order All polynomials from order 0
to2,4,6,8, 10
Haralick features Number of grey-level bins (B) 8, 16, 32
Distance between pixels (d) 1,2,4,8,16,32
GLRL Number of grey-level bins (B) 64, 128, 256
GLDM Distance between pixels (d) 1,2,4,8, 16,32
Number of grey-level bins (B) 64, 128. 256
Gabor filters Standard deviation of the Gaussian (o) 1,2,4,8,16
Orientation (9) 0,%,%,%,%,%,%7%
Frequency (1) 27227 ,273,27 274, 27,275
Wavelets Number of scales 1,2,4,8,16
Wavelet filters Haar, db8, sym8, bior3.7
Curvelets Number of scales 2,4,6
Number of angles at the 2nd coarsest level 8, 16, 32
HOG Number of blocks (width x height) 3x3,5%x5
Number of orientation bins 8,16
Normalization None, L2-norm
HGD Number of regions 2,4,8
Number of orientation bins 8, 16, 32

Normalization

None, L2-norm, Maximum

without computing any image descriptors from the patches,
(2) standalone image descriptors, where the image descrip-
tors are the only predictors of the classifier, and (3) the image
descriptors together with clinical data. The evaluation mea-
sure was the Area Under the Curve of the Receiver Opera-
tor Characteristic (AUC). Resampling without replacing was
performed 50 times for each view (MLO and CC) result-
ing in 100 runs per experiment to provide different splits
across training and test sets, with 80 % of the cases randomly
selected for training the classifier, and the remaining 20 %
used for test. The two views were trained and tested inde-
pendently to prevent biasing results and finally the AUCs
from both views were merged resulting in a total of 100 eval-
uations per experiment. This experiment was done for both
DDSM and BCDR-FO1 data sets, for all descriptors and for
all classifiers.

An additional experiment was performed where the
descriptors were evaluated in two subsets of the orig-
inal data sets: one with only the lesions that included
masses, and another with only the lesions that contained
calcifications. For compensating the subsets’ unbalanced
number of benign and malignant cases, instances were
reweighted in the training stage according to the ratio
between the less and the most represented class, guaran-
teeing equal contribution of each class when training the
classifier.

For each descriptor, several parameter combinations were
explored. Table 1 details the values tested for each para-
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meter, which were based on the literature and on empirical
tests.

When comparing descriptors, the best combination of
parameters’ values and classifier was used. Comparisons
were based on the median AUC of the 100 runs (mAUC) and
were supported by Wilcoxon signed rank tests to determine
whether differences have statistical evidence (p < 0.05).
A nonparametric test was preferred to a parametric, as sug-
gested by [46], since nonparametric tests do not assume nor-
mal distributions or homogeneity of variance.

Results
Comparison of descriptors by type of lesion

Results are first presented for the data sets containing all types
of lesions and then for masses and calcifications subsets.
Table 2 shows results for the median run of all experiments.
Boxplots with the results of the 100 runs are available on
Online Resource 2.

All types of lesion

The standalone clinical data significantly outperformed all
the standalone image descriptors on the DDSM data set
(p < 0.001), scoring mAUC=0.853. The best stand-
alone image descriptor was GLRL (mAUC = 0.743) with no
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Table 2 Classification performance (median AUC) of the standalone clinical data and of the image descriptors (standalone and combined with

clinical data)

Data set Standalone Combined Image descriptors
clinical data  with clinical
data IS HM M Zer Har GLRL GLDM Gab Wav Curvn HOG HGD
All Lesions
DDSM sample 0.853 No 0.715 0.691 0.667 0.691 0.736 0.743 0.683 0.725 0.731 0.712 0.729 0.736
Yes 0.868 0.860 0.859 0.864 0.857 0.862 0.845 0.854 0.860 0.865 0.848 0.851
BCDR FO1 0.712 No 0.637 0.614 0.691 0.648 0.710 0.654 0.641 0.712 0.719 0.705 0.739 0.825
Yes 0.766 0.765 0.770 0.754 0.784 0.713 0.743  0.788 0.776 0.781 0.765 0.817
Masses
DDSM sample 0.867 No 0.707 0.667 0.647 0.675 0.718 0.733 0.683 0.711 0.720 0.703 0.707 0.732
Yes 0.890 0.882 0.887 0.890 0.885 0.879 0.880 0.878 0.884 0.887 0.877 0.883
BCDR FO1 0.829 No 0.670 0.648 0.681 0.740 0.765 0.688 0.695 0.764 0.768 0.712 0.788 0.860
Yes 0.844 0.830 0.841 0.833 0.876 0.799 0.823 0.848 0.849 0.843 0.841 0.894
Calcifications
DDSM sample 0.807 No 0.733 0.754 0.700 0.718 0.774 0.764 0.695 0.766 0.773 0.729 0.717 0.706
Yes 0.799 0.779 0.787 0.791 0.797 0.787 0.769  0.803 0.792 0.783 0.764 0.777
BCDR FO1 0.725 No 0.711 0.704 0.728 0.617 0.793 0.694 0.683 0.790 0.765 0.756 0.710 0.778
Yes 0.790 0.768 0.783 0.741 0.815 0.737 0.728  0.815 0.801 0.800 0.747 0.783
Number of wins 2 0 0 1 3 2 0 3 2 0 0 8

The highest score of each scenario is highlighted at bold, and scores with no evidence of differences to the highest (p < 0.05) are underlined. The
last row shows the total number of times each descriptor achieved the highest (or comparable to highest) score
IS intensity statistics, HM histogram measures, /M invariant moments, Zer Zernike moments, Har Haralick features, Gab Gabor filter banks,

Wav wavelets, Curv curvelets

evidence of significant differences to HGD (mAUC =0.736,
p = 0.439), while significantly outperforming the remainder
descriptors (p < 0.05). When combining clinical data with
image descriptors, 4 of the 12 descriptors did not show statis-
tical evidence of outperforming the standalone clinical data,
namely GLDM, Gabor Filters, HOG, and HGD. The high-
est result was achieved by intensity statistics combined with
clinical data (mAUC =0.868), significantly outperforming
the remainder (p < 0.002).

On the BCDR-FO1 data set, the standalone clinical data
had a performance of mAUC =0.712 and were significantly
outperformed by HGD (mAUC=0.825, p < 0.001) and
HOG (mAUC=0.739, p < 0.001). The HGD descriptor
was clearly superior to the remainder (p < 0.001) with a
difference on mAUC of 0.085 when compared to HOG, the
second best descriptor. HGD was the only descriptor that
did not significantly alter its standalone performance when
combining with clinical data (p = 1.000) and remained
to be the best, significantly outperforming the remainder
descriptors (p < 0.009). GLRL combined with clini-
cal data was not able to outperform standalone clinical
data.

Overall, HGD was the only descriptor that scored best
(or comparable to best) on both DDSM and BCDR-FO01 data
sets, with 3 wins out of 4.

Masses

Once again, the standalone clinical data significantly outper-
formed all the standalone image descriptors on the DDSM
data set (p < 0.001), scoring mAUC = 0.867. As in the pre-
vious experiment, the best standalone image descriptor was
GLRL (mAUC =0.733), with no statistical evidence of dif-
ferences to HGD (mAUC=0.732, p = 0.492), while sig-
nificantly outperforming the remainder (p < 0.030). When
combining clinical data with image descriptors, all the image
descriptors significantly outperformed the standalone clini-
cal data (p < 0.001) and the highest score was achieved by
Intensity statistics with mAUC =0.890, with no statistical
evidence of differences to Zernike moments (mAUC = 0.890,
p = 0.213) and HGD (mAUC=0.883, p = 0.248).

On the BCDR-FO01 data set, the standalone clinical data
had a performance of mAUC =0.829 and were only out-
performed by HGD (mAUC=0.860, p < 0.001). When
combining clinical data with image descriptors, four descrip-
tors (intensity histograms, Zernike, GLRL and GLDM) did
not show evidence of increasing the performance of stand-
alone clinical data. All the remainder descriptors outper-
formed clinical data (p < 0.028), with HGD being the best
(mAUC =0.894). HGD performance was significantly supe-
rior to all the remainder (p < 0.024).
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Fig. 5 Rankings of the descriptors for all the evaluated scenarios

Overall, HGD scored best (or comparable to best) on both
DDSM and BCDR-FO1 data sets on all experiments with
masses (four out of four wins).

Calcifications

Like in the previous experiments, the standalone clinical
data significantly outperformed all the standalone image
descriptors on the DDSM data set (p < 0.001), scor-
ing mAUC=0.807. The best standalone image descriptor
for classifying calcifications was Wavelets (mAUC =0.774)
with no significant differences to Haralick (mAUC =0.773,
p = 0.635). In contrast with the previous experiments, when
clinical data were combined with image descriptors, none of
the combinations was able to significantly outperform the
standalone clinical data. In fact, with the exception of Gabor
Filters, all the descriptors have significantly decreased the
performance of standalone clinical data (p < 0.022).

On the BCDR-FO01 data set, the standalone clinical data
had a performance of mAUC=0.725 and were signifi-
cantly outperformed by several standalone image descrip-
tors, namely Haralick, Gabor Filters, HGD, Wavelets, and
Curvelets (p < 0.009). Haralick scored highest (mAUC
=0.793), but with no evidence of statistical differences to
Gabor Filters, HGD, and Wavelets. All the descriptors with
the exception of GLDM and GLRL outperformed the stand-
alone performance of clinical data when combined with
it (p < 0.002). The descriptors that combined with clin-
ical data scored highest were Gabor Filters and Haral-
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ick, both with mAUC=0.815, outperforming the remainder
(p < 0.022).

Overall, three descriptors performed best (or comparable
to best) on both DDSM and BCDR-FO1 data sets, namely
Gabor Filters, Haralick features, and Wavelets with 2 to 3
wins out of 4.

Overall observations

In general, results for the DDSM data sets have lower dis-
persion than the results for BCDR-FO1 (Online Resource 2),
which was expected since the number of instances used to
train classifiers in DDSM is about 5times higher. In addi-
tion, the standalone performance of clinical data is higher
in the DDSM sample, which was also predictable due to
the higher number of instances and clinical attributes in
DDSM.

On 96 % of the cases, image descriptors have significantly
increased their performance when combined with clinical
data. This combination besides boosting performance also
alters the relative performance of the descriptors. This is
particularly visible on intensity statistics (Fig. 5), which
achieved top ranks when combined with clinical data on
the experiments of the DDSM data set, despite its mod-
est standalone performance. The opposite behaviour is also
observable with, for instance, HGD classifying all lesions
and GLRL classifying masses on the DDSM (top rankings
when standing alone; outperformed when clinical data are
available).
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The proposed descriptor, HGD, has shown to be superior
to the remainder descriptors tested here for mass classifica-
tion. Its power is particularly observable in the BCDR-FO1
data set where its performance stands out, while in the DDSM
sample, the standalone performance of HGD is comparable
to best. Inspection of the images of both data sets shows that
the image quality of BCDR-FO01 is superior to DDSM, mak-
ing masses more distinct from the surrounding tissue, which
is favourable to gradient-based descriptors, such as HGD
and HOG. This is supported by the standalone performance
of HOG when classifying masses, which achieves a strong
second place on BCDR-F01, while dropping to seventh on
DDSM (Fig. 5). Comparing the performances of HGD and
HOG, it s visible that the use that HGD makes of the gradient
is advantageous when classifying masses, with HGD always
outperforming HOG on both data sets, despite HGD having
a more compact representation.

Looking at the rankings distribution of the descriptors
(Fig. 5), it is observable that both Wavelets and Haralick fea-
tures are versatile descriptors, having the lowest dispersion
while achieving high ranks. Haralick features were shown to
be especially suitable for classifying calcifications, achiev-
ing top ranks on both data sets, followed by Gabor filters and
then Wavelets.

Regarding the performance of the classifiers, results show
that the selection of the classifier is dependent on the data
set (Fig. 6). On the data sets of DDSM, the best classifiers
for standalone descriptors were SVM and RF, scoring 58 and
44 % of wins, respectively. RF rises to first place when clin-
ical data are available, scoring 56 % of the wins. On BCDR-
FO1, wins are more uniformly distributed by classifiers when
not using clinical data, with RF, SVM, LMT, and NB scor-
ing 61, 58, 53, and 42 % of wins, respectively. When clinical
data are combined with the image descriptors on BCDR-
FO1, SVM and LMT clearly dominate with 83 and 72 % of
wins. On average, there were 1.8 wins per experiment per
descriptor.

Discussion

The importance of clinical data is well demonstrated in the
experiments reported here. Different kinds of image descrip-
tors were used to provide input to Machine Learning Clas-
sifiers (MLC) for classifying breast lesions, and on 96 % of
the cases, there was statistical evidence that feeding clinical
data together with the image descriptors improves classifica-
tion results. Moreover, in the DDSM sample, MLC trained
only with clinical data always provided better results than any
MLC trained only with image descriptors. This is expected
due to the descriptive and discriminant properties of the BI-
RADS tags included in the clinical data of DDSM, and it was
also observed in previous studies (e.g. [47]). Nevertheless,

it was also shown that image descriptors can significantly
improve the discriminant power of these tags, capturing addi-
tional features of the lesions. Increments of performance are
~0.02 in the median AUC and are also accompanied by a
decrease in the variance of performance. Only in the calci-
fications data set of DDSM was not possible to show that
image descriptors may contribute to improve the classifica-
tion performance of breast lesions.

The experiments in the BCDR-FO1 sample, where clinical
data are limited to age, breast density, and observed abnor-
malities, also show the importance of using such data, with
the performance of MLC based in image descriptors being
almost always significantly improved. Here, some image
descriptors were capable of outperforming clinical data, and
most of the descriptors were able to significantly improve the
performance of clinical data when combined with it.

Results show that the relative performance of the stand-
alone image descriptors changes when clinical data are
added. Descriptors that have inferior performance when
standing alone may be highly ranked when combined with
clinical data. Therefore, a special caution is advised when
generalizing conclusions about the standalone performance
of image descriptors to scenarios where other data are avail-
able (e.g. clinical).

Results indicate that most of the descriptors are partic-
ularly suitable for a given type of lesion. HGD, the new
descriptor proposed here, shows best performance on masses
and when all types of lesions are present, on both DDSM and
BCDR-FO1. This was expected since HGD describes shape
through the gradient of the image, and the shape of the lesion
is a demonstrated predictor for diagnosis of masses. The new
formulation proposed here based on concentric regions and
on the concept of gradient divergence results in a compact
descriptor that is naturally invariant to rotation and that effec-
tively captures patterns related to the diagnosis of masses.
The superiority of HGD to HOG was clearly demonstrated on
all scenarios including masses, and in the BCDR-FO1 (where
masses have good visibility/definition), the difference to the
remaining descriptors is clear.

Texture descriptors, namely Haralick features and Gabor
filters, have shown to be more adequate for classifying cal-
cifications. This agrees with a study in a different sample
of DDSM (1,715 cases) focused on evaluating descriptors
for classifying microcalcifications [47], where the authors
also concluded that texture descriptors were the most suit-
able, with features based on the co-occurrence matrix hav-
ing the most discriminative power scoring AUC=0.776
for fatty tissues and AUC =0.636 for dense tissues. Keep-
ing in mind that the study reported here focus on all cal-
cifications rather than only on microcalcifications, Haral-
ick features scored 0.774 in the DDSM sample and 0.793
in the BCDR sample, for all breast densities, which com-
pares well with [47]. Wavelets and Haralick features were
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Fig. 6 Frequency of wins by classifier for each data set. A classifier gets one win for each descriptor where it performs best or when there is no

statistical evidence (p < 0.05) of differences to the best classifier

the most versatile descriptors, showing to be suitable for
both masses and calcifications on both DDSM and BCDR,
although being far from the standalone performances of HGD
when masses are present. Based on another study [27] where
wavelets and curvelets are compared for breast lesion clas-
sification, it would be expected that curvelets would out-
perform wavelets. However, in [27], fixed-size regions were
extracted that were defined big enough to enable using the
same number of curvelet levels on all of them. In the exper-
iments described here, the region over which descriptors are
calculated depends on the size of the lesion, and for small
lesions, it was not possible to compute the coefficients of the
curvelets for all the levels, resulting in several missing values
for most of the coefficients.

Descriptors describing the intensity were the group
with the worst standalone performance, which was pre-
dictable since there is not a clear relation to properties
of the lesions associated with breast cancer diagnosis.
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Nevertheless, Intensity statistics and Zernike moments achie-
ved top rankings when combined with clinical data on the
DDSM data set, showing that even simple descriptors can
complement clinical data and significantly increase perfor-
mance. However, this was not observed on BCDR-FO1 where
the number of clinical attributes is much lower, and thus, per-
formance strongly relies on the capacity of the image descrip-
tors to differentiate benign from malign lesions.

Study limitations

It is out of the scope of this study providing insight into
the biophysical basis of the image features. Further inves-
tigation on this matter would help support and generalize
conclusions regarding the performance of the descriptors on
different data sets. Here, reliability on results and conclu-
sions was accomplished by running a high number of runs
per experiment, selecting parameters using cross-validation
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and utilizing two very distinct data sets with different image
resolution, pixel-depth, radiography equipment, number of
instances, and clinical descriptors. Despite this care, it is not
guaranteed that conclusions from this study may be general-
ized to other mammography data sets with different proper-
ties. Namely, conclusions are only valid for the sets of clinical
and image descriptors explored here.

Conclusion

The contributions of this paper are twofold: a new image
descriptor is proposed, histograms of gradient divergence
(HGD), and the performance of several image descriptors
diagnosing breast cancer is evaluated under the presence
and absence of clinical data. This work demonstrates that
combining image features and clinical data is advantageous.
Moreover, it shows that the best standalone image descriptors
do not necessarily remain the best when combined with clin-
ical data. This study also shows that there are descriptors that
have comparable to best performance on two distinct breast
cancer mammography-based data sets, which differ on image
resolution, clinical attributes and number of cases. In spe-
cific, HGD has shown promising results evaluating masses.
The description of patches through deviations of the gradi-
ent to a convergence pattern allowed developing a compact
descriptor that is naturally invariant to rotation and that can
capture properties about the shape of the object contained in
the patch. The success of HGD in the experiments reported
here makes us believe that it may also be successful in
other applications of medical imaging and computer vision in
general.

Future work includes determining whether combining dif-
ferent image descriptors may improve classification perfor-
mance, also in the presence and absence of clinical data.
Possible research paths include the use of voting systems or
combining attributes from several descriptors followed by a
feature selection algorithm.
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