
Universidade do MinhoEscola de Engenharia

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Evaluation of key-agreement protocols based on

weak secrets

Author: Tiago Miguel Soares Fernandes

Supervisor: Manuel Bernardo Barbosa

University of Minho

March, 2013

Acknowledgments

Firstly, I would like to thank my Supervisor, Prof. Manuel Bernardo Barbosa, for

his counseling and support through this dissertation.

I wish to thank Tiago and Isabel, my dearest Father and Mother, for all the

support through all these years.

I like to thank specially to Ana Palhares, when I needed strength she was always

there for me. I would like to thank my good friends Jorge Miranda, Nuno Correia,

João Sanches, Lúıs Mascarenhas, Rui Abreu, Mariana Fernandes, Cristina Oliveira,

Carlène Barbosa, Pedro Fernandes, Mário Lameiras, Rita Anjo, Tiago Dias, Mário

Araújo, Ana Gonçalves, Rui Fonseca, Rui Costa, Rui Gama, Joana Presa, Tiago

Castro, Nádia Silva and Afonso Arriaga.

I acknowledge that my work was supported by the Fundação para a Ciência

e Tecnologia (FCT) under the project “WITS – Wireless Information Theoretic

Security - Refa PTDC/EIA/71362/2006”

Resumo

Duas entidades desejam comunicar de forma segura através de um canal inseguro na

presença de um adversário. Para isso acordam uma chave criptográfica forte a partir

de uma fonte fraca de aleatoriedade, extráıda com base nas caracteŕısticas f́ısicas

da rede onde comunicam. Nesta dissertação avaliamos as contrapartidas entre dois

protocolos: um onde as garantias de segurança se baseiam em noções de teoria da

informação — o protocolo Authenticated Key Agreement (AKA) proposto em [7] — e

que foi especialmente criado para este cenário; e outro que baseia a sua segurança em

argumentos computacionais — o protocolo Password-Authenticated Key Exchange

(PAKE) proposto em [11]. Para este efeito efectuamos uma análise detalhada da

segurança concreta de ambos os protocolos, considerando que em ambos os casos se

pretende acordar uma nova chave de 128 bits.

Abstract

Two agents want to securely communicate on a insecure channel in the pres-

ence of an adversary. For that they agree in a strong cryptographic key based on

a weak-source of randomness stemming from the physical network characteristics

where these agents communicate. In this dissertation we evaluate the tradeoffs be-

tween two protocols: an information theoretically-secure Authenticated Key Agree-

ment (AKA) [7] that was specifically designed for this scenario; and a Password-

Authenticated Key Exchange (PAKE) protocol [11] whose security guarantees are

based on computational arguments. To this end, we carry out an analysis of the

concrete security of both protocols, considering in both cases that the goal is to

agree on a fresh 128-bit secret key.

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Provable Security . 4

2.2 Digital Signature Schemes . 6

2.3 Public Key Encryption Schemes . 8

2.4 Decisional Diffie-Hellman Assumption 9

2.5 Cryptographic Hash Functions . 10

3 Information-theoretically secure authenticated key agreement 12

3.1 Definitions and Security Model . 13

3.2 A concrete IT-AKA protocol . 15

3.3 Randomness Extractor . 16

3.4 Message Authentication Protocol . 16

3.4.1 Look-ahead extractors . 18

3.4.2 Look-ahead MAC . 19

3.5 Global concrete security analysis . 20

3.6 Practical Implementation . 25

4 Computationally secure password authenticated key exchange 27

4.1 Definitions and Security Model . 27

4.2 A concrete PAKE protocol . 32

4.3 Lamport’s one-time signature scheme 35

4.4 Extended Cramer-Shoup cryptosystem 37

4.5 Global concrete security analysis . 45

4.6 Practical implementation . 48

5 Conclusion 49

ii

Chapter 1

Introduction

The topic for this dissertation was proposed in the context of the FCT-funded Wire-

less Information Theoretic Security (WITS) project, where the interaction between

physical-layer security mechanisms and higher-layer security protocols for wireless

networks is explored. Physical-layer security mechanisms take advantage of the char-

acteristics of communications channels in order to provide a security functionality,

which typically consists of the following:

• Two agents, Alice and Bob aim to securely transfer information across a com-

munications channel.

• A passive adversary Eve is able to eavesdrop on the communications, according

to what is known as the wiretap channel model.

• Taking advantage of the knowledge of the communications channel connecting

them, and the fact that the quality of this channel will be (perhaps occa-

sionally) better than that available to Eve, Alice is able to transfer to Bob a

random string of which Eve has only partial knowledge.

• This random string, which we call a weak secret following [7], is usually modeled

as being sampled from a random variable W shared between Alice and Bob.

Physical layer security results are typically formulated in the information-theoretical

setting, and they describe the guarantees provided to Alice and Bob regarding Eve’s

uncertainty (or equivocation) with respect to the shared random variable W .

Given the security bootstrap provided by these physical security results, a higher

level protocol is then applied to actually securely transfer data from Alice to Bob.

This higher level protocol is typically carried out in two steps:

• A shared secret key k is derived from the weak secret.

1

• A cryptographic protocol is used to transfer data across the channel using k.

Assuming a passive adversary, the solutions for both these problems have been ex-

tensively studied. The typical solution is to use a privacy amplification protocol [13]

to derive the secret key, and then a one-time-pad to convey the information across

the channel. This solution provides an overall information-theoretical security level

whereby no assumptions are made about the computational capabilities of the ad-

versary. Nevertheless, it is clear that the one-time-pad can be replaced by alternative

secure data transfer protocols, in order to improve performance or to protect against

different types of adversaries. For example, one could simply use a computationally-

secure authenticated encryption scheme to thwart active attacks by computationally

bounded adversaries during the data transfer stage and securely reuse the shared

secret key several times.

The natural question that arises is then: does a similar tradeoff between informa-

tion-theoretic security and computational security make sense at other levels in the

protocol stack? This question is partially addressed in this dissertation: we study

the tradeoffs between information-theoretic and computational security solutions to

deal with active attackers during the key derivation stage.

In cryptographic terminology, secure key derivation in the presence of active

adversaries is the functionality provided by Authenticated Key Agreement (AKA)

or Authenticated Key Exchange (AKE) protocols. In the WITS scenario, such

AKA protocols must be able to derive a secure secret key from a weak secret. In

the information-theoretical (IT) security setting, we analyze a concrete IT-AKA

protocol [7] that was specifically designed for this scenario, and find that there are

practical limitations to using such a protocol in the real-world. Indeed, even if

efficient instantiations of all required components are available (or if one is willing

to assume that some algorithm – e.g. a cryptographic hash function – provides the

necessary functionality) one finds that the protocol puts a significant strain on the

physical layer security mechanism: to derive a single 128-bit key at 128-bit security

level, the protocol requires an input of a weak secret of almost 512 times that size.

Furthermore, each weak secret can only be used to derive a single secret key.

In the computational security setting, the most natural counterpart to a weak se-

cret is a password. Indeed, several Password-Authenticated Key Exchange (PAKE)

solutions have been proposed which satisfy the intuitive security definition that an

active attacker should only succeed in attacking the key exchange protocol if it

successfully guesses the password. In particular, eavesdropping on a polynomial

number of executions of the protocol (and even obtaining previously established

2

secret keys), the adversary should not learn (in the computational sense) anything

about the shared weak secret. Furthermore, the most efficient attack of an active

adversary should be to test all possible weak secret values. We analyze the practical

applicability of a concrete PAKE protocol [11] to the WITS scenario. We identify a

typical application scenario for the PAKE protocol, whereby higher-level protocols

will be fed with a fresh 128-bit secret key derived from the most recent weak secret

released by the physical layer security mechanism. In this scenario, the security of

the key can be seen as all-or-nothing: it is either the case that the adversary has

actively established a rogue secret key by mounting an on-line attack and guessing

the weak secret; or it is the case that the secret key is computationally hidden from

the adversary at a 128-bit security level. We carry out a detailed analysis of the

concrete computational security of the selected PAKE protocol in order to accu-

rately estimate the values of all parameters that must be instantiated in its building

blocks to obtain the desired security level. We evaluate the performance of the se-

lected PAKE protocol at the desired security level by presenting an implementation

of the selected PAKE protocol for the identified parametrisation and showing some

benchmarking results.

Document structure

We start with Chapter 2 where we present security definitions, notions, and cryp-

tographic primitives including their syntax, attack models, and security goals that

will be used in the following chapters. In Chapter 3, we present the definition and

security model of an information-theoretically secure Authenticated Key Agreement

protocol, followed by a particular instance of such a protocol by from Dodis and

Wichs [7]. We perform concrete security analysis of this protocol for 128 bit security,

and present benchmarking results from a prototype implementation. Analogously,

in Chapter 4, we describe the concept and security model for a computationally

secure Password-Authenticated Key agreement protocol, and discuss a concrete in-

stantiation proposed by Katz, Ostrovsky and Yung [11]. We also perform a concrete

security analysis of this protocol for 128 bit security, and present benchmarking re-

sults from a prototype implementation. We conclude the paper with a discussion of

our results in Chapter 5

3

Chapter 2

Preliminaries

2.1 Provable Security

Since the beginning of public-key cryptography, many suited algorithmic problems

for cryptography have been proposed and many cryptographic schemes have been

designed with more or less heuristics arguments of their security. If a cryptographic

algorithm could cope cryptanalytic attacks for several years, it was often considered

somehow as validation procedure. Several schemes take a long periods of time before

being broken. Pointcheval [14] points out as an example the Chor-Rivest cryptosys-

tem, that took more than 10 years to be totally broken. Before this attack was

found, the scheme was believed to be strongly secure. This shows that the absence

of attacks in some point in time must not be interpreted as security validation for

some scheme. A different paradigm is given by the provable security concept. This

is a line of research which tries to provide proofs in the framework of complexity

theory. Commonly known as reductionist security proofs, these proofs provide re-

ductions from a well-studied problem, such as RSA or the discrete logarithm, to an

attack against some cryptographic protocol.

Computational Security

Many security goals in symmetric and asymmetric cryptography cannot be efficiently

realized unless one relies on some computational assumption. There are two major

families of computational assumptions in number theory-based public-key cryptog-

raphy:

• the schemes based on integer factoring, and on the RSA problem. The most

famous intractable problem is factorization of two integers: while it is easy

to multiply two prime integers p and q to get the product n = p.q, it is not

4

simple to decompose n into its prime factors p and q.

• the schemes based on the discrete logarithm problem, and on the Diffie-

Hellman problems, in any “suitable” group.

Given such objects and thus computational assumptions about the intractability

of the inversion without possible trapdoors, we would like that security could be

achieved without extra assumptions. This fact is only formally proven when it is

shown that an attacker against the cryptographic protocol can be used as sub-part

in an algorithm that can break the computational assumption. Such arguments

are called reductions. Reductions establish partial order between computational

assumptions, also between intractable problems. As the required assumption is

weaker, the more secure the cryptographic scheme is [14].

A reduction, in complexity theory, is an algorithm which uses an attacker as a

sub-part in a global algorithm. If this reduction is efficient (i.e. the reduction is a

polynomial-time algorithm), then the attack of the cryptographic protocol is at least

as hard as inverting the function: if one has a polynomial algorithm to solve the lat-

ter problem, one can polynomially solve the former one. The associated asymptotic

security definition typically requires that the success probability of any probabilistic,

polynomial time algorithm be a negligible function of the security parameter. Some-

times hidden in security reductions based on these so-called asymptotic notions of

security are very large factors, which imply that a successful attack on the scheme

may not translate into a break of the computational assumption, except possibly

for huge values of the security parameter (i.e. key sizes). Concrete security refers

to a security reduction that does not rely asymptotic notions of security, rather

manipulating concrete values for the parameters that specify the security level of

the scheme, and the power of the adversary (namely its execution time), and using

them to express an adversary’s probability of success.

Information-Theoretic security

An information-theoretically secure cryptosystem derives its security from argu-

ments that establish an adversary’s probability of success independently of its com-

putational power. This means essentially that computational assumptions have no

place in an information-theoretical security proof, since they are not valid once one

considers unbounded adversaries. Put simply, in an information-theoretically secure

scheme, it is proven that the adversary does not have enough information to succeed

in its attack. So, even if the adversary is computationally unbounded, encryption

schemes based on information-theory can be proven secure [10].

5

A special case of information-theoretic schemes are encryption schemes display-

ing a property called perfect secrecy: the one-time pad is its most famous example.

The main issue common to all schemes with perfect secrecy is that for any per-

fectly secret encryption scheme we must have a key space that is at least as large

as the message space and can be used only once. If the key space consists of fixed-

length keys, and the message space consists of all messages of some fixed length,

this implies that the key must be as long as the message. Such practical limitations

of information-theoretically secure schemes are common, and justify the pragmatic

approach of considering computationally bounded adversaries. By making this re-

laxation and admitting a conceptually weaker security level, modern cryptography

has been able to provide efficient solutions to very complex information security

protection scenarios, that provide an adequate level of assurance for most practical

applications.

2.2 Digital Signature Schemes

Digital Signatures schemes are a mechanism that protect the authenticity of a digital

message or document. Digital signature schemes allow a signer who has established

a public key pk to sign a message in such way that any other party who knows pk

(and knows that the public key was established by the signer) can verify that the

message originated from the signer and has not been modified in any way.

Syntax

A signature scheme is a tuple of three probabilistic polynomial-time algorithms

(Gen, Sign,Vrfy) satisfying the following:

• The key-generating algorithm Gen takes as input a security parameter 1λ and

outputs a pair of keys (pk, sk), public and private key respectively.

• The signing algorithm Sign takes as input a private key sk and a message

m ∈ {0, 1}∗. It outputs a signature σ, denoted as σ ← Sign(sk,m).

• The deterministic verification algorithm Vrfy takes as input a public key pk,

a message m, and a signature σ. It outputs a bit b, with b = 1 meaning valid

and b = 0 invalid signature. b := Vrfy(pk,m, σ).

6

Correctness

For every λ, every (pk, sk) outputted by Gen(1λ) and every m ∈ {0, 1}l(λ), it holds

that Vrfy(pk,m, Sign(sk,m)) = 1.

If (Gen, Sign,Vrfy) is such that for every (pk, sk) output by Gen(1λ), algorithm

Sign is only defined for messages m ∈ {0, 1}l(λ) (and Vrfy outputs 0 for m 6∈
{0, 1}l(λ)), then (Gen, Sign,Vrfy) is a signature scheme for messages of length l(λ)

[4].

Security model

Considering a signature scheme Π = (Gen, Sign,Vrfy). We consider the notion pre-

sented in [4] of strong existential unforgeability under an adaptive chosen-message

attack. This can be described as an attack game as follows.

• The challenger runs Gen. It gives the adversary the resulting public key pk

and keeps the private key sk to itself.

• The adversary issues signature queriesm′1, . . . ,m
′
q, denoted as P = {m′1, . . . ,m′q},

with q as the maximum number of queries allowed. The challenger responds by

running Sign to generate signatures σ′i of m′i and sending σ′i to the adversary.

The set of issued signatures is denoted as Q = {σ′1, . . . , σ′q}.

• Finally the adversary outputs a pair (m,σ). The adversary wins if σ is a valid

signature of m according to Vrfy and σ 6∈ Q.

The advantage of an adversary A in attacking the signature scheme is defined as

the probability that A wins the game described.

Definition 1. ([4]) A signature scheme Π = (Gen, Sign,Vrfy) is strongly existen-

tially unforgeable under an adaptive chosen-message attack, if for all probabilistic

polynomial-time adversaries A, the probability that A wins the game above (i.e. its

advantage) is negligible in the security parameter.

In [4] a weaker version of unforgeability was also considered, properly called weak

existential unforgeability. In this case, the adversary must only use a message m

that was not previously queried to the Sign oracle.

We also use a weaker definition of digital signatures denoted one-time signatures.

This type of signature is secure as long it is used to sign at most one message. In this

particular case of signatures schemes, its security model only allows the adversary

to submit one query (q = 1) to Sign oracle.

7

2.3 Public Key Encryption Schemes

Syntax

A public-key encryption scheme PKE consists of the following algorithms:

• A probabilistic, polynomial-time key generation algorithm PKE.KeyGen that

on input 1λ for λ ∈ Z≥0, outputs a pair public key/secret key (PK, SK). The

structure of PK and SK depends on the particular scheme.

• A probabilistic, polynomial-time encryption scheme PKE.Encrypt that takes

as input 1λ, a public key PK and a message m, outputs a ciphertext ψ. A ci-

phertext is a bit string and its structure may depend on the particular scheme;

• A deterministic, polynomial-time decryption algorithm PKE.Decrypt that takes

as input 1λ, a secret key SK and a ciphertext ψ, outputs either a message m

or the special symbol reject.

Correctness

A public-key encryption scheme is correct if for all (PK, SK) ∈ [PKE.KeyGen(1λ)],

all m and all ψ ∈ [PKE.Encrypt(PK,m)], we have PKE.Decrypt(SK, ψ) = m.

Security model

The following attack game is used to define security against adaptive chosen cipher-

text attacks.

• The adversary queries a key generation oracle. The key generation oracle

computes (PK, SK)
R←− PKE.KeyGen(1λ) and responds with PK.

• The adversary makes a sequence of calls to a decryption oracle.

For each decryption oracle query, the adversary submits a bit string ψ, and

the decryption oracle responds with PKE.Decrypt(1λ, SK, ψ).

• The adversary submits two messages m0,m1 ∈ PKE.MSpaceλ,PK to the chal-

lenger. On input m0,m1, the challenger then computes σ
R←− {0, 1}; ψ∗ R←−

PK.Encrypt(1λ,PK,mσ); and responds with the target ciphertext ψ∗. In the

case of an unrestricted message space, it is required that |m0| = |m1|.

• The adversary continues to make calls to the decryption oracle, subject only

to the restriction that a submitted bit string ψ is not identical to ψ∗.

8

• The adversary outputs σ̂ ∈ {0, 1}, and wins the game if σ̂ = σ.

The CCA advantage of A against PKE at λ, denoted by AdvCCAPKE,A(λ), to be

|Pr[σ = σ̂ − 1/2]| in the above attack game.

Definition 2. ([5]) PKE is secure against adaptive chosen ciphertext attack if for

any probabilistic, polynomial-time adversary A, the function AdvCCAPKE,A(λ) grows

negligibly in λ.

2.4 Decisional Diffie-Hellman Assumption

A computational group scheme G specifies a sequence Sλ of group distributions. For

every value of a security parameter λ ∈ Z≥0, Sλ is a probability distribution of group

descriptions. A group description Γ specifies a finite abelian group Ĝ, along with a

prime-order subgroup G, a generator g of G, and the order q of G. A multiplicative

notation for the group operation in Ĝ is used and the identity element of Ĝ denoted

by 1G. The notation Γ[Ĝ, G, g, q] indicates that Γ specifies Ĝ, G, q and q as above

[5].

The Decisional Diffie-Hellman is an assumption formulated with respect to a

suitable group G of a large prime order q generated by a given element g. The

Decisional Diffie-Hellman assumptions says that is hard to distinguish triples of the

form (gx, gy, gz) for random x, y, z ∈ Zq from triples of the form (gx, gy, gxy) for

random x, y ∈ Zq. Formally, let G be a computational group scheme, specifying a

sequence Sλ of group distributions. For all λ, and for all Γ[Ĝ, G, g, q] ∈ [Sλ], the

sets Dλ,Γ and Tλ,Γ are defined as follows.

Dλ,Γ := {(gx, gy, gxy) ∈ G3 : x, y ∈ Zq}; (2.1)

Tλ,Γ := G3. (2.2)

The set Dλ,Γ is the set of Diffie-Hellman triples. Also, for ρ ∈ G3, define

DHPλ,Γ(ρ) = 1 if ρ ∈ Dλ,Γ, and otherwise, define DHPλ,Γ(ρ) = 0. For all 0/1-valued,

probabilistic, polynomial-time algorithmsA, and for all λ and all Γ[Ĝ, G, g, q] ∈ [Sλ],

the DDH advantage of A against G at λ given Γ is defined as follows.

Definition 3. ([5]) The decisional Diffie-Hellman assumption for G is that for every

probabilistic, polynomial-time 0/1-valued adversary A, the function AdvDDHG,A(λ|Γ)

is negligible in λ.

9

AdvDDHG,A(λ|Γ) :=
∣∣∣Pr[τ = 1 : ρ← Dλ,Γ; τ ← A(1λ,Γ, ρ)]

− Pr[τ = 1 : ρ← Tλ,Γ; τ ← A(1λ,Γ, ρ)]
∣∣∣. (2.3)

2.5 Cryptographic Hash Functions

A hashing scheme HF specifies for each value of λ, a function HFλ : KeySpaceλ →
Dλ → Cλ, which we denote as HFλhk(.), hk ∈ KeySpaceλ, where KeySpaceλ is a family

of key spaces indexed by λ where each key space is a probability space on bit strings,

and typically Dλ ⊆ {0, 1}∗ and Cλ ⊆ {0, 1}λ. There must exist a deterministic,

polynomial-time algorithm that on input 1λ,D, hk ∈ [HF.KeySpaceλ] and ρ ∈ D,

outputs HFλhk(ρ).

Target Collision Resistant hash functions

A family of keyed hash functions is used, such that given a randomly chosen preim-

age and randomly chosen hash function key, it is computationally infeasible to a

probabilistic, polynomial-time adversary to find a different preimage that hashes to

the same value using the given hash key.

Definition 4. ([5]) For any probabilistic, polynomial-time algorithm A, if a function

HFλhk is target collision resistant (TCR) function then AdvTCRHF,A(λ|D) is negligible

in λ.

AdvTCRHF,A(λ|D) := Pr[ρ ∈ D ∧ ρ 6= ρ∗ ∧ HFλhk(ρ
∗) = HFλhk(ρ) :

ρ∗
R←− D;hk

R←− HF.Keyspaceλ; (2.4)

ρ
R←− A(1λ, ρ∗, hk)].

Universal one-way hash functions

We refer to a Universal One-Way Hash Function (UOWHF) as a slightly stronger se-

curity notion compared to target collision resistance as presented above. In UOWHF

security the first input to the hash function is chosen adversarially (contrarily to the

random sampling presented on the TCR hash function), but independent of the key

of the hash function. In this case, the adversary A should provide another preimage

such that when applying a keyed hash function produce the same image.

10

This definition was formally analyzed in [2], albeit in a concrete security formula-

tion. Let the adversary be defined as A = (A1,A2) which consists of two algorithms,

A1 and A2. First A1 is run, to produce the first preimage ρ and possibly some extra

state information st, that A1 wants to pass to A2. After A1 execution, a random

key hk is chosen and A2 is run. A2 receives as input hk, ρ, st, then it must find a

preimage ρ∗ different from ρ such that Hhk(ρ) = Hhk(ρ
∗). The value ρ∗ can depend

on hk but ρ can not.

Definition 5. ([2]) For any probabilistic, polynomial-time algorithm A = {A1,A2},
if HFλhk is a universal one-way hash function then AdvUOWHF,A(λ,D) is negligible

in λ. For any λ and D, AdvUOWHF,A(λ,D) is defined as

AdvUOWHF,A(λ|D) := Pr[ρ ∈ D ∧ ρ 6= ρ∗ ∧ HFλhk(ρ
∗) = HFλhk(ρ) :

(ρ∗, st)←− A1(1λ), hk
R←− HF.Keyspaceλ; (2.5)

ρ
R←− A2(hk, st)].

11

Chapter 3

Information-theoretically secure

authenticated key agreement

In this chapter we analyze an information-theoretically secure authentication key

agreement protocol proposed by Dodis et al. in [7]. The authors considered a

scenario where two parties Alice and Bob want to securely communicate over a

public channel. The two share a weak-secret, about which an adversary Eve has

some side information. This adversary Eve is computationally unbounded and has

control over the communication channel. The shared weak-secret is modeled as a

random variable W arbitrarily distributed over n-size length bitstrings, where Eve

has some side-information about it, modeled as a random variable Z correlated to

W . Weak-secret W might not be uniformly random, but the adversary must have

at least k bits of uncertainty about it. This was formalized using the notion of

conditional min-entropy.

We know that information-theoretic secure cryptosystems are often proposed

as a theoretic feasibility result, or if practical, substantially less efficient compared

to computational cryptosystems with the equivalent security levels. The presented

protocol uses as privacy amplification technique a randomness extractor. Concrete

constructions of these extractors have been shown to exist ([8]) but they are not

practical except for very small parameter sizes. Nevertheless, to get a rough idea

of the practicality of this protocol independently of this component, we will simply

assume that it can be instantiated using a cryptographic hash function. We will

perform a top-down analysis of the components in this protocol to estimate param-

eter sizes for the protocol’s building block structures. With this knowledge we will

be able to provide a valid construction of the IT-AKA protocol where the two parties

agree on an 128 bit secret key, with 128 bit security.

12

Preliminaries

The notion of statistical distance between two random variables A,B is defined by

SD(A,B) = 1
2

∑
v |Pr[A = v] − Pr[B = v]|. We use A ≈ε B, denoting that A and

B are ε-close, as shorthand for SD(A,B) ≤ ε.

Minimal assumptions about the secrecy of W are required [7]. The only require-

ment is that W has at least k bits of entropy (conditioned on the side-information

Z), where k is roughly proportional to the security parameter. This is captured

by the notion of an (n, k)-source, which measures the predictability of W . This

consists in the measurement of the min-entropy of a weak secret W when sampled

according to some joint distribution (W |Z) where the adversary knows Z. In turn,

min-entropy measures the predictability of a weak secret W by an adversary.

Definition 6. ([7]) The min-entropy of a random variable W is defined by

H∞
def
= −log(maxwPr[W = w]) .

Conditioned predictability must be considered when W is sampled according to

some joint distribution (W |Z) where the adversary sees Z.

Definition 7. ([7]) The average conditional min-entropy is defined by

H̃∞(W |Z)
def
= −log(Ez←ZmaxwPr[w = W |z = Z]).

Definition 8. ([7]) For some joint distribution (W |Z) is a (n, k)-source if W takes

values over {0, 1}n and its min-entropy is at least k iff Pr[X = x] ≤ 2−k for all x.

3.1 Definitions and Security Model

The goal of an authenticated key agreement protocol is the following. Alice and

Bob share a secret W about which Eve has some side-information Z. They would

like to run a protocol, in which they agree on a shared random key. Alice and Bob

each have two candidate keys rA, rB that at the beginning are set to the special

value ⊥. Only after Alice reaches KeyDerived state, can Bob reach KeyConfirmed

state. When these states are reached, the respective candidate key its set as some

l-bit value (not ⊥) and it is not modified after that event. This key is to be used

in some cryptographic task, so the parties would like to be assured that the key

is and will remain private. At the same time this protocol allows that sharing

the key and its preparation or the sending of the authenticated-ciphertext are not

necessarily synchronous actions. The advantage to this asymmetric definition is that

13

Alice is able to use the key rA for some cryptographic task at the point she reaches

KeyDerived. Then, when Bob receives some message from Alice, he can reach

KeyConfirmed alone. This definition generalizes the definitions for one-round key

agreement protocols where Alice obtains a key on her own, goes into the KeyDerived

state and sends a single message to Bob [7].

The notions of KeyDerived and KeyConfirmed are described informally as fol-

lows. If Alice reaches KeyDerived state it means that she has a uniformly random

candidate key rA, which is kept private no matter the behavior of the adversary

during the protocol. However, she is not sure if her key is shared with Bob, or if

he is even involved in the protocol execution. If Bob reaches KeyConfirmed state

and obtains a candidate key rB, this means that Alice must have been involved in

that particular execution of the protocol and she reached KeyDerived state. In this

point, both have a shared key where rA = rB which is private from any adversary

[7]. Formally, this intuition is presented in the following definition.

Definition 9. ([7]) In a (n, k, l, ε, δ)-(information theoretic) authenticated key agree-

ment protocol (IT-AKA), Alice and Bob have candidate keys rA, rB ∈ {0, 1}l ∪ {⊥}
respectively. For any active adversarial strategy A employed by Eve, let R,R′ be

random variables which denote the values of the candidate keys rA, rB at the con-

clusion of the protocol execution and let T be a random variable which denotes the

transcript of the entire protocol as seen by Eve. The protocol must have the following

three properties:

Key privacy: If (W |Z) is (n, k)-source then, for any adversarial strategy A em-

ployed Eve, if Alice reaches the KeyDerived state during the protocol execution, the

(Z, T,R) ≈ε (Z, T, Ul).

Key Authenticity: We say that the protocol has pre-application authenticity if

for any (n, k)-source (W |Z) and any adversarial strategy A employed by Eve, the

probability that Bob reaches the KeyConfirmed state and R 6= R′ is at most δ. We

say that the protocol has post-application authenticity if the above holds even if the

adversary is given R immediately after Alice reaches KeyDerived state [7].

Correctness: If Eve is passive, then Alice reaches the KeyDerived state, Bob

reaches the KeyConfirmed state, and R = R′ (with probability 1).

The notion of pre/post-application authenticity was generalized from a previous

work by Dodis, Katz, Reyzin and Smith [6], where it was noted that, if Alice wants

14

to use her key rA immediately after reaching KeyDerived, she needs the assurance

that her use of the key does not help the adversary Eve break authenticity.

3.2 A concrete IT-AKA protocol

As we want to create an actual implementation, we focus on a particular IT-AKA

protocol presented in [7]. In this protocol, Alice reaches KeyDerived state by simply

using a randomness extractor Extkey where a random seed XA and the weak secret

W are used to derive R. The main idea behind this construction consists in Alice

using a message authentication protocol to transfer this random seed XA to Bob,

so that both parties can use a randomness extractor to obtain a shared key from

the weak randomness source. The difficulty of the problem lies in using the same

weak randomness source to feed the message authentication protocol that protects

XA, and also to derive the final shared key: the adversary Eve can potentially learn

some information about W during the course of the authentication protocol, thus

compromising the secrecy of the final key. In this construction, this problem is

solved by employing an interactive message authentication protocol with look-ahead

security. Overall the protocol displays the structure shown in Figure 3.1.

Figure 3.1: Structure of the IT-AKA protocol presented in [7]. The internal bold box depicts a
message authentication protocol. The dotted box shows what values can the active adversary Eve
access and modify.

An intuitive explanation of the security is described as follows. The message

authentication protocol guarantees that X ′A = XA if Bob reaches KeyConfirmed,

15

implying that R = R′ and yielding authenticity, even if the adversary Eve has access

to R. For privacy, the only information that an active adversary might obtain about

the weak secret W is the tag σ = MACk′(XA). Due to the characteristics of the

MAC, σ is fully determined by k′ and XA, and therefore is independent of W when

conditioned on k′. This means that keys R, R′ are secure as long there is enough

entropy left in W conditioned on k′ and Z [7]. This is ensured by the message

authentication protocol. In the following, we will describe in detail the individual

components used in the protocol.

3.3 Randomness Extractor

Randomness extractors are functions that convert weak random sources, which may

have biases and correlations, into almost-perfect random sources. If only a weak

random source W is used this task would be impossible, so the extractor is provided

with a short seed X of truly random bits to help with the extraction [8].

Definition 10. ([8]) A function E : {0, 1}n × {0, 1}d → {0, 1}l is a (n, k, d, l, ε)-

extractor if for any W ∈ {0, 1}n with at least k bits of min-entropy, and a random

source X ∈ {0, 1}d we can extract a R = Ext(W ;X), where R ∈ {0, 1}l is ε-close to

an uniformly random value.

3.4 Message Authentication Protocol

A special Message Authentication Protocol was proposed in [7] to authenticate the

short seed used in the key agreement protocol. In this protocol, Alice and Bob share

a weak secret W. Alice sends an authenticated message µA to Bob, in the presence of

Eve who has complete control over the network and can modify protocol messages

arbitrarily. Bob should either receive µA or detect an active attack and quit by

outputting ⊥.

Definition 11. ([7]) An (n, k,m, δ)-message authentication protocol AUTH is a pro-

tocol in which Alice starts with a source message µA ∈ {0, 1}m and, at the conclusion

of the protocol, Bob outputs a received message µB ∈ {0, 1}m ∪ {⊥}. The following

properties are required.

Correctness. If the adversary Eve is passive then, for any source message µA ∈
{0, 1}m, Pr[µB = µA] = 1.

Security. If (W |Z) is an (n, k)-source then, for any source message µA ∈ {0, 1}m

and any active adversarial strategy employed by Eve, Pr[µB 6= {µA,⊥}] ≤ δ.

16

If W was a perfectly random secret, we could use a standard message authen-

ticated code (MAC) and only a single round where Alice would send her message

µA along with a tag σ = MACW (µA). This strategy does not extend in general to

the case of weak secrets, for which theoretical lower bounds on communication com-

plexity imply that one-round protocols are either impractical or impossible [7]. The

proposed protocol therefore follows a challenge-response structure: it begins with

Bob sending a random challenge X to Alice, who then uses secret W to compute a

response that will authenticate her message. The random challenge X is used as seed

for some extractor Ext. If the adversary does not modify the seed, then Alice will

be able to derive a shared random key R = Ext(W ;X). Alice can then authenticate

her message µA, by using R as a key for a message authentication code MAC and

sending the tag σ = MACR(µA) along with µA as her response to Bob. However, this

Alice:W,µA Eve:Z Bob:W
Sample X.

R := Ext(W ;X)
X ′ ←−−−−−−−− X

R′ := Ext(W ;X ′)
σ′ ← MACR′(µA)

(µA, σ
′) −−−−−−−−→ (µB, σ̃)

If σ̃
?
= MACR(µB)

Figure 3.2: Framework for Message Authentication Protocols. [7]

construction is not secure in general: Eve can modify the extractor seed X to some

arbitrarily related X ′, causing Alice to derive some incorrect, but possible related

key R′ = Ext(W,X ′). The proposed approach therefore relies on special components

to instantiate the challenge-response protocol: a look-ahead extractor plugged in to

an look-ahead MAC.

Theorem 1. ([7]) Plugging in a look-ahead extractor with a MAC with look-ahead

security an efficient two-round (n, k,m, δ)-message authentication protocol is con-

structed for any integers n ≥ k,m and any δ ≥ 0 as long as k > O(m(m+ log(n) +

log(1/δ))). Subsequently, the MAC key is bounded by τ = 4m(m+ log(1/δ)).

By getting an upper-bound of τ we have the required guarantees about the

entropy loss on W . The parameters reached for this protocol were considered vastly

sub-optimal for all but very short messages [7], yet this is all that is required in the

key agreement protocol.

17

3.4.1 Look-ahead extractors

A look-ahead extractor is a function that uses a random seed X to extract an

arbitrary number of blocks of randomness R1, . . . , Rt from some secret W . If we

take some seed X ′ that is arbitrarily related to X, and use it to extract blocks

R′1, . . . , R
′
i from W , then any suffix Ri+1, . . . , Rt of the sequence extracted with X

will look uniformly random, even when given the prefix R′1, . . . , R
′
i in the related

sequence. In this kind of extraction the adversarial entity Eve is not capable of

modifying the seed in such way that the incorrectly extracted blocks could permit

”looking-ahead” into the original sequence of blocks [7].

Definition 12. ([7]) Let laExt : {0, 1}n×{0, 1}d → ({0, 1}l)t be a function such that

laExt(W ;X) outputs blocks R1, . . . , Rt with Ri ∈ {0, 1}l. laExt is a (n, k, d, l, t, ε)-

look-ahead extractor if, for any (n, k)-source (W |Z), any adversarial function A and

any i ∈ {0, . . . , t− 1},

(Z,X, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt])) ≈ε (Z,X, [R′1, . . . , R

′
i], Ul(t−i)) (3.1)

where [R1, . . . , Rt] = laExt(W ;X), X ′ = A(X,Z), [R′1, . . . , R
′
t] = laExt(W ;X ′) and

Ul denotes a uniformly random distribution over l bit strings.

The concrete construction of a look-ahead extractor is as follows and uses an

alternating extraction procedure [7]. This is an iterative process which uses two

randomness extractors, Extq and Extw, and runs in t iterations. The look-ahead

extractor’s seed X is interpreted as X = (Q,S1), where Q is used as random seed

for randomness extractor Extq and S1 is used as random seed for Extw. In the first

iteration, the initial seed S1 is used by Extw, R1 := Extw(W ;S1) is computed and R1

is used by Extq; where Extq then computes S2 := Extq(Q;R1). In each subsequent

iteration i, Extq outputs Si which is used by Extw; this outputs Ri := Extw(W ;Si),

and then Extq goes on to computes Si+1 := Extq(Q;Ri). The two extractors together

produce the following sequence.

S1, R1 = Extw(W ;S1), S2 = Extq(Q;R1), . . . , St = Extq(Q,Rt−1), Rt = Extw(W,St) (3.2)

In the final iteration, this protocol outputs all blocks calculated by Extw, i.e. the

sequence R1, . . . , Rt is also the look-ahead extractor’s output. A relation between

the characteristics from the randomness extractors used and the resulting look-ahead

extractor is described in the following theorem.

Theorem 2. ([7]) Given an (nw, kw − (2l)t, l, l, εw)-extractor Extw and a (nq, nq −
(2l)t, l, l, εq)-extractor Extq, the construction yields an (nw, kw, nq+l, l, t, t

2(εw+εq))-

look-ahead extractor.

18

3.4.2 Look-ahead MAC

The look-ahead MAC is a special kind of message authentication code. Eve has the

ability of modifying the look-ahead extractor seed during the initial flow, so then

she can perform some limited related key attack. The look-ahead MAC is a message

authentication code that is secure under the types of related key attacks allowed by

the look-ahead extractor.

Definition 13. ([7]) A family of functions {MACr : {0, 1}m → {0, 1}s} indexed by

the keys r ∈ ({0, 1}l)t is a (m, s, l, t, ε, δ)-MAC with look-ahead security if, for any

random variables R = [R1, . . . , Rt], R
′ = [R′1, . . . , R

′
t], V = (X,Z), which satisfy the

look-ahead property:

(V, [R′1, . . . , R
′
i], [Ri+1, . . . , Rt]) ≈ε (V, [R′1, . . . , R

′
i], U(t−i)l) ∀i ∈ {0, . . . , t−1} (3.3)

and any µA ∈ {0, 1}m and any adversarial function A, we have

Pr

[
µB 6= µA,MACR(µB) = σ̃

∣∣∣∣ σ′ ← MACR′(µA)

(µB , σ̃)← A(V, σ′)

]
≤ δ. (3.4)

Construction

Any collection of pairwise top-heavy sets can be used to construct a MAC with

look-ahead security.

Definition 14. ([7]) Given S1, S2 ⊆ {1, . . . , t}, we say that the ordered pair (S1, S2)

is top-heavy if there is some integer j that, |S≥j1 | > |S
≥j
2 |, where S≥j

def
= {s ∈ S|s ≥

j}. It is possible that (S1, S2) and (S2, S1) are both top-heavy. For a collection Ψ of

sets Si ⊆ {1, . . . , t} we say that Ψ is pairwise top-heavy if every ordered pair (Si, Sj)

of sets Si, Sj ∈ Ψ with i 6= j, is top-heavy.

Lemma 1. ([7]) Assume that a collection Ψ = {S1, . . . , S2m} of sets Si ⊆ {1, . . . , t}
is pairwise top-heavy. Then the family of functions MACr(µ)

def
= [ri|i ∈ Sµ], in-

dexed by r ∈ ({0, 1}l)t, is a (m, s, l, t, ε, δ)-MAC with look-ahead security where

s = l maxSi∈Ψ(|Si|), δ ≤ (2m−l + 2mε). Furthermore, if there is an efficient map-

ping of µ ∈ {0, 1}m to Sµ, then the construction is efficient.

To construct efficient MACs with look-ahead security, a large collection of sets

which is pairwise top-heavy must be constructed. A collection Ψ is obtained by

mapping a m bit message µ = (b1, . . . , bm) ∈ {0, 1}m to a subset S ⊆ {1, . . . , 4m}
using the function

f(b1, . . . , bm)
def
= {4i− 3 + bi, 4i− bi|i = 1, . . . ,m} (3.5)

19

i.e. each bit bi decides if to include the values {4i − 3, 4i} (if bi = 0) or the values

{4i− 2, 4i− 1} (if bi = 1).

Lemma 2. ([7]) The above construction gives us a pairwise top-heavy collection Ψ

of 2m sets S ⊆ {1, . . . , t} where t = 4m. Furthermore, the function f is an efficient

mapping of µ ∈ {0, 1}m to Sµ.

Corollary 1. ([7]) We get an (m, s, l, t, ε, δ)-MAC with look-ahead security for any

m, l, ε with t = 4m, s = 4ml and δ ≤ (2m−l + 2mε).

3.5 Global concrete security analysis

The building blocks presented in the previous sections, are combined into an informa-

tion theoretically secure authenticated key agreement protocol under the conditions

formalized in the following theorem.

Theorem 3. ([7]) Let AUTH be an (n, k,m, δ)-message authentication protocol as

above using components Extauth and MAC such that key size for MAC is τ bits long.

Let Extkey be an (n, k−τ, d = m, l, ε)-extractor. Then the construction in Figure 3.1

is an (n, k, l, ε, δ)-IT-AKA with pre-application authenticity. Assuming that AUTH

is an (n, k − l,m, δ)-message authentication protocol, then we get post-application

authenticity.

Based on this result, we have compiled the information about bit-length require-

ments, statistical distances and probabilities of impersonation, in order to instantiate

and implement the construction for some practically meaningful values. We have

hierarchically organized the requirements in a top-down structure, where at the top

we set the IT-AKA protocol and at the bottom the randomness extractors used as

building blocks. This is depicted in Figure 3.3. At the top of this hierarchy we set

some preliminary restrictions, particularly the size of the secret key agreed (denoted

by R,R′ ∈ {0, 1}l where l = 128 bits), statistical distance from a uniform distri-

bution (denoted ε = 2−128), and probability of impersonation in the authentication

protocol (denoted δ = 2−128).

Variables n, m and l′ bitlengths are free from restrictions, so we modeled them

in order to present three case studies. We present an optimal, average, and a worst

case situation. The optimal case depicts a good source of randomness where W has

93.2% of truly random bits. The worst case represents a bad source of randomness

where W has only 14.2% of truly random bits. The average case depicts an average

source of randomness where 56.3% are random bits.

20

(n, k, l, ε, δ)-IT-AKA

(n, k,m, τ, δ)-AUTH

(m, s, l′, t, ε, δ)-MAC

(n, k, d, l′, t, ε)-Extauth

(n, kw, dw, l
′, εw)-Extw (nq, kq, dq, l

′, εq)-Extq

(n, kkey, dkey, l, ε)-Extkey

Figure 3.3: IT-AKA’s building block hierarchy. The underlined variables are fixed a priori.

A special note for weak secret W ∈ {0, 1}n, where nothing more is required than

n ≥ k throughout all the requirements presented. Variable k defines the bits of min-

entropy. With only this requirement, our calculations tend to match the minimum

length required for W that will be n = k. Of course, in a real-world application,

fixing k will imply a possibly much larger value for n. The chosen lengths for n, m

and l′ are presented in table 3.1.

n m l′ ratio k/n (%)
1 218 30 32 14.2 worst case
2 215 15 64 56.3 average
3 215 25 72 93.2 optimal

Table 3.1: The chosen values for the free variables for the four cases presented.

We stress that the results presented in the following sections are just indicative,

as they are based on the assumption that efficient randomness extractors can be con-

structed for any parameter sizes. However, for the concrete construction suggested

in [7], which is the extractor based in [8], obtaining an efficient implementation is

not feasible for the large values of n that we are considering in this analysis, as this

would imply dealing with irreducible polynomials of order n.

Randomness Extractor Extkey

This randomness extractor Extkey : {0, 1}n×{0, 1}dkey → {0, 1}l is responsible for the

extraction of R = R′ = Extkey(W ;XA), the secret key to be agreed by the parties.

Its output length is set a priori as l = 128. The random seed XA ∈ {0, 1}dkey

where dkey = m and where m is a free parameter corresponding to the size of the

random seed used in the secret key extraction procedure, which has an impact in

21

the setting of other parameters. The bits of min-entropy kkey are the determined by

kkey = k−τ where k represents the entropy needed in AUTH message authentication

protocol, described in Theorem 3, and the results presented in tables 3.9 and 3.10.

The notation pre and post for k present in table 3.2 describes the lengths required for

the two types of authentication guarantees (pre and post-application authenticity)

for AUTH.

n k (pre) k (post) d l log(1/ε)
1 218 = 262144 18349 18477 30 128 128
2 215 = 32768 9884 10012 15 128 128
3 215 = 32768 15227 15355 25 128 128

Table 3.2: Bitlengths for the construction of randomness extractor Extkey.

MAC with look-ahead security

The function MACk : {0, 1}m → {0, 1}s takes a message XA ∈ {0, 1}dkey=m, where

m is the same bitlength used in the seed to Extkey, and outputs a tag σ ∈ {0, 1}s

where s = 4ml′. The key k ∈ ({0, 1}l′)t is the output of a look-ahead extractor,

where t = 4m, and l′ is a bitlength shared by the MAC, the look-ahead extractor

Extauth, and the two randomness extractors Extq and Extw used as building blocks

of Extauth. As we said before, the probability of impersonation δ is set to 2−128, with

the requirement from the MAC definition δ ≤ (2m−l
′

+ 2mε) which is true for all

values m, l′, ε displayed in table 3.3.

m s l′ t log(1/ε) log(1/δ)
1 30 3840 32 120 128 128
2 15 3840 64 60 128 128
3 25 7200 72 100 128 128

Table 3.3: Bitlengths to construct a look-ahead MAC.

Look-ahead Extractor

The look-ahead extractor Extauth : {0, 1}n × {0, 1}d → ({0, 1}l′)t, outputs k =

Extauth(W ;XB) taking as arguments the weak secret W ∈ {0, 1}n and the ran-

dom seed (challenge) XB ∈ {0, 1}d. The min-entropy k for some value W has two

different requirements, one given by the look-ahead extractor construction (Theo-

rem 2) as k = kw, where kw is the min-entropy of the weak secret used in extractor

Extw; and the other argument given by a feasibility results, which establishes the

22

minimum value for k as

k ≥ 2(t+ 2)max(l′,O(log(n) + log(t) + log(1/ε))) .

We therefore calculate k as follows.

k = max

kw2(t+ 2)max(l′,O(log(n) + log(t) + log(1/ε)))
(3.6)

The other Extauth’s argument is a random seed XB ∈ {0, 1}d, where by definition

d = nq + l′, with d ≥ O(t(l′+ log(n) + log(t) + log(1/ε))). We use the same strategy

as before to reach the minimum length d that assured the previous condition.

d = max

nq + l′

O(t(l′ + log(n) + log(t) + log(1/ε)))
(3.7)

Length l′ is the same as the one used in the MAC construction. Variable t defines

the number of iterations between the two extractors. This value comes from our

analysis of the MAC construction, previously described in table 3.3. The results to

a practical look-ahead extractor for our requirements are presented in table 3.4.

n k d l′ t log(1/ε)
1 218 = 262144 37309 22189 32 120 128
2 215 = 32768 18464 12774 64 60 128
3 215 = 32768 30527 22164 72 100 128

Table 3.4: Bitlengths to construct a look-ahead extractor Extauth.

We now look at the two randomness extractors Extw and Extq used as components

of the lookahead extractor, as described in Theorem 2. These two extractors have

slightly different definitions. The size of the weak secret used by Extq is Q ∈ {0, 1}nq

where nq = d − l′. The size of weak secret W size is set as described before. The

requirements of min-entropy for each weak secret used in each randomness extractor

are different. In the case of Extq it is given by kq = nq − (2l′)t, whereas in the case

of Extw it is given by kw = k − (2l′)t. Finally, the random seeds needed in both

extractors X ∈ {0, 1}d are d = l′, where l′ is also the output size for these extractors,

for the look-ahead extractor Extauth and for the MAC.

From above, we have the statistical distance of the lookahead extractor set at

ε = 2−128. In Theorem 2 the definition of ε directly relates to the statistical distances

from the two extractors Extq and Extw and the number of iterations t as ε = t2(εw +

εq). We calculate these two statistical distances from the deconstruction of Extauth’s

statistical distance ε. We define t = 2X and the statistical distances εq = εw = 2−E,

where E is calculated as follows:

23

ε = t2(εw + εq) = 2−128;

22X(2−w + 2−q) = 2−128;

22X(2−E + 2−E) = 2−128;

22X+1−E = 2−128;

2X − E + 1 = −128;

E = 2X + 128 + 1;

E = 2(log(t)) + 128 + 1.

Our conclusions are presented in tables 3.5 and 3.6.

n kw dw l′ εw = log(1/E)
1 218 = 262144 29629 32 32 143
2 215 = 32768 10784 64 64 141
3 215 = 32768 16127 72 72 142

Table 3.5: Bitlengths to construct randomness extractor Extw.

nq kq dq l′ εq = log(1/E)
1 22157 14477 32 32 143
2 12710 5030 64 64 141
3 22092 7692 72 72 142

Table 3.6: Bitlengths to construct randomness extractor Extq.

Message authentication protocol

In Theorem 1 to construct an efficient (n, k,m, δ)-message authentication protocol

it is required that n ≥ k,m, that the impersonation probability δ ≥ 0, and that

k > O(m(m + log(n) + log(1/δ))). The size of the MAC key is upper bounded by

τ = 4m(m+ log(1/δ)) [7]. These bit lengths are described in tables 3.7 and 3.8.

n k m τ log(1/δ)
1 218 = 262144 37309 30 18960 128
2 215 = 32768 18464 15 8580 128
3 215 = 32768 30527 25 15300 128

Table 3.7: AUTH parameters for pre-application authenticity.

Key agreement protocol

Theorem 3 states that an (n, k,m, δ)-message authentication protocol which uses

the components Extauth and MAC with look-ahead security coupled with an (n, k −

24

n k m τ log(1/δ)
1 218 = 262144 37437 30 18960 128
2 215 = 32768 18592 15 8580 128
3 215 = 32768 30655 25 15300 128

Table 3.8: AUTH parameters for post-application authenticity.

τ, dkey, l, ε)-Extkey randomness extractor is a (n, k, l, ε, δ)-IT-AKA with pre-application

authenticity. To achieve post-application authenticity we need to construct an

(n, k− l,m, δ)-message authentication protocol instead. All values for both pre and

post-application authenticity are described in the tables 3.9 and 3.10 respectively.

n k l log(1/ε) log(1/δ)
1 218 = 262144 37309 128 128 128
2 215 = 32768 18464 128 128 128
3 215 = 32768 30527 128 128 128

Table 3.9: IT-AKA parameter sizes for pre-application authenticity.

n k l log(1/ε) log(1/δ)
1 218 = 262144 37437 128 128 128
2 215 = 32768 18592 128 128 128
3 216 = 32768 30655 128 128 128

Table 3.10: IT-AKA parameter sizes for post-application authenticity.

3.6 Practical Implementation

We developed a C++ program that simulates the IT-AKA protocol and produces 218

bit random string as the weak secret. As pointed out before there is no actual

randomness extractor construction, so to this purpose we have created an extractor

based on the SHA-256 hash function. The extractor, as described produces a 256-bit

output from the n-bit weak source.

From this randomness extractor and based on the construction proposed before,

we have created a function that mimics the behavior of a look-ahead extractor. All

other functions not directly related with the randomness extractor, were constructed

according to the construction proposed.

Even with optimized code using the optimization flag gcc -O2 each execution is

memory and CPU intense. Our performance tests were made on a machine with a

two core 2.4 Ghz Intel Core 2 duo processor with 5GB of RAM. The average CPU

25

loads were near 100% and consumed approximately 2.7GBytes of memory. The

execution times are presented in 3.11.

time 1m43.364s
1m44.900s
1m53.591s

Table 3.11: Execution times of IT-AKA’s C++ implementation.

26

Chapter 4

Computationally secure password

authenticated key exchange

Protocols for password-based authentication key exchange (PAKE) enable two par-

ties who share a short, low-entropy password to agree on a cryptographically strong

session key. Password-based protocols for authenticated key exchange are designed

to work even if the passwords used are drawn from a small space in which an ad-

versary might enumerate all the possible passwords off-line.

In this scenario there are two entities – a client C and a server S – where C

holds a password pw and S holds a key related to this. These parties engage in a

conversation at the end of which each holds a session key sk, which is private and only

known by the two of them. A third entity is present which is an active adversary A
whose capabilities include enumerating, off-line, the words in some dictionary which

is rather likely to include pw. In a protocol considered good, the adversary’s chance

to defeat the protocol’s goals will depend on how much A interacts with protocol

participants, and will not significantly depend on its off-line computing time.

This protocol problem was originally suggested by Bellovin and Merritt [3], who

also offered a protocol named Encrypted Key Exchange (EKE), and an informal

security analysis.

4.1 Definitions and Security Model

Consider a fixed set of participants (denoted as Principals) each of which is either

a client C ∈ Client or a server S ∈ Server (Client and Server are disjoint). Let

User be a set with all the elements of Client and Server. Each client C ∈ Client

has a password pwC . Each S ∈ Server holds a vector PWS = 〈pwC〉C∈Client which

contains an entry for each client. The password pwC is chosen from a relatively

27

small space of possible passwords and is used by the client C to authenticate the

connection.

In [1], passwords pwC , pwS are described as long-lived keys. The long-lived

keys are generated by a long-lived key generator PW . A possibility for PW is to

determinate a password for a client A ∈ Client as pwA
R←− PWA, for some finite set

PWA and pwB[A]B∈Server is set as pwA.

Initialization

An Initialization phase occurs where all the public parameters and passwords needed

for the instances of the protocol are created. During an execution a Principal can

run many instances, each one of them only once. An instance is denoted as Πi
U

where i ∈ N and U ∈ User. In this phase, for all i for every principal U the

parameters sidiU , pidiU , the session key skiU and the state preserving values state,

accuiU , termi
U , usediU are initiated. Session id (sidiU) is used to uniquely name an

occurring session for some Principal U . Partner id (pidiU) names the Principal with

which the instance believes it has just exchanged a key. sidiU and pidiU are write-only

and public. Session key skiU is also write-only but secret, and for each client and

server instances at most one value is accepted. The state preserving values state,

accuiU , termi
U , usediU are initialized. These values are used to maintain a global

state throughout the execution for an instance i. The passwords for each client

C ∈ Client are generated independently, uniformly and randomly from a relatively

small finite set, as described above [1].

Execution of the Protocol

Principals behave in response to input from their environment. In the formal model,

these inputs are provided by the adversary [11]. Each principal is able to execute

the protocol multiple times with different partners. This is modeled by allowing

each principal an unlimited number of instances in which to execute the protocol.

Any instance is used only once. We assume that the adversary has complete control

over all communications, by that the adversary’s interaction with the principals is

modeled via access to oracles whose inputs may range over U ∈ User and i ∈ N .

The adversary’s interaction with the principals is modeled via access to the

following oracles:

• Send(U, i,M) - This sends message M to instance Πi
U . The oracle runs this

instance as in a real execution, maintaining state as appropriate. The output

of Πi
U is given to the adversary;

28

• Execute(C, i, S, j) - This oracle executes the protocol between instances of Πi
U

and Πi
S, where C ∈ Client and S ∈ Server, and outputs a transcript of this

execution. This transcript includes everything an adversary would see when

eavesdropping on a real-world execution of the protocol;

• Reveal(U, i) - This outputs the session key skiU (stored as part of the global

state) of instance Πi
U ;

• Test(U, i) - This query allowed only once, at any time during the adversary’s

execution. A random bit b is generated; if b = 1 the adversary is given skiU ,

and if b = 0 the adversary is given a random session key;

• Corrupt(U, pw) - The adversary obtains pwU and the states of all instances of

U . This is a very damaging type of query. This query models the possibility

of subverting a principal by witnessing a user type in his password, installing

a trojan horse on his machine or hacking into a machine. A Corrupt query

directed against a client U may also be used to replace the value of pwS[U] used

by server S. This is the role of the second argument to Corrupt. This capability

allows a dishonest client A to try to defeat protocol aims by installing a strange

string as a server S’s password pwS[A] [1].

Freshness

There are two notions of freshness presented for this protocol, freshness with and

without forward secrecy. These two notions of freshness presented have some events

associated with them. RevealTo(U, i) event is true if there was at some point in time

a Reveal(U, i) query. RevealToPartner(U, i) event is true if there was, at some point

in time, a query Reveal(U ′, i′) and Πi′

U ′ is partner to Πi
U . SomebodyWasCorrupted

event is true if at some point in time, a Corrupt(U ′′, pw) query for some principle U ′′

and some pw. SomebodyWasCorruptedBeforeTheTestQuery event is true if there was

a query Corrupt(U ′, pw) and this query was made before Test(U, i). We say that

Manipulated(U, i) event is true if there was at some point in time, a Send(U, i,M)

query, for some string M [1].

The basic notion of freshness with no requirement of forward secrecy, defines an

instance as unfresh if RevealTo(U, i) query or RevealToPartnerOf(U, i) queries were

made or SomebodyWasCorrupted is true. In any of the other cases an instance is

considered fresh.

Freshness with forward secrecy defines an instance as unfresh if RevealTo(U, i) or

RevealToPartnerOf(U, i) or SomebodyWasCorruptedBeforeTheTestQuery and Manipulated(U, i).

29

In any other cases it is considered fs-fresh. This definition of security gives credit to

the adversary A if it specifies a fresh (fs-fresh) oracle and then correctly identifies

if A is provided with the SK from that oracle or else a random SK. Two cases are

presented, according to whether or not forward secrecy is expected. For the basic

notion of security (fresh/unfresh) it is pessimistically assumed that a Corrupt query

does reveal the session key, so any Corrupt query makes all oracles unfresh. For

the version of the definition with forward secrecy a Corrupt query may reveal a SK

only if the Corrupt query was made before the Test query. It is also required that

the Test query was to an oracle that was the target of a Send query. This acts to

build a requirement: that even after the Corrupt query, session keys exchanged by

principals who behave honestly are still fs-fresh [1].

Accepting and Terminating

We differentiate between an instance accepting and terminating. When an instance

terminates, it means that it has what it wants and won’t send out any further

messages. An instance may wish to accept now, and terminate later, this happens

typically when an instance believes it is holding a good session key, but, before using

it, the instance wants confirmation that its communication partner really exists, and

is holding the same session key. The instance can accomplish this by accepting now,

but waiting for a confirmation message to terminate [1].

Advantage of the Adversary

Let Event Succ be the event when adversary A succeeds. Event Succ occurs if the

adversary asks for a single Test-Query Test(U, i) where Πi
U has terminated, it is

fresh and A outputs a single bit b′ which b′ = b (where b is the bit selected by

the Test query). The advantage of an adversary A attacking protocol P , is defined

as AdvakeP,A = 2Pr[Succ] − 1. Similarly, the ake-fs Advantage, AdvakeP,A(). An extra

condition is required to the oracle Πi
U , to which the Test-Query is directed, must

be fs-fresh [1]. If the adversary was unrestricted, success would be trivial (since

the adversary could submit a Reveal query for the same instance submitted to the

Test oracle). Some restrictions are imposed to prevent it. A polynomially bounded

adversary will be able to break any protocol by attempting to impersonate a user

and trying all passwords one-by-one. So, a given protocol is secure when this kind

of attack is the best an adversary can do.

In [11], the resources available to an adversary A were measured and it was

concluded that a protocol P is secure if, when passwords are chosen from a dic-

tionary of size N , the adversary’s advantage in attacking the protocol is bounded

30

by O(qsend
N

) + ε(λ), where qsend is the number of calls the adversary makes to the

Send oracle, and ε(.) is some negligible function. The first term represents the fact

that the adversary can do no better than guess a password during each call to the

Send oracle. Even polymonially-many calls to the Execute oracle (which are passive

observations of valid executions) and the Reveal oracle (compromise of short-term

session keys) are of no help to an adversary. Only online impersonation attacks

(which are harder to mount and easier to detect) give the adversary a non-negligible

advantage.

Authentication

In an protocol execution P , an adversary A violates client-to-server authentication if

some server oracle terminates but has no partner oracle. c2s advantage represents

the probability of this event, and is denoted by Advc2sP,A. An adversary violates

server-to-client authentication if some client oracle terminates but has no partner

oracle. Let s2c advantage be the probability of this event, denoted by Advs2cP,A. Also,

an adversary violates mutual authentication if some oracle terminates, but has no

partner oracle. ma-advantage defines the probability of this event, and is denoted

by AdvmaP,A.

An AKE protocol is easily modified to provide authentication. These transfor-

mations use a well-known approach of using the distributed session key to construct

a simple authenticator for the other party [1].

Relation to information theoretic security model

The security models for information theoretically secure Authenticated Key Agree-

ment (AKA) and computationally secure Password-Authenticated Key Exchange

(PAKE) that we have studied have fundamental differences that are obvious. The

former allows for an unbounded adversary, yet restricts the attack scenario to a

single exchange. On the other hand, the latter allows for many interactions, even

allowing the adversary to exploit cross-session attacks, yet only considers adversaries

that can be modeled as probabilistic polynomial time algorithms.

Nevertheless, the models do have some properties in common. In particular,

both definitions identify two types of events in a protocol execution, corresponding

to two different types of states that can be reached by participants:

• Getting the values needed for preparing the key. This state is described as

Accepting in PAKE and KeyDerived in AKA.

31

• Sending of the authenticated ciphertext. The is the final state and is described

as terminating in PAKE and Keyconfirmed in AKA.

However, in the PAKE model, the idea of key confirmation is the following:

when one of the participants gets the needed information from the other party

and holds a good session key, it will still wait for some type of confirmation that

their partner really exists, and is holding the same session key. The participant

can accomplish this by Accepting now, but waiting for a confirmation message to

terminate [1]. In AKA, Alice reaches KeyDerived after Bob has issued a challenge

and Alice possesses a random candidate key. Alice, contrary to what happens in

PAKE, has no information if her key is shared with Bob nor if he is even involved

in the protocol [7]. When in PAKE, a participant Terminates, it means that it has

what it wants and won’t send out any further messages [1]. In AKA, to Bob reaching

the KeyConfirmed state and getting a candidate key means that Alice must have

been involved in the protocol execution, must have reached the KeyDerived state,

and the two parties have shared the same key [7].

4.2 A concrete PAKE protocol

Katz, Ostrovsky and Yung present their PAKE protocol presented in [11]. This

protocol relies on the following building blocks: an extension of the Cramer-Shoup

cryptosystem, secure under adaptive chosen-ciphertext attack; a one-time signature

scheme secure against existential forgery; and finally, the proof also relies on the

Decisional Diffie-Hellman assumption.

The extended Cramer-Shoup encryption is an extension to the original algorithm.

We firstly studied the security analysis of Cramer-Shoup’s CS1A algorithm [5]. This

particular version was the basis for the extension presented. Extended Cramer-

Shoup uses some extra arguments, which are used to tag a principal as either a

client or a server. The protocol distinguishes between these two types of principals

as they have two different roles. Two different encryption schemes are used, and

labeled client and server encryption, respectively. We have analyzed where the

original and the extension scheme diverged, and focused our study in the security

games that were affected. The sole difference in the security proofs between the two

schemes concerns the use of the hash function. Contrarily to the CS1A scheme, the

hash arguments in the extended version are not randomly sampled. Some of the

extra arguments that form the hash function argument are given by the adversary.

This means that the original security proof by Cramer and Shoup [5] does not apply,

and the notion of a UOWHF must be used instead the use of a TCR hash function.

32

To deal with this, we have constructed an alternative sequence of games, where the

security of the extension is proven.

No particular one-time signature scheme was predefined, the only requirement

was that the one-time signature must be secure against existential forgery [11]. We

opted to study one of the most famous one-time signature schemes: Lamport’s One-

time signature. Based on the security proof where the signature is proven weakly

existentially unforgeable [10], we have created a modified proof that shows this

signature is strongly existentially unforgeable.

After each of these security analyses were made, we performed a concrete security

study where we found the minimum values needed in each component in order to the

protocol reaches a secret key for the two parties that will assure a 128-bit security

level.

Protocol description

Consider figure 4.1. Let p, q be primes such that q|p− 1, and let G be a subgroup of

Z∗p of order q in which the Decisional Diffie-Hellman assumption holds. During the

initialization phase, generators g1, g2, h, c, d ∈ G and a function H from a family of

universal one-way hash functions are chosen at random and published. No one must

know the discrete logarithm of any of the generators with respect to any other, for

this matter either a trusted party who generates the public information or else a

source of randomness which can be used to publicly derive the information is needed.

As part of the initialization phase, a password pwC is chosen randomly for a

client. All passwords lie in Zq, for typical values of |q|. This will be a valid assump-

tion for human-memorable passwords.

Execution of the protocol is as follows: When a client wants to connect to a

server, the client first runs the key generation algorithm for the one-time signature

scheme, giving VK and SK.

Then, the client computes client-encryption of gpwC1 . This, along with the client’s

identification, is sent to the server as the first message. The server chooses ran-

dom elements x2, y2, z2, w2 from Zq, computes α′ using the first message, and forms

gx2
1 g

y2

2 h
z2(cdα

′
)w2 . The server then computes a server-encryption of gpwC1 . This

is sent back to the client as the second message. The client selects random el-

ements x1, y1, z1, w1 from Zq, computes β′ using the second message, and forms

K = gx1
1 g

y1

2 h
z1(cdβ

′
)w1 . Finally, β′ and K are signed using the signing key SK, which

was generated in the first step.

33

Client public information: p,q,g1,g2,h,c,d,H Server

(VK,SK)← Gen(1λ)
r1 ← Zq
A = gr11 ;B = gr12

C = hr1gpwC

1

α = H(Client|VK|A|B|C)
D = (cdα)r1 Client|VK|A|B|C|D

−−−−−−−−−−−−−−−−−−−−−−−−−→
x2, y2, z2, w2, r2 ← Zq

α′ = H(Client|VK|A|B|C)

E = gx2
1 gy22 hz2(cdα

′
)w2

F = gr21 ;G = gr22

I = hr2gpwC

1

β = H(Server|E|F |G|I)
Server|E|F |G|I|J

←−−−−−−−−−−−−−−−−−−−−−−−
J = (cdβ)r2

x1, y1, z1, w1 ← Zq
β′ = H(Server|E|F |G|I)

K = gx1
1 gy12 hz1(cdβ

′
)w1

Sig = Sign(SK, β′|K) K|Sig
−−−−−−−−−−−−−−−−−−−−−−−−→

if Vrfy(VK, (β|K), Sig) = 1
C ′ = C/gpwC

1

skS = Kr2Ax2By2(C ′)z2Dw2

else skS ← G
I ′ = I/gpwC

1

skC = Er1F x1Gy1(I ′)z1Jw1

Figure 4.1: protocol for password authentication key exchange [11].

Correctness

In a honest execution of the protocol, client and server calculate identical session

keys. To see this, note that α = α′ and β = β′ in an honest execution. Then skC =

(gx2
1 gy22 hz2(cdα)w2)r1gr2x1

1 gr2y12 hr2z1(cdβ)r2w1 and skS = (gx1
1 gy12 hz1(cdβ)w1)r2gr1x2

1 gr1y22 hr1z2(cdα)r1w2

is easy to verify that skC = skS [11].

Security of the scheme

Let P be the protocol in Figure 4.1, where passwords are chosen from a dictionary

of size N , and let λ = |q| be the security parameter. Let A be a probabilistic,

polynomial-time adversary that asks qexecute, qsend and qreveal queries to the respective

oracles. Then the advantage of an adversary A in attacking this protocol is proven

in [11] to be

AdvakeP,A(λ) <
qsend
2N

+ 2qsendεsig(λ, t) + 2εddh(λ, t) + 2qsendεcs(λ, t, qsend/2)

+ 2qsendεhash(λ, t) +
min{2qreveal, qsend}

q
+

2min{qreveal, qexecute}
q2

. (4.1)

34

We take a closer look at the negligible terms present in the advantage of an

adversary A against PAKE protocol. There are three types of queries that A can

call. We will set A’s capability to send up to 240 send queries. Usually there are less

reveal and execute queries than send queries. Nevertheless we set qreveal = qexecute =

qsend = 240 queries.

4.3 Lamport’s one-time signature scheme

A one-time signature is a signature scheme which is, as its name suggests, secure

when is used only one time. We describe the building-block functions of Lamport’s

one-time signature scheme as Π = (Gen, Sign,Vrfy) in Figure 4.2, where Gen is a

probabilistic algorithm, Sign, Vrfy are deterministic algorithms and f is a one-way

function.

Gen(1λ) Sign(SK,m) Vrfy(VK,m, σ)

For 1 ≤ i ≤ l: m = (m1, . . . ,ml); m = (m1, . . . ,ml), σ = (x1, . . . , xl);
xi,0 ← {0, 1}λ, xi,1 ← {0, 1}λ, σ = (x1,m1 , . . . , xl,ml

); If forall 1 ≤ i ≤ l f(xi) = yi,mi ,
yi,0 = f(xi,0), yi,1 = f(xi,1); return σ. return 1;
SK = {xi,b : 1 ≤ i ≤ l, b ∈ {0, 1}}; else
VK = {yi,b : 1 ≤ i ≤ l, b ∈ {0, 1}}; return 0.
return (VK,SK).

Figure 4.2: Lamport’s one-time signature scheme Π = (Gen, Sign,Vrfy).

Security Analysis

Theorem 4. ([10]) Let l = l(λ) be any polynomial. If a function f is target col-

lision resistant and one-way, then Lamport’s one-time signature scheme is strongly

existentially unforgeable against chosen-message attack for messages of length l(λ).

Let Π = (Gen, Sign,Vrfy) be Lamport’s scheme, consider the experiment in fig-

ure 4.2 for a probabilistic, polynomial-time adversary A. We recall the strong

unforgeability experiment for the particular case of Π in figure 4.3, denoted as

SigForgesEUF−CMA
A,Π (λ). Consider the particular case when a successful adversary

A that outputs a message already queried to the signing oracle but now with a

different signature. We name the event when A submits a pair (m,σ) with m = m′

and σ 6= σ′ as event E.
For legibility purposes, we rename the experiments of strong and weak existential

unforgeability, where the adversary must forge on a new message as follows:

• WEAK = SigForgewEUF−CMA
A,Π (λ);

• STRONG = SigForgesEUF−CMA
A,Π (λ).

35

Experiment SigForgesEUF−CMA
A,Π (λ):

(SK,VK)← Gen(1λ); Sign(SK,m)

(m,σ)← ASignOracle(m′)(VK); m = (m1, . . . ,ml);
if (m,σ) 6= (m′, σ′), Vrfy(VK,m, σ) = 1, return 1; σ = (x1,m1

, . . . , xl,ml
);

else return 0. return σ.

Gen(1λ) Vrfy(VK,m, σ)

For 1 ≤ i ≤ l: m = (m1, . . . ,ml), σ = (x1, . . . , xl);
xi,0 ← {0, 1}λ, xi,1 ← {0, 1}λ, If forall 1 ≤ i ≤ l f(xi) = yi,mi

,
yi,0 = f(xi,0), yi,1 = f(xi,1); return 1;
SK = {xi,b : 1 ≤ i ≤ l, b ∈ {0, 1}}; else
VK = {yi,b : 1 ≤ i ≤ l, b ∈ {0, 1}}; return 0.
return (VK,SK).

Figure 4.3: Strong existential unforgeability experiment against a probabilistic, polynomial-time
adversary A.

Taking in consideration the occurrence of event E, we represent A’s success proba-

bility in SigForgesEUF−CMA
A,Π (λ) as:

Pr[STRONG = 1] = Pr[STRONG = 1 ∧ E] + Pr[STRONG = 1 ∧ ¬E]; (4.2)

= Pr[E]Pr[STRONG = 1|E] + Pr[¬E]Pr[STRONG = 1|¬E]. (4.3)

Event E denotes an event that is not considered in the weak unforgeability exper-

iment SigForgewEUF−CMA
A,Π (λ): reusing the signature previously issued by an adver-

sary. We can then assume that the advantage of A in SigForgesEUF−CMA
A,Π (λ) if event

E does not occur, is equal to the advantage of A in SigForgewEUF−CMA
A,Π (λ),

Pr[STRONG = 1|¬E] = Pr[WEAK = 1]. (4.4)

So Pr[STRONG = 1] can be described as:

Pr[STRONG = 1] ≤ Pr[E]Pr[STRONG = 1|E] + Pr[WEAK = 1]. (4.5)

The proof now follows from the following two claims, the first of which is proven

by Katz and Lindell in [10].

Claim 1. AdvwEUF−CMA
A,Π (λ) = Pr[SigForgewEUF−CMA

A,Π (λ) = 1] ≤ 2l(λ)εowf (λ).

Claim 2. Pr[SigforgesEUF−CMA
A,Π (λ) = 1|E] ≤ 2l(λ)εtcr(λ).

Proof. The intuition is the following: if event E occurs, the adversary A has suc-

cessfully found a new preimage to m′ under f , which is the same as A breaking the

target collision resistance property of f .

36

Algorithm B(x∗, y∗) Gen(x∗, y∗) Sign(SK,m)

(VK,SK)← Gen(x∗, y∗); i∗ ← {1, . . . , l}, b∗ ← {0, 1}; if mi∗ 6= b∗ halt;

(m,σ)← AsignOracle(m′)(VK); yi∗,b∗ = y∗;xi∗,b∗ = x∗; σ = (x1,m1
, . . . , xl,ml

);
if m 6= m′ halt; if σ = σ′ halt; forall 1 ≤ i ≤ l, b ∈ {0, 1} : return σ.
if Vrfy(VK,m, σ) = 1, return xi∗ ; if (i, b) 6= (i∗, b∗),
else halt. xi,b ← {0, 1}λ, yi,b = f(xi,b);

return (y, x).

Figure 4.4: Algorithm B.

Formally, we have created algorithm B, presented in figure 4.4, that given y∗, x∗ ∈
{0, 1}λ uses A to break the TCR assumption. We describe the advantage of breaking

the TCR assumption as εtcr(λ) which is assumed to be negligible, and so we must

have that B’ probability of success is upper bounded by εtcr(λ).

A marked bit (i∗, b∗) used in the message proposed is independently chosen from

A’s view. The probability of x∗ being used in a signature is 1/2. Adversary A needs

to produce a signature σ where σ 6= σ′. A signature σ is different from σ′ if has at

least one element where σi 6= σ′i . The probability of A altering the marked bit σi∗

is 1/l. So the probability of A choosing a marked x∗ in SK is 1
2l

.

1

2l(λ)
Pr[STRONG = 1|E] ≤ εtcr(λ); (4.6)

Pr[STRONG = 1|E] ≤ 2l(λ)εtcr(λ). (4.7)

Finally we calculate the overall advantage of A in the Strong unforgeability

experiment, as follows.

Pr[STRONG = 1] ≤ Pr[WEAK = 1] + Pr[STRONG = 1|E]; (4.8)

Pr[STRONG = 1] ≤ 2l(λ)εtcr(λ) + 2l(λ)εowf (λ); (4.9)

4.4 Extended Cramer-Shoup cryptosystem

The Cramer-Shoup cryptosystem is an encryption scheme secure under adaptive

chosen ciphertext attack [5]. An extension to this cryptosystem was presented in

[11] which has two different encryption versions, where both versions use the same

public parameters. This extension is also claimed secure under adaptive chosen

ciphertext attacks. We will distinguish and present with detail the two versions of

37

the extension as ΠC regarding the client encryption and ΠS regarding the server

encryption. We will then perform a security analysis on both versions, based on

the security analysis of the CS1A version of the Cramer-Shoup cryptosystem [5].

In Figure 4.5 we present these extended schemes in detail. Keeping in mind the

notation and numbering used in similar diagrams in [5], we denote the extra steps

needed on this extension as X∗ (e.g. E1∗).

GenC(Γ[Ĝ,G, g, q])

w
R←− Z∗q ; x1, x2, y1, y2, z

R←− Zq ;

hk
R←− HF.KeyspaceΓ;

PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h),
PK ∈ [S]× [HF.Keyspace]×G4,
where ĝ = gw, e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;
SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z),
SK ∈ [S]× [HF.Keyspace]× Z5

q ;
return (PK,SK).

GenS(Γ[Ĝ,G, g, q])

w
R←− Z∗q ; x1, x2, y1, y2, z

R←− Zq ;

hk
R←− HF.KeyspaceΓ;

PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h),
PK ∈ [S]× [HF.Keyspace]×G4,
where ĝ = gw, e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;
SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z),
SK ∈ [S]× [HF.Keyspace]× Z5

q ;
return (PK, SK).

EncC(m,Client,PK)

E1∗ : (VK, SK)← SigGen();
E2∗ : A← Client;
E3∗ : B ← VK;

E1 : u
R←− Zq ;

E2 : a← gu;
E3 : â← ĝu;
E4 : b← hu;
E5 : c← b.m;
E6 : v ← HFΓ

hk(A,B, a, â, c);
E7 : d← eufuv ;
return (ψ = 〈A,B, a, â, c, d〉, SK).

EncS(m,Server, α,PK)

E1∗ : x′, y′, z′, l← Zq ;
E2∗ : A← Server;

E3∗ : B ← gx
′
ĝy
′
hz
′
(cdα)l;

E1 : u
R←− Zq ;

E2 : a← gu;
E3 : â← ĝu;
E4 : b← hu;
E5 : c← b.m;
E6 : v ← HFΓ

hk(A,B, a, â, c);
E7 : d← eufuv ;
return (ψ = 〈A,B, a, â, c, d〉, x′, y′, z′, l).

DecC(ψ := 〈A,B, a, â, c, d〉)
D1 : parse ψ as a 6-tuple (A,B, a, â, c, d) ∈ Client× Ĝ5,
output reject and halt if it is
not of this form;
D2 : if A ∈ Client and B, a, â, c ∈ G, otherwise output
reject and halt;
D3 : v ← HFΓ

hk(A,B, a, â, c);
D4 : if d = ax1+y1v âx2+y2v , otherwise output reject and
halt;
D5 : b← az ;
D6 : m← c · b−1;
return m.

DecS(ψ := 〈A,B, a, â, c, d〉)
D1 : parse ψ as a 6-tuple (A,B, a, â, c, d) ∈ Server× Ĝ5,
output reject and halt if it is
not of this form;
D2 : if A ∈ Server and B, a, â, c ∈ G, otherwise output
reject and halt;
D3 : v ← HFΓ

hk(A,B, a, â, c);
D4 : if d = ax1+y1v âx2+y2v , otherwise output reject and
halt;
D5 : b← az ;
D6 : m← c · b−1;
return m.

Figure 4.5: Extended Cramer-Shoup encryption scheme. In the left side we present the client
version ΠC = (GenC ,EncC ,DecC), and in the right side the server version ΠS = (GenS ,EncS ,DecS).

Security model

The definitions of security that must be met by these encryption schemes are very

close to the standard notion of IND-CCA. The two security experiments are de-

scribed in Figure 4.6. Compared to an IND-CCA experiment, these experiments

only differ in step 2., where A (A′) gives only one message m∗. Although, like in the

IND-CCA experiment, the adversary must be able to distinguish between two mes-

sages, in this case, the adversary must choose between message m∗ and a randomly

38

created message. Furthermore, the adversary gets to choose additional parameters

including the identity of the client/server.

ExpΠC ,A

• (PK,SK)← GenC(Γ);

• (m∗, C, st)← ADecrypt(.)
1 (PK);

• m0
R←− Msg.Keyspace; m1 = m∗;

b
R←− {0, 1};

• c← EncC(mb, C,PK);

• b′
R←− ADecrypt(.)

2 (c, st);

• return(b = b′).

ExpΠS ,A′

• (PK,SK)← GenS(Γ);

• (m∗, S, α, st)← A′Decrypt(.)
1 (PK);

• m0
R←− Msg.Keyspace; m1 = m∗;

b
R←− {0, 1};

• c← EncS(mb, S, α,PK);

• b′
R←− A′Decrypt(.)

2 (c, st);

• return(b = b′).

Figure 4.6: Security experiments for the client version ΠC (reps. server version ΠS) of extended
Cramer-Shoup.

Security analysis

The Cramer-Shoup cryptosystem (CS1A version) is secure under adaptive chosen ci-

phertext attack if decisional Diffie-Hellman holds in G and target collision resistance

assumption holds for an hash function HF [5]. The advantage of a polynomially-

bounded adversary A against an adaptive chosen ciphertext attack is given by

AdvCCACS1,A(λ|Γ) ≤ AdvDDHG,A1(λ|Γ)+AdvTCRHF,A2(λ|Γ)+(QA(λ)+4)/q. (4.10)

We have studied the sequence of security games regarding CS1A, and looked at

the proof steps in the analysis of the CS1A that did not apply to the analysis of

the extended version. Concretely, we have considered the security games G1, . . . , G4

from both client and server versions of the extension to be equivalent to those used in

the proof of CS1A. Beyond the extra parameters that are computed in the extension,

the only difference relates to the hash function HF. In the extension HF has extra

parameters, some of them are not randomly sampled, but given by the adversary.

We therefore have looked at the parts of the security proof that are affected by this

change, in order to have a valid security reduction for extended Cramer-Shoup. The

critical point is the game hop leading to game G5, based on a reduction to the TCR

property of hash function HF. This game includes a new rule defined as:

if the adversary sends a ψ = (a, â, c) 6= (a∗, â∗, c∗) and HF(ψ) = HF(ψ∗),

then the decryption oracle outputs reject.

39

In the extension the rejection rule must include (in both versions) the extra variables

A and B, where A is chosen by the adversary. So the rejection rule becomes:

if the adversary sends a ψ = (A,B, a, â, c) 6= (A∗, B∗, a∗, â∗, c∗) and

HF(ψ) = HF(ψ∗), then the decryption oracle outputs reject.

Since part of the hash function input is provided by the adversary, we must

assume that the HF is a universal one-way hash function, instead of TCR as defined

in the original paper.

We show the modified games G4 and G5 for both client and server versions in

detail below. As the rejection rule only alters the games in the Decryption Oracle,

we will keep the description of both the games in common with exception to this

component. Keeping in mind the notation used in [5], we denote the extra steps

needed in this extension as X∗ (e.g. E1∗) and the altered steps in the previous

security games as X ′ (e.g. E3′).

The two games for the client version ΠC are presented in Figure 4.7 where we

present on top the unaltered functions for the two games, and below two decryption

oracles respectively for G4 and G5. We marked the altered step in both games

underlining it. When compared with the original CS1A games, the client version of

the extension has three extra values VK, SK ∈ Zp that are calculated independently

from the adversary’s view. Value VK = B is used as part of the argument of the hash

function HF. EncC outputs the pair (ψ, SK) where VK is part of ψ = 〈A,B, a, â, c, d〉.
On the other hand, value A ∈ {Client} is given by the adversary to EncC and used

as part of the argument of the hash function HF.

Figure 4.8 shows the same two games for the server version ΠS. As before,

on the top we present the unaltered functions to both games, and below the two

decryption oracles for G4 and G5 with the altered step underlined. As seen before in

the client version, some extra parameters are used that are chosen by the adversary.

In this case, two extra parameters are given by the adversary A ∈ {Server} and

α ∈ Zp. These two extra values are given as arguments to EncS. EncS returns

ψ = 〈A,B, a, â, c, d〉 along with a set of values {x′, y′, z′, l}, this set of values along

with value α and the public parameters are used to create value B, part of ψ.

40

G4 and G5 games for ΠC GenC(Γ[Ĝ,G, g, q])

(PK,SK)← GenC(Γ); w
R←− Z∗q ; x1, x2, y1, y2, z

R←− Zq ;
(m∗, C, st)← ADecOracle

1 (PK); hk
R←− HF.KeyspaceΓ;

ψ ← RealOrRandom(m∗, C); PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h),
σ′ ← ADecOracle

2 (ψ, st); PK ∈ [S]× [HF.Keyspace]×G4,

return(σ
?
= σ′). where ĝ = gw, e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;

SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z),
SK ∈ [S]× [HF.Keyspace]× Z5

q ;
return(PK, SK).

RealOrRandom(m∗, C) Encryption(m,C)

σ
R←− {0, 1}; E1∗ : (VK, SK)← SigGen();

if σ = 0: m = m∗; E2∗ : A← C;
otherwise, E3∗ : B ← VK;

if σ = 1: m
R←− PKE.MsgSpace; E1 : u

R←− Zq ;
ψ ← Encryption(m,C); E2 : a← gu;

return(ψ). E3′ : û
R←− Zq\{u}; â← ĝû;

E4′ : b← az1 âz2 ;

E5′ : r
R←− Zq ; c← gr;

E6 : v ← HFΓ
hk(A,B, a, â, c);

E7′ : d← ax1+y1v âx2+y2v ;
return (ψ = 〈A,B, a, â, c, d〉, SK).

G4 G5

DecryptionOracle(ψ := (A,B, a, â, c, d)) DecryptionOracle(ψ := (A,B, a, â, c, d))

D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ User × Ĝ5; D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ User × Ĝ5;
output reject and halt if it is not of this form; output reject and halt if it is not of this form;
D2 : if A ∈ User and B, a, â, c ∈ G; D2 : if A ∈ User and B, a, â, c ∈ G;
otherwise return reject and halt; otherwise return reject and halt;
D3 : v ← HFΓ

hk(A,B, a, â, c); D3′ : if (A,B, a, â, c) 6= (A∗, B∗, a∗, â∗, c∗)

D4′ : Tests if â = aw e d = ax+yv ;1 and v = v∗ where v ← HFΓ
hk(A,B, a, â, c)

return reject and halt if it is not the case. return reject and halt.

D5′ : b← az ; D4′ : Tests if â = aw e d = ax+yv ;1

D6 : m← c · b−1; return reject and halt if it is not the case.
return(m). D5′ : b← az ;

D6 : m← c · b−1;
return(m).

1x := x1 + x2w, y := y1 + y2w, w := logg ĝ

Figure 4.7: Security games 4 and 5, regarding the Client version of the extension.

We have created an algorithm BC which uses A as a subroutine, and attach the

UOWHF property of the hash function ifA can distinguish the game hop in the client

version. Similarly, we have created an algorithm BS that uses A′ as a subroutine,

and attach the UOWHF property of the hash function if A′ can distinguish the

game hop in the server version. These algorithms are presented in Figure 4.9 and

4.10, respectively.

41

G4 and G5 games for ΠS GenS(Γ[Ĝ,G, g, q])

(PK,SK)← GenS(Γ); l
R←− Z∗q ; x1, x2, y1, y2, z

R←− Zq ;
(m∗, S, α∗, st)← ADecOracle

1 (PK); hk
R←− HF.KeyspaceΓ;

ψ ← RealOrRandom(m∗, S, α∗); PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h),
σ′ ← ADecOracle

2 (ψ, st); PK ∈ [S]× [HF.Keyspace]×G4,

return(σ
?
= σ′). where ĝ = gw, e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;

SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z),
SK ∈ [S]× [HF.Keyspace]× Z5

q ;
return(PK,SK).

RealOrRandom(m∗, S, α∗) Encryption(m,S, α)

σ
R←− {0, 1}; E1∗ : x′, y′, z′, l← Zq

if σ = 0: m = m∗; E2∗ : A← S;

otherwise, E3∗ : B ← gx
′
ĝy
′
hz
′
(efα)l

if σ = 1: m
R←− PKE.MsgSpace; E1 : u

R←− Zq ;
ψ ← Encryption(m,S, α∗); E2 : a← gu;

return(ψ). E3′ : û
R←− Zq\{u}; â← ĝû;

E4′ : b← az ;

E5′ : r
R←− Zq ; c← gr;

E6 : v ← HFΓ
hk(A,B, a, â, c);

E7′ : d← ax1+y1v âx2+y2v ;
return(ψ = 〈A,B, a, â, c, d〉, x′, y′, z′, l).

G4 G5

DecryptionOracle(ψ := (A,B, a, â, c, d)) DecryptionOracle(ψ := (A,B, a, â, c, d))

D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ User × Ĝ5; D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ User × Ĝ5;
output reject and halt if it is not of this form; output reject and halt if it is not of this form;
D2 : if A ∈ User and B, a, â, c ∈ G, D2 : if A ∈ User and B, a, â, c ∈ G,
otherwise return reject and halt; otherwise return reject and halt;
D3 : v ← HFΓ

hk(A,B, a, â, c); D3′ : if (A,B, a, â, c) 6= (A∗, B∗, a∗, â∗, c∗)

D4′ : Tests if â = aw e d = ax+yv ;1 and v = v∗ where v ← HFΓ
hk(A,B, a, â, c)

return reject and halt if it is not the case; return reject and halt;

D5′ : b← az ; D4′ : Tests if â = aw e d = ax+yv ;1

D6 : m← c · b−1; return reject and halt if it is not the case;
return(m). D5′ : b← az ;

D6 : m← c · b−1;
return(m).

1x := x1 + x2w, y := y1 + y2w, w := logg ĝ

Figure 4.8: Security games 4 and 5, regarding the Server version of the Extension.

42

BC Algorithm BC1(Γ[Ĝ,G, g, q])

ρ∗, st← BC1(Γ); A∗
R←− Client;

hk
R←− HF.KeyspaceΓ; (VK∗, SK∗)← SigGen();

ρ′ ← BC2(hk,Γ, ρ
∗, st). B∗ = VK∗;

u
R←− Zq ; a∗ = gu;

BC2(hk,Γ, ρ
∗, st) w

R←− Z∗q ; ĝ = gw;

(PK,SK)← Gen(Γ, hk); û
R←− Zq/{u}; â∗ = ĝû;

(m′, C)← ADecOracle(ψ)
1 (PK); r

R←− Zq ; c∗ = gr;
ψ∗ ← RealOrRandom(m′, C); ρ∗ = (A∗, B∗, a∗, â∗, c∗);

ρ′ ← AdecOracle(ψ)
2 (ψ∗), ψ∗ 6= ψ; return(ρ∗, st := (φ, u, w, û, r)).

return(ρ′).

RealOrRandom(m,C)

Gen(Γ[Ĝ,G, g, q], hk) if C 6= A∗, BC2 halt;

x1, x2, y1, y2, z
R←− Zq ; otherwise:

PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h), ψ ← Encryption(m,C);
PK ∈ [S]× [HF.Keyspace]×G4; return(ψ).

where e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;

SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z), Encryption(m,C)

SK ∈ [S]× [HF.Keyspace]× Z5
q ; E6 : v ← HFΓ

hk(A,B, a, â, c);
return(PK, SK). E7′ : d← ax1+y1v âx2+y2v ;

return(ψ = 〈A,B, a, â, c, d〉,SK).

DecryptionOracle(ψ := (A,B, a, â, c, d))

D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ Server × Ĝ5,
return reject and halt if it is not of this form;

D2 : if A ∈ Server and if B, a, â, c ∈ G,
otherwise return reject and halt;

D3′ : if (A,B, a, â, c) 6= (A∗, B∗, a∗, â∗, c∗) and v = v∗,
where v ← HFΓ

hk(A,B, a, â, c) then return(A,B, a, â, c) and halt,

otherwise return reject and halt.

Figure 4.9: BC algorithm regarding the client version ΠC .

The arguments for the client and server versions are roughly the same, so we

present a single argument referring to an algorithm B. We consider the probability

of B winning the game and define two events using the notation present in [5].

• Event U5 - when the value of A∗ ∈ User, is equal to a given value by A;

• Event C5 - the new rejection rule in the decryption oracle is activated.

We define the probability of B winning the game subject to the occurrence of event

U5 when the adversary gives an equal value A to the one issued by the algorithm.

Pr[Bwin] = Pr[Bwin ∧ U5] + Pr[Bwin ∧ ¬U5]; (4.11)

Pr[Bwin] = Pr[Bwin|U5].P r[U5] + Pr[Bwin|¬U5].P r[¬U5]; (4.12)

Pr[Bwin] = Pr[Bwin|U5].
1

|User|
+ 0; 1 (4.13)

Pr[Bwin] = Pr[Bwin|U5]
1

|User|
. (4.14)

We have stated before that the probability of A winning B is the same as the

1We have that Pr[Bwin|¬U5].P r[¬U5] = 0 because B aborts in the case that the value given

43

BS Algorithm BS1(Γ[Ĝ,G, g, q])

ρ∗, st← BS1(Γ); A∗
R←− Server;

hk
R←− HF.KeyspaceΓ; φ

R←− Zq ;B∗ = gφ;1

ρ′ ← BS2(hk,Γ, ρ
∗, st). u

R←− Zq ; a∗ = gu;

w
R←− Z∗q ; ĝ = gw;

BS2(hk,Γ, ρ
∗, st) û

R←− Zq/{u}; â∗ = ĝû;

PK, SK← Gen(Γ, hk); r
R←− Zq ; c∗ = gr;

(m′, S, α)← A′DecOracle(ψ)
1 (PK); ρ∗ = (A∗, B∗, a∗, â∗, c∗);

ψ∗ ← RealOrRandom(m′, S, α); return(ρ∗, st := (φ, u, w, û, r)).

ρ′ ← A′decOracle(ψ)
2 (ψ∗), ψ∗ 6= ψ;

return(ρ′). RealOrRandom(m,S, α)

if S 6= A∗, BS2 halt;

Gen(Γ[Ĝ,G, g, q], hk) otherwise:

x1, x2, y1, y2, z
R←− Zq ; ψ ← Encryption(m,S, α);

PK := (Γ[Ĝ,G, g, q], hk, ĝ, e, f, h), return(ψ).

PK ∈ [S]× [HF.Keyspace]×G4 ,
where e = gx1 ĝx2 , f = gy1 ĝy2 , h = gz ;

SK := (Γ[Ĝ,G, g, q], hk, x1, x2, y1, y2, z),
SK ∈ [S]× [HF.Keyspace]× Z5

q ;
return(PK, SK).

Encryption(m,S, α)

E1∗ : y′, z′, l← Zq ;
E3∗ : x′ = φ− (wy′ + zz′ + l(x1 + wx2 + α(x1 + wx2 + y1 + wy2))) mod q;2

E6 : v ← HFΓ
hk(A,B, a, â, c);

E7′ : d← ax1+y1v âx2+y2v ;
return(ψ = 〈A,B, a, â, c, d〉, x′, y′, z′, l).

DecryptionOracle(ψ := (A,B, a, â, c, d))

D1 : parse ψ as a 5-tuple (A,B, a, â, c, d) ∈ Server × Ĝ5;
return reject and halt if it is not of this form;

D2 : if A ∈ Server and if B, a, â, c ∈ G;
otherwise return reject and halt;

D3′ : if (A,B, a, â, c) 6= (A∗, B∗, a∗, â∗, c∗) and v = v∗,
where v ← HFΓ

hk(A,B, a, â, c) then return(A,B, a, â, c) and halt,

otherwise return reject and halt.

1B∗ = gφ = gx
′
gwy

′
gzz
′
.(gx1+wx2(gy1+wy2)α)l

2φ = x′ + wy′ + zz′ + l(x1 + wx2 + α(x1 + wx2 + y1 + wy2))

Figure 4.10: BS algorithm regarding the server version ΠS.

advantage it has against a UOWHF:

Pr[Bwin] ≤ εuow(λ); (4.15)

Pr[Bwin|U5]
1

|User|
≤ εuow(λ); (4.16)

Pr[Bwin|U5] ≤ |User|εuow(λ); (4.17)

We know from [5] that |Pr[R5] − Pr[R4]| ≤ Pr[C5]. Furthermore, it is easy to see

that the environment in which B runs the adversary conditioned on U5, and up

until C5 occurs is identical to both games G4 and G5. In this extension Pr[C5] =

by A doesn’t match A∗.

44

Pr[Bwin|U5] = Pr[Bwin]. Putting things together, we get

|Pr[R5]− Pr[R4]| ≤ Pr[C5] ≤ |User|εuow(λ). (4.18)

Finally, combining the previous result with the full security proof for the Cramer-

Shoup cryptosystem presented in [5] we have reached an expression for the advantage

of an adversary against the Extended Cramer-Shoup:

AdvCCAExtCS,A(Γ) ≤ AdvDDHG,A1(Γ) + |User| AdvUOWHF,A2(Γ) +
QA + 3

q
. (4.19)

4.5 Global concrete security analysis

After the presented analysis of Lamport’s One-time Signature, and the Extension to

the Cramer-Shoup Encryption scheme, we recall the PAKE adversarial advantage

described in equation 4.1. We will now perform a concrete security analysis around

the PAKE protocol.

Extended Cramer-Shoup

We recall Extended Cramer-Shoup advantage in PAKE’s context in equation 4.1,

where we want to guarantee 128 bit security:

2qsend(AdvCCAExtCS,A(Γ)) ≤ 2−128. (4.20)

As previously defined, we will use |User| = max(|Server|, |Client|) = 210, QA = 240,

qsend = 240. Plugging these values in to the advantage expression and combining

equations 4.19 and 4.20, we obtain

2qsend

(
AdvDDHG,A1(Γ) + εuow(λ).|User|+ 240 + 3

q

)
≤ 2−128;

AdvDDHG,A1(Γ) + εuow(λ).|User|+ 240 + 3

q
≤ 2−128

2qsend
;

AdvDDHG,A1(Γ) + εuow(λ).|User|+ 240 + 3

q
≤ 2−128

241
;

AdvDDHG,A1(Γ) + εuow(λ).|User| ≤ 2−169 − 240 + 3

q
;

AdvDDHG,A1(Γ) + εuow(λ).|User| ≤ 2−169;

45

From these calculations, and assigning the same weight to each term on the left-hand

side of the inequality, we reach:

AdvDDHG,A1(Γ) ≤ 2−170; εuow(λ) ≤ 2−170

|User|
= 2−180.

We need 2−170 security in AdvDDHG,A1(Γ) so, relying on the recommendations in [12],

we stipulate a group size of roughy 9185 bits. In Extended Cramer-Shoup we need to

assure the universal one-wayness of the hash function with a maximum advantage of

roughly 2−180. Following the recommendations provided by ECRYPT II [9] SHA-256

should be used.

Lamport’s One-Time Signature

The concrete security analysis of Lamport’s one-time signature is as follows. From

equations 4.1 and 4.9 we know the advantage of A against the one-time signature,

where we want to assure 128 bit security:

2qsend

(
Pr[SigForgesEUF−CMA

A,Π (λ) = 1]
)
≤ 2−128.

The message length used in the one-time signature influences its security needs.

Recalling figure 4.1, the signed message by the one-time signature is formed as

(β | K), where β is of hash output of size 256 bits, and K ∈ Zq, its length was

9185 bits, as calculated in the previous section. So the message length l will be

l = 9185 + 256 ≈ 214 bits.

2qsend εsig(λ) ≤ 2−128;

2qsendPr[SigForge
sEUF−CMA
A,Π (λ) = 1] ≤ 2−128;

2qsend(2l(λ) εtcr(λ) + 2l(λ) εowf (λ)) ≤ 2−128;

2124022214(εtcr(λ) + εowf (λ)) ≤ 2−128;

Considering SHA family of hash functions, we assume that εowf ≈ εtcr. This allows

to estimate ε as

ε(λ) ≤ 2−128−40−14−2−1;

ε(λ) ≤ 2−185.

46

Using a cryptographic hash function, in the absence of any analytic weaknesses,

only brute force methods are available to the attacker. If n is the size of the hash

outputs, one would from a secure hash expect around 2n operations to be required to

break the pre-image resistance and 2nd pre-image resistance properties and around

2n/2 operations to break the property of collision resistance, due to the birthday

paradox. Consequently, we need to choose a secure f with a large enough n so

that breaking the second pre-image resistance property has a complexity over 2185.

Following the recommendations provided by ECRYPT II [9], SHA-256 should be

chosen.

Putting things together

Finally we will calculate the advantage against the Decisional Diffie-Hellman in

PAKE’s (equation 4.1).

2εddh(λ) ≤ 2−128;

εddh(λ) ≤ 2−128−1;

εddh(λ) ≤ 2−129.

For the Decisional Diffie-Hellman, we need 2−129 security. Using as reference [12],

we need a group size of q = 23307. Furthermore, this would immediately give us very

low values for the trailing terms in the definition of advantage, as can be seen below:

min{2qreveal, qsend}
q

+
2min{qreveal, qexecute}

q2
≤ 2−128;

241

q
+

2min{qsend, qsend}
q2

≤ 2−128;

241

q
+

241

q2
≤ 2−128;

241

q
+

241

q2
≤ 2−128;

241

23307
+

241

(23307)2
≤ 2−128.

Our conclusion is therefore that the group size we have defined earlier for the ex-

tended Cramer-Shoup scheme is more than enough.

47

4.6 Practical implementation

With the results achieved in the earlier sections, we have tested an implementation

of the PAKE protocol1 with the parameter sizes stipulated above. The results below

were achieved on a machine with a two core 2.4 Ghz Intel Core 2 duo processor with

5GB of RAM. The source code was optimized with gcc’s -O2 option. We achieved

a very satisfiable time and memory consuming value, approximately 1 MByte of

memory for each execution and the timings presented in table 4.1.

time 0m3.262s
0m3.269s
0m3.299s

Table 4.1: Execution times of PAKE’s C++ implementation.

1This implementation was mostly developed by Manuel Costa, prior to the beginning of this
dissertation work.

48

Chapter 5

Conclusion

In this dissertation we have analyzed two key agreement protocols offering different

security properties. These two protocols deal with weak sources of randomness in

order to two parties to securely communicate in the presence of an adversary that

controls the communication channel. In this thesis we assume that weak-secrets

used in both protocols came from the same type of source, in this case from the

common communication channel’s noise.

The IT-AKA protocol, proposed by Dodis et al. in [7], is a key-agreement frame-

work based on the notion of randomness extractors as its atomic function. The weak-

secret is mined for randomness. Intuitively, each component uses a pre-determined

number of bits from the weak-secret and for that bit length extracts some amount

of randomness needed in a particular process of the protocol. For this methodology

it is required that the weak-secret to have a minimum value of entropy to be able

to assure that the key agreed has at least the minimum level of security expected.

We have analyzed the various minimum length requirements in all of its building

blocks, in order to consolidate the minimum length size for the weak source that

would guarantee a global 128-bit security in the protocol. For each execution we

need at least a 216 bit weak secret, as the weak secret can only be used once. An

efficient construction of extractor has not yet been achieved. So, to reach a practical

implementation of the protocol we had to find a tangible substitute for the extractor.

In our experiments we simply used a standard cryptographic construction based on

SHA-256.

The PAKE protocol proposed in [11], has as main components an extension to the

Cramer-Shoup protocol and a one-time signature. The security properties from the

secret key created in PAKE are not derived directly by the randomness properties

the weak-secret. Instead, this is used as a password. Key security is achieved by

introducing fresh randomness in the protocol execution itself, and the weak-secret

49

is used as a boot-strapper for the protocol. We made a concrete security analysis

for the protocol’s building blocks that gave us a concrete values to achieve a 128-bit

security of global security. In particular, for the one-time signature we recommend a

hash function with at least 185-bit output, so we recommended the use of SHA-256

hash function. In the case of the extension to the Cramer-Shoup cryptosystem, we

needed group sizes of at least q = 29185 for the decisional Diffie-Hellman assumption

to imply the intended level of security, and a hash function with a 180-bit length

output, so it is recommended to use SHA-256 hash function.

Comparing the weak-secret size for both protocols, it is clear that the PAKE

protocol needs a substantially smaller weak-secret. In the information theoretic

setting, we have achieved values for the weak-secret size needed to derive a 128-bit

secure key to be at least 216 bits (8 kbytes) for each protocol execution, where each

new communication would need a fresh weak-secret. In the case of PAKE protocol,

it is only required that the weak secret retains sufficient entropy to ensure that a

successful guessing attack is infeasible, and this can be adjusted according to the

requirements of the application. Furthermore, a weak secret can be reused several

times, without compromising its security.

Although we have constructed implementations of both protocols, we note that

the two are not directly comparable, as they offer totally different security guar-

antees. The conclusion of our study is therefore that the typical tradeoffs between

computational and information theoretic security in the encryption scenario for prac-

tical applications carry over to the WITS project setting when one considers the

authenticated key agreement stage. An interesting direction for future work is to

integrate the evaluated protocols with concrete implementations of physical-layer se-

curity mechanisms, in order to evaluate the feasibility of both solutions in a practical

setting.

50

Bibliography

[1] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key

exchange secure against dictionary attacks. In Proceedings of the 19th interna-

tional conference on Theory and application of cryptographic techniques, EU-

ROCRYPT’00, pages 139–155, Berlin, Heidelberg, 2000. Springer-Verlag.

[2] Mihir Bellare and Phillip Rogaway. full version. collision-resistant hashing:

Towards making uowhfs practical, 1997.

[3] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-

based protocols secure against dictionary attacks. In IEEE SYMPOSIUM ON

RESEARCH IN SECURITY AND PRIVACY, pages 72–84, 1992.

[4] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures

based on computational diffie-hellman. In In Proc. of PKC 2006, pages 229–

240. Springer-Verlag, 2006.

[5] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key

encryption schemes secure against adaptive chosen ciphertext attack. SIAM

Journal on Computing, 33:167–226, 2001.

[6] Yevgeniy Dodis, Jonathan Katz, and Leonid Reyzin. Robust fuzzy extractors

and authenticated key agreement from close secrets. In In Advances in Cryp-

tology—CRYPTO ’06, pages 232–250. Springer, 2006.

[7] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric

key cryptography from weak secrets. In STOC ’09: Proceedings of the 41st

annual ACM symposium on Theory of computing, pages 601–610, New York,

NY, USA, 2009. ACM.

[8] Venkatesan Guruswami and Christopher Umans. Unbalanced expanders and

randomness extractors from parvaresh-vardy codes. In In Proceedings of the

22nd Annual IEEE Conference on Computational Complexity, pages 96–108.

IEEE Computer Society, 2007.

51

[9] ECRYPT II. Ecrypt ii yearly report on algorithms and keysizes 2008-2009,

2009.

[10] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography

(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman

& Hall/CRC, 2007.

[11] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-

authenticated key exchange using human-memorable passwords. In EURO-

CRYPT ’01: Proceedings of the International Conference on the Theory and

Application of Cryptographic Techniques, pages 475–494, London, UK, 2001.

Springer-Verlag.

[12] Arjen K. Lenstra. Key length, 2004.

[13] Ueli Maurer, Renato Renner, and Stefan Wolf. Unbreakable keys from random

noise. In P. Tuyls, B. Skoric, and T. Kevenaar, editors, Security with Noisy

Data, pages 21–44. Springer-Verlag, 2007.

[14] David Pointcheval. Computational security for cryptography, 2009.

52

	Introduction
	Preliminaries
	Provable Security
	Digital Signature Schemes
	Public Key Encryption Schemes
	Decisional Diffie-Hellman Assumption
	Cryptographic Hash Functions

	Information-theoretically secure authenticated key agreement
	Definitions and Security Model
	A concrete IT-AKA protocol
	Randomness Extractor
	Message Authentication Protocol
	Look-ahead extractors
	Look-ahead MAC

	Global concrete security analysis
	Practical Implementation

	Computationally secure password authenticated key exchange
	Definitions and Security Model
	A concrete PAKE protocol
	Lamport's one-time signature scheme
	Extended Cramer-Shoup cryptosystem
	Global concrete security analysis
	Practical implementation

	Conclusion

