
72

An Evaluation of Java Code Coverage Testing Tools
Elinda Kajo-Mece

Faculty of Information Technology
Polytechnic University of Tirana

ekajo@fti.edu.al

Megi Tartari

Faculty of Information Technology
Polytechnic University of Tirana

mtartari@fti.edu.al

ABSTRACT

Code coverage metric is considered as the most important metric

used in analysis of software projects for testing. Code coverage

analysis also helps in the testing process by finding areas of a

program not exercised by a set of test cases, creating additional

test cases to increase coverage, and determine the quantitative

measure of the code, which is an indirect measure of quality.

There are a large number of automated tools to find the coverage

of test cases in Java. Choosing an appropriate tool for the

application to be tested may be a complicated process. To make it

ease we propose an approach for measuring characteristics of

these testing tools in order to evaluate them systematically and to

select the appropriate one.

Keywords

Code coverage metrics, testing tools, test case, test suite

1. INTRODUCTION
 The levels of quality, maintainability, and stability of software

can be improved and measured through the use of automated

tools throughout the software development process. In software

testing[5][6],software metrics enable the appropriate quantitative

information, to support us in the decision-making on the most

efficient and appropriate testing tools for our programs.

 The most mentioned metric for assessment in the software field

are the Code Coverage metrics. These metrics are considered as

the most important metric, often used in the analysis of software

projects for the testing process.

 Today we have available several tools that perform this

coverage analysis, but we will select the most appropriate tools,

which are Java open-source code coverage tools like Emma and

CodeCover.

 To conclude with, according to some criteria, that we will take

into consideration for the evaluation of this code coverage tools,

we will judge for the most efficient tool to be used by the software

testing team. These criteria are: Human-Interface Design (HID),

Ease of Use (EU), Reporting Features (RF), Response Time (RT).

 In Section 2 we will mention the coverage metrics [9] used in

our experiments; we will shortly explain the tools [8] we have

selected to perform the code coverage analysis for our tests;

describe briefly how JUnit framework is implemented in each of

these tools [10] [11], since JUnit is our experimental

environment, where we program unit tests for our software and

the last part of this section consists of selecting some criteria

based on which we will then judge which of the tools is more

effective to use in the testing process. In Section 3 we will

summarize the results of our experiments for each tool and

analyze them to bring us in the conclusion which of the tools is

more effective. In Section 4 we give the conclusions of our work.

2. SELECTED TOOLS AND EVALUATION

CRITERIA

 Among various automated testing tools [8], we have selected

two tools to perform the Code Coverage Analysis [1][2][3], as a

manner to evaluate the efficiency of our tests we created in the

JUnit framework [4][7]. In this paragraph we will summarize

briefly the main features of these to: EMMA and CodeCover

coverage tools. The main reasons for which we choose them are:

1. These tools are 100 % open-source.

2. These tools have a large market share compared with the other

open source coverage tools.

3. These have multiple report type format.

4. These tools are for both open-source and commercial

development projects.

EMMA Tool

 We used EclEmma 2.1.0, a plug-in for Eclipse, which is our Java

development environment. Emma distinguishes itself from other

tools by going after a unique feature combination: development

while keeping individual developer's work fast and iterative. Such

a tool is essential for detecting dead code and verifying which parts

of an application are actually exercised by the test suite and

interactive use. The main features of Emma, which represent its

advantages are: Emma can instrument classes for coverage either

offline (before they are loaded) or on the fly (using an

instrumenting application class loader); Supported coverage types:

class, method, line, basic block; Emma can detect

when a single source code line is covered only partially; Output

report types: plain text, HTML, XML.

CodeCover Tool

 CodeCover is an extensible open source code coverage tool. It

provides several ways to increase test quality. It shows the quality

of test suite and helps to develop new test cases and rearrange test

cases to save some of them. So we get a higher quality and a better

test productivity. The main features of CodeCover are: Supports

statement coverage, branch coverage, loop coverage and strict

condition coverage; Performs source instrumentation for the most

accurate coverage measurement; CLKI interface, for easy use from

the command line; Ant interface, for easy integration into an

existing build process; Correlation Matrix to find redundant test

cases and optimize your test suite; The source code is highlighted

according to the measured date.

 The testing environment we used to project the set of tests for

our input programs was JUnit 3.

 We choose as input programs six sorting algorithms: Bubble

Sort, Selection Sort, Insertion Sort, Heap Sort, Merge Sort, Quick

Sort. The main reason why we choose these algorithms is the

facility we face on computing the Cyclomatic Complexity (CC),

which is crucial on defining the number of test cases needed to

achieve a good coverage percentage of the program code. To

proceed in the testing process for each of this sorting algorithm, we

first build Java programs for each of them.

BCI’12, September 16–20, 2012, Novi Sad, Serbia.

Copyright © 2012 by the paper’s authors. Copying permitted only for private and

academic purposes. This volume is published and copyrighted by its editors.

Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,

University of Novi Sad.

73

 To achieve our goal we chose some criteria, based on which we

will evaluate which testing tool is the most efficient. So we chose

Human Interface Design (HID) as an indicator of the level of

difficulty to learn the tool's procedures on purchase and the

likelihood of errors, in using the tool over a long period of time;

Ease of Use (EU) to judge if the tool is easy to use to ensure

timely, adequate, and continual integration into the software

development process; Reporting Features (RF) to show the degree

of variety regarding the formats that tools use to report their

coverage results; Response Time (RT) used to evaluate the tool's

performance with regards to response time. In addition to these

criteria, we will also evaluate the number and quality of test cases

to judge for the most appropriate tool for the software testing

process.

3. EXPERIMENTS AND ANALYSIS
 In this section we will summarize the experiments we have

performed on the selected algorithms. Initially, we built the Java

programs for each of our sorting algorithms. Then we designed

the set of testing units by using the JUnit testing framework [7] in

Java. Finally we performed the Analysis of Code Coverage, to

evaluate these tests through the selected code coverage tools. This

analysis calculates the coverage percentage, that serves as an

indirect measure of the quality of tests. Based on these

measurements, we can then create additional test cases [4][7]to

increase code coverage.

 In table 1 we summarized the quantitative information regarding

our experiments. In the last column we show the number of final

test cases we built for each of the Java programs of the sorting

algorithms. We used the term "final test cases" because we

continuously improved our coverage results by increasing the

number of test cases, until the addition of another test case does

not anymore affect the coverage result, that means we have

achieved a high level of code coverage.

Table 1: Experimental Program Details

LOC-Lines of Code,NOM-Number of Methods,NOC-Number

of Classes,CC-Cyclomatic Complexity

Based on these coverage results and also the computed criteria

chosen for evaluation, we performed the analysis process to define

the best tool.

In the figures below we see the coverage reports produced after

the execution of Emma and CodeCover for two cases: 1) When

we projected a small set of tests; 2) When we projected a larger

set of tests in order to improve quality of the testing process. To

show briefly the experimental procedure we followed to achieve

our objective, we will take as an example the experimental results

for Quick Sort algorithm. For Quick Sort we initially projected

only 3 test cases (Fig.1). The CodeCover tool produced low BC

(Branch Coverage) and LC (Loop Coverage) coverage metrics of

66.7 %. This result contradicts the result taken after the execution

of Emma tool on the same set of test cases, which is relatively

high with an average of 87 % (Fig.1). This contradict, led us to

increase the number of test cases for a higher quality of tests. For

Quick Sort we built 4 more test cases (Fig.2), which produced a

maximum result of 100 % code coverage with both tools.

Figure 1: Emma Coverage report initially with three test

cases for QuickSort.

Figure 2: CodeCoverage report finally with seven test cases

for QuickSort.

Figure 3: Code Coverage report after execution of

CodeCover initially with three test cases for QuickSort.

Figure 4: Code Coverage report after execution of CodeCover

finally with seven test cases for QuickSort.

During our experiments, we noticed that this contradict, that

relates to the fact that for the same set of test cases the execution

of Emma gives us a higher coverage tool than the result reported

from CodeCover, we concluded that CodeCover gives a more

accurate information regarding the code coverage.

Input

Programs

LOC NOC NOM CC No.of

TestCase

Bubble 53 2 3 4 11

Selection 55 2 3 4 11

Insertion 53 2 3 4 11

Heap 84 2 11 13 16

Merge 67 1 3 11 9

Quick 63 1 6 11 7

74

In Section 2, we mentioned the Correlation Matrix as a way to

find redundant test cases, which does not increase the coverage

percentage. It shows a kind of dependency relationship between

test cases of the same input program. In JUnit3 testing framework,

dependency between tests is not supported, that is why we should

always try to avoid dependency between test cases. In the figure

below is shown the Correlation Matrix for Quick Sort.

Figure 5: The Correlation Matrix produced by CodeCover for

QuickSort with seven test cases.

From the figure above, we see that blue squares (meaning that

there is 100 % dependency between test cases), exist only in the

case where the same number of test case intersect. So we can say

that we have proceeded according to the main rule of JUnit,that is

to avoid dependency between test cases.

Below we will show by figures the results of the Code Coverage

Analysis performed by Emma and CodeCover tools for the other

five input sorting programs.

For Bubble, Selection and Insertion Sort we initially projected 7

test cases, then in order to achieve a relatively high coverage we

projected 11 test cases. The coverage result report produced by

CodeCover for BubbleSort is shown below for both cases.

Figure 6: Code Coverage report after execution of CodeCover

initially with seven test case for BubbleSort.

From the figure above, we see a low percentage of 53.3 % for the

LC (Loop Coverage) metric. That is why we finally projected 11

test cases to increase this low percentage as shown in the figure

below, where the new LC metric is 86.7 %, which is considered a

high coverage percentage. By improving our experimental work

on the testing process repeatedly we came into the conclusion that

to achieve a high coverage percentage the secret is to project one

test case for each functional unit of the program, and to avoid

programming long test cases that try to cover a considerable part

of the program.

Figure 7: Code Coverage report after execution of

CodeCover finally with eleven test cases for BubbleSort.

We haven't showed Emma coverage report, because it is

relatively high since the first case, where we projected only 7

tests.

The results gained for SelectionSort are 46.7% for LC metric in

the case of 7 tests and 80 % in the final case of 11 test cases; for

Insertion are 60% for LC metric in the first case and 86.7% for

the final case. So far, we see that in general the most

"problematic" coverage metric is the Loop Coverage metric.

This happens mainly because of the for loop, that requires more

test cases to be covered. This is shown in fig.10, where yellow

signifies the partial coverage of the for loop.

Figure 8: A partial coverage of a for loop, crucial for the Lool

Covrage metric (80 %).

For MergeSort we initially projected 4 test cases, which according

to CodeCover produced a low LC indicator of 60 %,. Then we

extended this set of test cases to 7test cases, gaining a new

percentage of LC of 86.7 % (the reason why it is not 100 % is

because there are many loops in the program, not only the for

loops, but also while).

For Heap Sort we initially projected 8 test cases, giving a LC

metric of 33.3 % and a CC metric (Condition Coverage) of 80

%.Then we improved this set of tests by extending it to 16 test

cases, that improved considerably both the LC and CC metric to

respectively : 88.9 % and 100 %.

Through the graph below we show the improvements we achieved

in our experiments until we gained a high code by showing the

initial result we gained when we projected a small set of test cases

and the final result after we increased the number of test cases for

a higher coverage.

75

Figure 9: The percentage of improvement in code coverage

achieved by increasing the number of test cases for the six

sorting programs.

In table 2, we have summarized the results produced by Emma

and CodeCover tools after performing the Code Coverage

Analysis on each of the input programs (the sorting algorithms).

Table 2: Analysis & Implementation of Emma and CodeCover

Using Various Sort Programs

SC-Statement Coverage, BLC-Block Coverage, BC-Branch

Coverage, LC-Loop Coverage, MC-Method Coverage, CC

Condition Coverage, FC-File Coverage, CLC-Class Coverage

After analyzing the code coverage results produced after the

execution of Emma and CodeCover on the various sorting

programs, we concluded that CodeCover gives a more accurate

coverage information than Emma. To complete the process of

evaluating the effectiveness of these testing tools, we will show

in table 3 the computed criteria [4] [5] selected to evaluate these

tools.

Table 3: Analysis of Tool Metrics

Based on these values (which we partially gained in their official

websites, as they are open-source tools), we judged that the best

and more effective tool to be used during the software testing

process is CodeCover.

4. CONCLUSIONS
Based on the results summarized in table 2, that shows achieved

code coverage metric reported from each tool, we conclude that

CodeCover tool reports a more accurate coverage information

than Emma, which does not supply us with sufficient information,

based on which we can judge over the quality of tests, that is why

we suggest the use of the CodeCover tool. CodeCover is more

efficient to perform the Code Coverage Analysis, because

through the detailed coverage analysis for each program method,

it allows us to define the unnecessary test cases, that does not

increase coverage of the program, affecting so negatively the

execution time of the test suite by decreasing it. We argued this

conclusion by taking as an example QuickSort, where for an

initial set of 3 test cases while Emma reported an average

coverage of 87%, CodeCover reported a low Loop Coverage of

66.7 %.The same fact was present in all our set of input sorting

programs. So in order to project a successful testing process for

our input programs, we should base on CodeCover coverage

reports, to decide whether it is necessary to increase the number

of test cases or not. During our experimental work, where we

continuously improved the testing process, we came into the

conclusion that the most problematic coverage metric is Loop

Coverage. This happens mainly because of the for loop, that

requires extra tests to be fully covered. So our coverage results

for all our input programs reached a Loop Coverage metric in the

range 46.7 % to 66.7%, which is considered very low. But not

only the Loop Coverage metric was responsible for low coverage

percentages in the beginning of our work, but also the manner in

which we projected our tests affects coverage result. So to

achieve a high code coverage, we have to avoid programming

long test cases that try to cover a considerable part of the

program, but instead we must project one test case for each

functional unit of the program. We arrive in the same conclusion

if we see table 3, that shows the computed criteria chosen to

completely evaluate the testing tools. From this table we infer that

the CodeCover tool is easy to use, has a very good response time

for every command given, has very good reporting features

compared with Emma tool.

5. REFERENCES
[1] Lawrance, J., Clarke, S., Burnett, M., and G. Rothermel. 2005. How

Well Do Professional Developers Test with Code Coverage

Visualizations? An Empirical Study. In Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric Computing

(September 2005).

[2] Tikir, M. M., and Hollingsworth, J. K. 2002. Efficient instrumentation

for code coverage testing. In Proceedings of the ACM SIGSOFT 2002

International Symposium on Software Testing and Analysis (Rome, Italy,

July 22-24, 2002).

[3] Cornett, S. 1996-2011. Code Coverage Analysis. Bullseye Testing

Technology.

[4] Beust, C., and Suleiman, H. 2007. Next Generation Java Testing:

TestNg and Advanced Concepts. Addison Wesley, 1-21, 132-150.

[5] Ammann, P., and Offutt, J. 2008. Introduction to Software Testing,

Cembridge University Press, 268-277.

[6] Sommerville, I. 2007. Software Engineering (8th edition).Harlow:

Addison Wesley, 537-565.

[7] JUnit Best Practices-Java World,

http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-junit.html

[8] Prasad, K.V.K.K. 2006. Software testing tools.

[9] Durrani, Q. 2005.Role of Software Metrics in Software Engineering

and Requirements Analysis. In Proceeding of IEEE ICICT First

International Conference of Information and Communication

Technologies. (August 27-28).

[10] EMMA: a free Java code coverage tool http://Emma.sourceforge.net

[11] CodeCover Tutorial

http://www.codecoveragetools.com/code_coverage_java.html

