
97

An evaluation of Java for numerical

computing

Brian Blount ∗ and Siddhartha Chatterjee

Department of Computer Science, The University of

North Carolina, Chapel Hill, NC 27599-3175, USA

Tel.: +1 919 962 1953; Fax: +1 919 962 1799;

E-mail: {bblount,sc}@cs.unc.edu

This paper describes the design and implementation of high

performance numerical software in Java. Our primary goals

are to characterize the performance of object-oriented nu-

merical software written in Java and to investigate whether

Java is a suitable language for such endeavors. We have im-

plemented JLAPACK, a subset of the LAPACK library in

Java. LAPACK is a high-performance Fortran 77 library used

to solve common linear algebra problems. JLAPACK is an

object-oriented library, using encapsulation, inheritance, and

exception handling. It performs within a factor of four of

the optimized Fortran version for certain platforms and test

cases. When used with the native BLAS library, JLAPACK

performs comparably with the Fortran version using the na-

tive BLAS library. We conclude that high-performance nu-

merical software could be written in Java if a handful of con-

cerns about language features and compilation strategies are

adequately addressed.

1. Introduction

The Java programming language [4] achieved rapid
success due to several features key to the language.
Java bytecodes are portable, which means that pro-
grams can be run on any machine that has an im-
plementation of the Java Virtual Machine (JVM).
Java provides garbage collection, freeing programmers
from concerns about memory management and mem-

ory leaks. The language contains no pointers and dy-
namically checks array accesses, which help avoid
common bugs in C programs. Because of such reasons,
Java is establishing itself as a language of choice for
many software developers.

Java is attractive to the scientific computing com-
munity for the very same reasons. However, several
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factors limit Java’s inroads into this community. First,
the performance of Java has been a continuous source

of concern. Many of the attractive features of Java

caused early interpreted versions of the JVM to per-

form poorly, especially when compared with compiled
languages like Fortran and C. Second, the absence of

a primitive complex type presents another obstacle, as

many numeric codes make extensive use of complex

numbers. Finally, several language features that make
numeric codes less cumbersome to write, such as op-

erator overloading and parametric polymorphism, are

absent in Java.

Despite these issues, we believe that Java may
be suitable for writing high-performance numerical

software. The problems discussed above can be par-

tially circumvented by careful programming tech-

niques. Furthermore, certain language features, such
as primitive complex types, may be included in future

versions of Java. To test our hypothesis that good per-

formance can be achieved in Java, we designed and

implemented JLAPACK, a proof-of-concept version of

LAPACK [3] in Java. LAPACK is a high-performance
Fortran 77 library that solves common linear algebra

problems. This library is well-suited for our study for

several reasons: it is a standard library accepted and

used by the scientific community; it is used to solve
common and useful problems; and it is highly opti-

mized, giving us a hard performance bound.

Our implementation of JLAPACK follows the For-

tran version closely in spirit and structure. However,
we did not write Fortran-style code in Java. JLA-

PACK employs object-oriented techniques such as in-

heritance, dynamic dispatch, and exception handling.

We use classes to represent vectors, matrices, and other
objects. We use exceptions to perform error handling.

For performance analysis, we executed our model us-

ing a fully compliant JVM, with bounds checking

and garbage collection enabled. JLAPACK performs
within a factor of four of the optimized Fortran version

for certain platforms and test cases.

The rest of the paper is organized as follows. Sec-

tion 2 discusses the LAPACK library in more depth,
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and lists the portions of the library we have imple-

mented in JLAPACK. Section 3 describes the design

of JLAPACK. Section 4 presents the performance re-

sults of JLAPACK. Section 5 describes related work.

Finally, Section 6 presents conclusions and directions

for future work.

2. LAPACK

LAPACK [3] is a library of Fortran 77 routines for

common linear algebra problems. The library contains

driver routines, which are used to solve standard types

of problems, and auxiliary routines, which are used to

perform subtasks and provide common functionality.

LAPACK provides driver routines for systems of lin-

ear equations, linear least square problems, eigenvalue

problems, and singular value problems. Driver routines

handle both real and complex numbers, with versions

for both single and double precision representations.

There are specialized routines for different types of

matrices, such as banded matrices, tridiagonal matri-

ces, and symmetric positive-definite matrices.

LAPACK uses the Basic Linear Algebra Subrou-

tines (BLAS) [13–16,24,25] for many of its time-

critical inner loops. Most vendors of high perfor-

mance machines supply BLAS libraries with machine-

specific optimizations, called native BLAS. Generic

Fortran 77 BLAS code is available and is distributed

with LAPACK. For JLAPACK, we provided two ver-

sions: one implemented in Java, and the other employ-

ing vender-supplied native BLAS. The latter version

provides Java wrappers around the Fortran BLAS rou-

tines, using the native method call mechanism of

Java. Bik and Gannon [7] have shown that native meth-

ods can be used to achieve good performance, and our

findings support their results.

LAPACK uses block-oriented algorithms for many

of its operations. A block-oriented algorithm is one

that operates on blocks or submatrices of the original

matrix. This provides more locality of reference and

allows LAPACK to use Level 3 BLAS routines. The

optimal block size varies based on both the problem

size and on the architecture of the machine used. Both

LAPACK and JLAPACK allow the block size to be set

explicitly.

Two different types of driver routines are provided

for solving systems of linear equations in LAPACK.

One driver, the simple driver, solves the system AX =

B by factoring the coefficient matrix A and overwrit-

ing the right hand side B with the solution X . The

other driver, the expert driver, provides additional func-

tionality such as solving ATX = B or AHX = B,

estimating the condition number of A, and checking

for near singularity. Because of time constraints, JLA-

PACK currently implements only the simple linear

equation solver for general matrices (i.e., xGESV and

the routines they require).

3. JLAPACK

JLAPACK and JBLAS are our Java implementations

of the LAPACK and BLAS libraries, currently imple-

menting the subset of the subroutines in both libraries

that are used by the simple general equation solver.
We follow the Fortran version in spirit and in struc-

ture, with every Java method corresponding to a For-

tran subroutine. We retain the Fortran naming conven-

tions, providing implementations for four data types:

single precision real (S), double precision real (D), sin-

gle precision complex (C), and double precision com-

plex (Z).

Another project, the F2J [18] project, is also gen-

erating LAPACK and BLAS libraries in Java. They
have developed a Fortran to Java translator, and are us-

ing this translator to transcribe the Fortran LAPACK

source code into Java source code. This approach is

very different from ours, as it does not take design

issues into account when generating Java LAPACK

code. We compare the performance of our version with

the version generated by their translator in Section 5.5.

Several goals influenced the design of JLAPACK.

Some of these goals are well established in object-
oriented design [20]; others are specific to Java.

(1) Encapsulate all of the information specifying a
vector or matrix into a class. This information

fits into two categories: the data and its shape.

This information should be kept orthogonal.

(2) Store matrix data in a one-dimensional array.

The reasons for this are twofold. First, two-

dimensional arrays in Java are not guaranteed to

be contiguous in memory, so a one-dimensional

array provides more locality of reference. The

second reason involves bounds checking. Ac-
cessing an element in a two-dimensional array

requires bounds checks on both indices, dou-

bling this overhead.

(3) Allow matrices and vectors to share data. A vec-

tor object that represents a column of a matrix

should be able to use the same data as the matrix

itself.
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(4) Limit the number of constructor calls. Ex-

cessive memory allocation is usually a large

source of overhead in naive object-oriented pro-

grams. Gratuitous memory allocation should be

avoided as much as possible.

In the rest of this section, we discuss in detail the

design of JLAPACK and how it achieves these goals.

3.1. The components of JLAPACK

Our design contains three separate components: the

JLASTRUCT package, the JBLAS package, and the

JLAPACK package.

(1) The JLASTRUCT package supplies the vector,

matrix, and shape classes used by the library.

These are discussed in detail in Section 3.2.

(2) The JBLAS package contains the BLAS library

code. It contains four classes, one for each data

type. Because there are no instance members

in this class, all the methods are static. Each

method in the JBLAS classes corresponds to a

subroutine in the BLAS library.

(3) The JLAPACK package contains the code for

the general equation solvers. Like the JBLAS

package, there are separate classes for the four

data types and all methods in these classes are

static. Again, each method in the JLAPACK

classes corresponds to a subroutine in the For-

tran 77 version of LAPACK.

3.2. The Vector, Matrix, and Shape classes

In Fortran 77, information about the shapes of vec-

tors and matrices must be represented with multiple

scalar variables, and be passed as extra arguments to

every routine manipulating vectors and matrices. The

vector and matrix classes in our design encapsulate all

this information into the abstraction of shape. There

are vector and matrix classes for each of the four data

types.

The class JLASTRUCT.Vector implements two

methods.

(1) double eltAt(int i): This returns the ith element

in the vector.

(2) void assignAt(double val, int i): This stores val

as the ith element of the vector.

The class JLASTRUCT.Matrix implements these

methods.

(1) double eltAt(int i, int j): This returns the ele-

ment at location (i, j) of the matrix.

(2) void assignAt(double val, int i, int j): This

stores val at location (i, j) of the matrix.

(3) void colAt(int i, Vector v): This aliases the vec-

tor v to the ith column of the matrix.

(4) void rowAt(int i, Vector v): This aliases the

vector v to the ith row of the matrix.

(5) void submatrix(int i, int j, int r, int c, Matrix

m): This aliases the matrix m to the submatrix

of size (r, c) starting at location (i, j).

These classes contain two members: data and shape.

The data member is a one-dimensional array of the ap-

propriate type that is guaranteed to contain all the el-

ements of the vector or the matrix. Note that the ele-

ments of the vector or matrix do not have to be dense

within this array. The shape member of a vector is

of type JLASTRUCT.VShape, and the shape mem-

ber of a matrix is of type JLASTRUCT.MShape. The

classes JLASTRUCT.VShape and JLASTRUCT.

MShape are subclasses of the abstract class JLA-

STRUCT.Shape. The shape object defines the layout

of the vector or matrix elements in the data array.

An object of type JLASTRUCT.VShape contains

the following members.

(1) start: The index in data of the first element of

the vector.

(2) len: The number of elements in the vector.

(3) inc: The step size in data between any two con-

secutive elements of the vector.

Thus, element i of a vector resides in slot j of its

data array, where

j = start + i ∗ inc. (1)

Note that elements of a vector are evenly spaced in the

data array.

An object of type JLASTRUCT.MShape contains

the following members.

(1) start: The index in data of the first element of

the matrix.

(2) rows: The number of rows in the matrix.

(3) cols: The number of columns in the matrix.

(4) ld: The leading dimension of the array. This is

the distance in data between the first elements

in two consecutive columns.

Therefore, element (i, j) of a matrix resides in loca-

tion k of its data array, where
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Fig. 1. Sharing of data among multiple matrices and vectors.

k = start + ld ∗ j + i. (2)

Note that the matrix is stored in column-major order

and is addressed with zero-based indexing of arrays.

This fits the Fortran model, allowing JLAPACK to use

the same optimizations as the Fortran version and en-

abling native BLAS to be incorporated easily.

This implementation allows objects to share data ar-

rays. The example in Fig. 1 demonstrates how this may

occur. The 4 × 4 matrix A uses all 16 elements of its

data array. Matrix B is assigned to be a submatrix of

A. It shares the same data object as A, but only uses

4 elements of the array. Vector C represents one row

of matrix B. Again, it shares the data object with A

and B, but only uses 2 elements. Note how the shape

parameters specify exactly where the data is stored.

The ability to share member objects improves the

performance of methods used to obtain rows, columns,

and sub-matrices of matrices. We will use the colAt()

method as an example, as its implementation applies to

the other two. A naive implementation of this method

would allocate new memory for the vector and new

memory for its shape. Instead, the colAt() takes as

a parameter a vector that has already been allocated.

Then, all the method does is supply the vector’s data

member (by giving it a reference to its own data), and

update its shape object. This approach eliminates un-

necessary copying of data elements and allows reuse

of storage for temporary vectors and matrices.

Boisvert et al. [8] discuss an implementation for nu-

merical libraries in Java that does not encapsulate vec-

tors and matrices in classes. They use two-dimensional

arrays to represent matrices, and store information de-

scribing the shape of vectors and matrices in local vari-

ables, similar to the Fortran version. This approach has

a significant side effect: they require several versions

of each vector operation. One version must handle the

case where a vector is stored in a one-dimensional ar-

ray, and another must handle the case where a vec-

tor is a column of a matrix, and is stored in a two-

dimensional array. They also discuss versions for spe-

cial cases, such as when a vector is dense within a one-

dimensional array. They claim [8, p. 41].

If we are to provide the same level of functionality

as the Fortran and C BLAS then we must provide

several versions of each vector operation.

While this may be true of implementations of BLAS

primitives, this should not clutter up the interface vis-

ible to the programmer. Our shape abstraction unifies
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and encapsulates these various cases. For efficiency, an
implementation can still provide specialized routines
for common cases.

3.3. Limiting constructor calls

Excessive object creation is often a substantial
source of performance loss in object-oriented pro-
grams. Therefore, we use a technique (similar to that
described by Dingle and Hildebrandt [12]) that limits
the number of temporary vectors and matrices created.
Such objects are used locally in methods of the JBLAS
and JLAPACK classes, so it is natural to place them
within the methods. However, we make them private
static class members. Thus, they are created once, in-
stead of at every method invocation. Note that this ap-
proach works only because none of the methods in the
library are recursive and because we are ignoring is-
sues of thread safety.

3.4. Method granularity

Most of the work in the BLAS routines involves
looping through columns of a matrix, accessing and
modifying elements. An example is the scale rou-
tine, which scales a vector by a constant factor. Here is
a natural implementation of this routine:

// Scale the vector col by the factor a

for(i = col.length(); i > 0; i--) {

tmp = a * col.eltAt(i);

col.assignAt(tmp, i);

}

Unfortunately, every call to eltAt() and assignAt()
must use the shape object to calculate the address of
an element from scratch. Equations (1) and (2) demon-
strate the cost of these calculations. Boisvert et al. [8]
observe that the use of such methods is five times
slower than an ordinary array access. The vector and
matrix classes employ two mechanisms to overcome
this overhead: aggregate operations and incremental
access methods.

3.4.1. Aggregate operations

We converted operations that were often performed
to entire vector or matrix objects into methods in the
the vector and matrix classes. These methods exploit
the bulk nature of the updates to access successive el-
ements using incremental address computations. The
code for the scale method in the vector class is below.
Note how the calculation of the index i consists only
of an increment, instead of the multiplication and ad-
dition performed repeatedly in the eltAt() method.

//This is the scale method in the vector

class public void

scale(double a)

{

int i = shape.start;

int inc = shape.inc;

int len = shape.len;

int j;

for(j = len; j > 0; j--) {

data[i] *= a;

i += inc;

}

}

3.4.2. Incremental access methods

Another common type of operation in the library is
to loop over a vector, accessing but not modifying its
elements. Because the elements are being used instead
of being modified, aggregate methods do not apply. An
example of such an operation is the scaling of columns
of a matrix by elements of a vector. Code for such an
operation follows:

// A is a Matrix.

// v and col are Vectors.

for(j = v.length(); j > 0; j--) {

tmp = v.eltAt(j);

A.colAt(j, col);

col.scale(tmp);

}

To limit the number of calculations in determining
the index of an element, we include incremental ac-
cess methods. The Vector class contains the following
incremental methods:

(1) beginning(), end(): These methods tell the vec-
tor that incremental access is about to occur, and
that access will start at the beginning or end of
the vector.

(2) next(), prev(): These methods return the next or
previous element in the vector.

The Matrix class contains similar methods to access
columns and rows incrementally. Using these methods,
the code above becomes:

// A is a Matrix.

// v and col are Vectors.

v.beginning();

A.beginningCol();

for(j = v.length(); j > 0; j--) {

tmp = v.next();

A.nextCol(col);

col.scale(tmp);

}
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These methods are similar to the methods defined

by the java.lang.Enumeration [19] interface.

However, Enumeration does not handle primitive

types, so we could not implement this functionality

with the Enumeration interface. In JDK 1.2, our in-

cremental operations are similar to the methods of the

java.util.Iterator interface [29].

3.5. Error handling

Every routine in LAPACK provides error checking

of its parameters. Parameter values are checked to de-

termine if they are appropriate for the given routine. If

an error is discovered, an error value is returned. Iden-

tical error handling occurs in JLAPACK. Each param-

eter value is checked, and if it is not valid, an exception

of class JLASTRUCT.ParamException is thrown.

3.6. Complex numbers

Currently, Java does not provide a primitive type

for complex numbers. However, complex numbers are

required within the LAPACK library, so we provide

two implementations for them. The first approach uses

a class JLASTRUCT.Complex, encapsulating com-

plex values and arithmetic operations on them. While

this object-oriented approach is attractive, the overhead

of using many small objects and calling a method for

every arithmetic operation makes it unusably slow.

Our second implementation of complex numbers

simply inlines them, by making the data arrays of the

vector and matrix classes twice as long, and storing the

real and imaginary components contiguously in the ar-

ray. Access methods change from eltAt() to realAt()

and imgAt(), and all arithmetic is performed inline.

While this is an unattractive approach from a software

engineering point of view, it demonstrates the perfor-

mance achievable with a primitive complex type.

3.7. Discussion

Certain aspects of Java made the development of

JLAPACK difficult. In this section we discuss these as-

pects and how JLAPACK addresses them.

3.7.1. Language issues

Two language issues hinder the development of

JLAPACK: the absence of parametric polymorphism

and the absence of operator overloading. The absence

of parametric polymorphism required us to create a

version of the JLAPACK library for each data type,

which results in code bloat and extra programmer ef-

fort. Several projects [2,27,28] have examined meth-

ods for providing parametric polymorphism, either by

modifying the JVM or by a adding a preprocessing

phase, and it is possible that the feature will be avail-

able in future versions of Java.

The lack of operator overloading required us to write

many methods in unnatural forms. For example, the

colAt() method intuitively should return a Vector ob-

ject. Because we could not overload the assignment op-

erator, we had to pass in the Vector object as a param-

eter to the method. Likewise, we had to write out in

full detail mathematical operations such as scaling of

vectors, instead of using a more natural and compact

mnemonic form, such as the *= operator.

It is true that neither of these language features is

fundamental, and that both represent “syntactic sugar”

that would be removed in a preprocessing step. We ig-

nored these issues while implementing JLAPACK, as

our goal was to test our hypothesis about performance.

However, the general user does not want to deal with

such issues and is less apt to use a library that has

such unnatural syntax. (Witness the success of Matlab,

which virtually removes the difference between the lin-

ear algebraic description of an algorithm and its real-

ization in code.) We feel that Java will not be attrac-

tive to the numerical computing community until these

features are integrated into the language.

3.7.2. Multithreaded programming

Java provides full support for multithreading, and

supplies a monitor locking mechanism for performing

mutual exclusion with the synchronized keyword.

A synchronized method must obtain a lock on its

object in order to execute, so only one synchro-

nized method can be executing on an object at any

time. However, that does not guarantee that a method

that is not synchronized will not modify data be-

ing used by the synchronizedmethod. One way to

ensure thread-safety is to make all methods that access

data synchronized and to make all members pri-

vate, so that subclasses cannot manipulate these mem-

bers in methods that are not synchronized. Such

a scheme introduces a huge overhead. Another way to

ensure thread-safety is to make local copies of instance

variables inside methods. This technique, while legal

under current Java concurrency semantics, may not be

the most intuitive. Further, Java’s memory consistency

model [21, Ch. 17], if implemented aggressively, could

result in further unexpected behavior. In JLAPACK,

we ignore the issues of thread safety.
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3.7.3. Complex numbers

Complex numbers must be integrated into the Java

environment before the language becomes commonly

used for numerical computing. We have presented two

methods of implementing complex numbers, and our

results document the overhead of encapsulating com-

plex numbers in classes. Manual inlining is not the

correct solution either, as this detracts from the read-

ability of the code, replicates common operations, and

presents a common source of bugs. Thus, complex

numbers must become part of the Java environment.

This could take place at any of three points: compile

time, load time, or run time.

• Compile time: Complex numbers could be in-

troduced at the language level, leaving the JVM

specification unchanged. The language would de-

fine a primitive complex type and all arithmetic

operations on that type. At compile time, the oper-

ations on complex types would be translated into

operations on real types, inlining the code in the

same method we did by hand.

• Load time: Complex numbers could be intro-

duced through load time transformations, using

a bytecode restructuring tool such as JOIE [10].

Complex numbers would be represented using a

Complex class at the language level. At load time,

the class loader would modify classes using ob-

jects of type Complex, inlining the code. This

method is attractive because it requires no modi-

fication to the Java language or the JVM.

• Run time: Another approach to introducing prim-

itive complex numbers would be in both the lan-

guage and the JVM. Complex types would be-

come part of the JVM specification. This causes

two problems. First, since all arithmetic instruc-

tions are specific to a primitive type, many new

bytecodes would have to be introduced. Second,

double precision complex types would require

four words of memory, and current bytecodes

only support single- and double-word arguments.

The JVM would have to be modified to support

extra long arguments.

Orthogonal to the above issue is the matter of ex-

actly how best to integrate complex numbers. The For-

tran approach introduces a single type Complex, with

real and imaginary numbers being represented as spe-

cial cases of this type with the appropriate compo-

nent equal to zero. An alternate approach, similar to

that under consideration for ANSI C, would introduce

three types Real, Imaginary, and Complex. This

latter scheme has the advantage of providing greater

type discrimination, which allows for more optimiza-

tion possibilities.

All of these approaches have strengths and weak-

nesses. While it is beyond the scope of this paper to

determine the best mechanism for including primitive

complex numbers in Java, this issue is under consider-

ation by the Java Grande Forum [22], and must be re-

solved satisfactorily if Java is to be viable for numeri-

cal computing.

4. Related Work

Several other projects are investigating the use of

Java in numerical computing. The Java Numerical

Toolkit [8] is a set of libraries for numerical comput-

ing in Java. Its initial version contains functionality

such as elementary matrix and vector operations, ma-

trix factorization, and the solution of linear systems.

HPJava [31] is an extension to Java that allows parallel

programming. HPJava is somewhat similar to HPF and

is designed for SPMD programming.

Several projects are developing optimizers for Java.

Moreira et al. [26] are developing a static compiler that

optimizes array bounds checks and null pointer checks

within loops. Adl-Tabatabai et al. [1] have developed a

JIT compiler that performs a set of optimizations, in-

cluding subexpression elimination, register allocation,

and the elimination of array bounds checking. Such

optimizations may allow us to bridge the performance

gap between our version with bounds checking and our

version without bounds checking.

The F2J [18] project is also generating LAPACK

and BLAS libraries in Java. They have developed a

Fortran to Java translator, which they use to transcribe

Fortran LAPACK source code into Java source code.

They have experienced some difficulties handling dif-

ferences in the languages, such as the absence of a

goto statement in Java. Currently, f2j has generated

Java class files for all of the double precision routines

in the LAPACK and BLAS libraries.

5. Performance

Performance is an overarching concern for scien-

tific computation. The Fortran version of LAPACK

has been highly optimized and represents our target

level of performance. Therefore, we compare JLA-

PACK with the optimized Fortran version (compiled
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on the test platform with the vendor’s optimizing For-

tran77 compiler from LAPACK 2.0 source distribution

downloaded from www.netlib.org) in all our results. In

this section, we present the results from our experi-

ments and discuss the reasons for both good and poor

performance.

5.1. Test cases

We present performance results for solving the sys-

tem of linear equations AX = B, using a coefficient

matrix A and a right hand side matrix B whose en-

tries are generated using a pseudorandom number gen-

erator from a uniform distribution in the range [0, 1].

The same seeds are used in both the Fortran and Java

versions, to guarantee that both versions solve iden-

tical problems. The square matrix A has between 10

and 1000 columns. The matrix B has from 1 to 50

columns. In every case, the leading dimension of the

matrix equals the number of rows of the matrix. We

separately timed the triangular factorization (xGETRF)

and triangular solution (xGETRS) stages. The two data

types used in timing were double precision real num-

bers (x=D) and double precision complex numbers

(x=Z). For the factorization stage, we used block sizes

between 1 and 64.

5.2. Testing environment

Table 1 lists the platforms we used for timing.

We ran Fortran versions for all Unix platforms, us-

ing the -fast optimization flag when compiling the

Fortran library. We ran the version generated by the

F2J translator on both the UltraSparc and the Pen-

tium II. On the DEC, where native BLAS libraries

were available through the dxml library [11], we

measured performance with both the JBLAS classes

and the native library. On the Sparcs, we ran two

versions with kaffe [5,30]: one with dynamic ar-

ray bounds checking turned on and the other with

this feature turned off. We turned off array bounds

checking in kaffe by modifying the native instruc-

tions that its JIT compiler emits. We measured per-

formance without array bounds checking for two rea-

sons. First, we wanted to quantify the cost of perform-

ing bounds checks, and to determine if it introduces

significant overheads into the computation. Second,

global analysis of our code could prove that instances

of java.lang.ArrayIndexOutOfBoundsEx-

ception could never be thrown. While this can-

not always be determined from the structure of the

program, and no current implementation of the JVM

systematically eliminates runtime bounds checking

in this manner, such an optimization is likely to

appear in future generations of JVM implementa-

tions.

All of our test platforms are run in JIT mode rather

than interpretive mode. The trend, as exemplified by

current and short-term future releases of the JVM, is to

replace interpretive implementations of the JVM with

JIT-based implementations. We expect this trend to

continue. While interpretation-based implementations

will be useful for debugging, their performance is far

too poor to be competitive.

We also measured the performance of JLAPACK

when compiled with the High Performance Compiler

for Java (HPCJ) [26] developed at IBM Watson. HPCJ

is a static compiler that optimizes away some array

bounds checks and null pointer checks within loops.

It also has the capability of utilizing a fused multiply

Table 1

Testing environment

SPARCstation 5 UltraSparc 170 DEC Personal Pentium II

Workstation

Processor SPARC Ultra 1 Alpha 21164 Pentium II

Processor Speed 110 MHz 170 MHz 500 MHz 300 MHz

Memory 40 MB 64 MB 512 MB 128 MB

Operating System Solaris 2.5.1 Solaris 2.5.1 Digital Unix 4.0D Windows 95

JVM kaffe v0.9.2 kaffe v0.9.2 JDK 1.1.4 Visual Cafe

JDK 1.2beta4 JDK 1.2beta4

JIT Enabled Yes Yes Yes Yes

F77 Compiler Switches -fast -fast -fast N/A

ILP No Yes Yes Yes

Out-of-order execution No No No Yes
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and add (FMA) operation. While this operation is cur-

rently illegal under Java semantics, it will become le-

gal if a current proposal [23] dealing with numerics is

adopted.

5.3. Performance optimizations

We manually compensated for certain deficiencies

in javac to boost the performance of our code. The

first modification was loop unrolling, a common tech-

nique used by optimizing compilers to achieve better

performance. In our experiments, an unrolling depth

of four gave the best performance. Unrolling does in-

troduce a cost in code size. Unrolling loops in the

JLASTRUCT.Vector class by factors of two, four,

and eight increased class file sizes by 41%, 62%, and

104%.

The second technique optimizes field access. When-

ever a member of an object is accessed, a getfield op-

eration is performed. This operation has considerable

overhead, as it must check access permissions. If a

certain field is accessed repeatedly in a method, the

getfield operation is performed repeatedly. The Java

compiler did not optimize this away by leaving the

reference in a local variable, so we did it by hand

in the Java source code. This modification made lit-

tle difference in kaffe, which uses JIT compila-

tion, but made a significant difference for interpreted

code.

5.4. Results

Table 2 shows the performance results for the four

platforms listed in Table 1. Table 3 shows the perfor-

mance results with the HPJC compiler.

5.5. Discussion

Analysis of the results reveals several interesting

facts.

(1) The Java version with bounds checking enabled

and inlined complex numbers performs within

a factor of three of the Fortran version for cer-

tain architectures and problem sizes. On the

SparcStation 5, the Java version is about two or

three times worse than the Fortran version on

the larger problem sizes for both the factoriza-

tion and the triangular solve. As a side note, the

interpreted Java implementation was unusably

slow.

(2) On the UltraSparc, for most of the cases with

bounds checking enabled and inlined complex

numbers, there is less than a factor of four dif-

ference between the two versions. However, for

the factorization with double precision num-

bers and blocking, the Fortran version performs

about six times better than the Java version.

This is because blocking significantly improves

Table 2

Performance results for double precision real (D) and double precision complex (Z) values. Entries represent the ratio of the

JLAPACK running time to the LAPACK running time (lower is better). Results for the complex version that uses inlined complex

numbers are denoted by (I), and results for the version that used classes for complex numbers are denoted by (C). The results

for the triangular factorization without blocking are denoted by F(nb), the results for the triangular factorization with a blocking

factor of 16 are denoted by F(b), and the results for the solve are by denoted S. The label r indicates a small matrix (100 by 100)

was used so that the program could take advantage of caching. The label R indicates a large matrix (600 by 600) that could not

fit into the system cache was used. A — label denotes a missing entry. (a) Performance on a SPARCstation 5. (b) Performance on

an UltraSparc 170. (c) Performance on a DEC Personal Workstation. (d) Performance on a Pentium II.
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Table 3

Performance results for double precision real (D) and double precision complex (Z) values using the HPCJ system. Entries

represent the ratio of the JLAPACK running time to the LAPACK running time (lower is better). Results for the complex

version that uses inlined complex numbers are denoted by (I), and results for the version that used classes for complex numbers

are denoted by (C). The results for the triangular factorization without blocking are denoted by F(nb), the results for the

triangular factorization with a blocking factor of 16 are denoted by F(b), and the results for the solve are by denoted S. The label

r indicates a small matrix (100 by 100) was used so that the program could take advantage of caching. The label R indicates a

large matrix (600 by 600) that could not fit into the system cache was used. (a) Performance on a PowerPC. (b) Performance

on a Power2.

Fig. 2. The performance with double precision complex numbers. The performance with inlined complex numbers and with complex classes is

shown.

the performance of the Fortran version, but not

of the Java version. Our hypothesis is that the

variations in performance represent instruction

scheduling effects. We examined the assembly

code generated by the Fortran compiler on the

SparcStation 5 and on the UltraSparc, which

represent different implementations of the same

instruction set architecture. The code generated

for the inner loops of several routines varied

considerably, using different degrees of loop

unrolling and different schedules. The kaffe

and JDK JIT compilers generated identical in-

struction sequences for both platforms. We be-

lieve that the sub-optimal instruction schedule

increases pipeline stalls and nullifies the im-

provements in spatial locality due to block-

ing.

(3) Figure 2 shows that using classes to represent

complex numbers performs very poorly. On all

the platforms tested, the version that uses the

Complex class is more than twice as slow as

the version that inlined complex numbers.

(4) The impact of bounds checking is shown in

Fig. 3. Removing bounds checking increased

performance by 15% to 25%. This figure is in

line with the corresponding figure reported by

Boisvert et al. [8]. While this impact is not

significant, it has been shown by Moreira et

al. [26] that removing bounds checks enables

further optimizations, such as reordering loop



B. Blount and S. Chatterjee / An evaluation of Java for numerical computing 107

Fig. 3. The impact of bounds checking.

Fig. 4. Architectural effects. The ratio of the performance with blocking to the performance without blocking is shown for two platforms.

iterations, that do have a significant impact on

performance.

(5) Figure 4 demonstrates the impact of blocking
on both the Pentium II and the UltraSparc plat-

forms. On the Pentium II, which provides in-
struction re-ordering in the hardware, blocking

makes an impact. However, on the UltraSparc,

which does not perform dynamic scheduling,
blocking has no impact on performance.

(6) Figure 5 shows the performance when the native

BLAS library was used. The native BLAS li-

brary made a significant impact on performance,

especially for the cases where blocking was
used. Because LAPACK heavily relies on BLAS

for its computations, using the native BLAS
library brought the performance of JLAPACK

close to the performance of LAPACK (within

15% for sufficiently large problem sizes). This
demonstrates that the object-oriented wrappers

provided by JLAPACK were efficient. It also
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Fig. 5. Performance using the native BLAS library.

Fig. 6. Comparision of JLAPACK and F2J generated LAPACK code. The ratio of the performance of our version to the performance of the F2J

version is shown for two platforms.

supports our hypothesis that poor instruction

scheduling hurt performance in the pure Java

version.

(7) Figure 6 compares the performance of our ver-

sion with the performance of the version using

the f2j translator. On the UltraSparc, our ver-

sion performs around 3 times better. On the Pen-

tium II, our version performs around 1.5 times

better. This demonstrates that design issues are

critical when developing high performance nu-

merical software.

6. Conclusions and future work

Portability, security, and ease of use make Java an

attractive programming environment for software de-

velopment. Performance problems and the absence

of several language features have hindered its use in

high-performance numerical computing. While opera-

tor overloading and parametric polymorphism are in-

deed “syntactic sugar”, they will contribute signifi-

cantly to the usability of the language and to the will-

ingness of the numerical computing community to use
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Java. We have quantified the difference between using

a primitive type for complex numbers, which we have

simulated, and using a class for complex numbers. As

expected, there is strong evidence that a primitive type

is needed.

Future work in the development of high-performance

object-oriented numerical libraries in Java can be di-

vided into the following categories.

(1) Programming model changes. The algorithms

implemented in most numerical libraries to-

day were designed for the Fortran programming

model. These may not be the best algorithms

when run under the object model of Java. We

have discussed several object-oriented program-

ming idioms to implement numerical libraries

efficiently. Future work needs to explore these

and other techniques such as expression tem-

plates [6].

(2) Compiler changes. We noted in Section 5 sev-

eral desirable optimizations that javac does

not perform. Much work remains to be done

here to develop better compilation techniques

for Java. Budimlic and Kennedy [9] are ex-

ploring such optimizations using object inlining

techniques.

(3) Just-In-Time compilation. Current JIT com-

pilers are in their early version, and have not

been heavily optimized. As we discussed in Sec-

tion 5, some do not take advantage of machine-

specific optimizations and do not appear to

schedule code effectively.

(4) Architectural issues. Current trends in proces-

sor implementation adds significant instruction

re-ordering capabilities to the hardware. En-

gler [17] conjectures that this may reduce or

obviate the need for instruction scheduling by

JIT compilers. This is a reasonable conjecture

whose range of applicability needs to be tested.

(5) Experimentation with other codes. LAPACK

is obviously not representative of all numerical

software. Further work needs to be done to de-

termine if Java implementations of other numer-

ical software behave similarly. We are currently

investigating the performance of the expert gen-

eral equation solver in LAPACK and plan to in-

vestigate the performance of sparse matrices in

Java.

Our results demonstrate that Java may perform well

enough to be used for numerical computing, if a hand-

ful of concerns about language features and compi-

lation strategies are adequately addressed. While we

have not yet met the goal of having Java perform as

well as Fortran, we are beginning to get reasonably

close. We speculate that a combination of techniques

will narrow this gap considerably over the next few

years, making Java a competitor for numerical comput-

ing in the near future.
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