
Abstract
The effects of land cover and surface slope on lidar-derived
elevation data were examined for a watershed in the pied-
mont of North Carolina. Lidar data were collected over the
study area in a winter (leaf-off) overflight. Survey-grade
elevation points (1,225) for six different land cover classes
were used as reference points. Root mean squared error
(RMSE) for land cover classes ranged from 14.5 cm to 36.1 cm.
Land cover with taller canopy vegetation exhibited the
largest errors. The largest mean error (36.1 cm RMSE) was in
the scrub-shrub cover class. Over the small slope range (0° to
10°) in this study area, there was little evidence for an
increase in elevation error with increased slopes. However,
for low grass land cover, elevation errors do increase in a
consistent manner with increasing slope. Slope errors
increased with increasing surface slope, under-predicting
true slope on surface slopes �2°. On average, the lidar-
derived elevation under-predicted true elevation regardless
of land cover category. The under-prediction was significant,
and ranged up to �23.6 cm under pine land cover.

Introduction
Large-scale digital elevation models (DEMs) are widely used
in research, education, and management of public resources.
Absolute elevation is required for mapping floodplains or
conducting visibility studies while surface form (e.g., slope
and aspect) is used for hydrologic applications. Prior to the
late 1940s, topographic maps were created from field sur-
veys and “artistic sketching” of contour lines (Hodgson
and Alexander, 1990). Stereoscopic aerial photography for
topographic mapping was developed in the 1940s and
became the primary source for large-scale mapping (Jensen,
2000). Interferometric Synthetic Aperture Radar (IFSAR) was

An Evaluation of Lidar-derived Elevation and
Terrain Slope in Leaf-off Conditions

Michael E. Hodgson, John Jensen, George Raber, Jason Tullis, Bruce A. Davis, Gary Thompson, and Karen Schuckman

developed in the 1960s for medium-scale mapping and more
recently, for large-scale mapping. Lidar (Light Detection and
Ranging) was developed in the 1980s and is rapidly becom-
ing the preferred method of creating DEMs by counties,
states, and some governmental agencies.

While the use of lidar for mapping vegetation character-
istics is becoming more frequent (Means, et al., 2000), map-
ping terrain elevation has been the primary focus of most
lidar collections. It is generally known that the leaves and
branches can reduce the effectiveness of obtaining eleva-
tion information from lidar data (Hodgson et al., 2003). The
sensitivity of lidar data collection to system parameters
(e.g., height above ground level (AGL), laser instrument) and
geography (e.g., relative ruggedness, land cover, seasonality)
has not been rigorously researched. Even fewer studies have
attempted to assess the accuracy or sensitivity of mapping
topographic slope with lidar-data sources. Therefore, this
study focused on mapping elevation and topographic slope
in the winter (leaf-off) season for a mid-latitude geographic
area. The research questions examined in this study include:

1) What is the elevation accuracy of a lidar-derived DEM in
Leaf-Off Conditions?

2) What is the slope accuracy of a lidar-derived DEM in Leaf-Off
Conditions?

3) Was there a tendency to over- or under-predict elevation or
slope?, and

4) Does the absolute elevation and/or surface form accuracy
vary or covary with land cover and/or slope?

To test these hypotheses, lidar data were collected in leaf-
off conditions over a watershed in the piedmont of North
Carolina (Figure 1). The leaf-off lidar data were processed and
lidar returns labeled using a combination of automated and
manual interpretation approaches. The North Carolina Geodetic
Survey collected 1,225 x, y, z reference data points in the form
of transects within the watershed. Land cover information was
collected for each of the 1,225 survey points along the transects
by direct field observation. Statistical analyses were performed
by comparing the reference data elevations and slopes with the
lidar-derived elevation and slope data. The effects of land
cover and slope were assessed using (a) signed elevation error,
(b) absolute elevation error, and (c) signed slope error.

Background
Overviews of the lidar sensor system for terrain mapping
may be found in Jensen (2000) and Fowler (2001) and
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numerous research articles. Here, only the important ele-
ments in the lidar collection and processing approach are
discussed as they relate to elevation accuracy and surface
form accuracy.

The accuracy of the DEM derived from lidar postings
(and derived products like surface slope) is affected by
several factor groups: sensor, aircraft platform, navigation,
lidar point processing, and geographic environment (Table 1).
Products derived from the DEM such as surface slope/aspect
and drainage channels are also influenced by the same
factors affecting elevation accuracy. It is possible, however,
for the derived surface slope to be accurate while the ele-
vation data themselves are less accurate; as long as the
surface form represented by the lidar observations is inter-
nally consistent. For example, a consistent over-prediction
in elevation for the lidar postings will not have an impact
on surface slope or aspect.

The dominant factors of the lidar system that affect
elevation accuracy are reviewed in the next two sections.
Results of published studies documenting the terrain model
accuracy are presented.

Lidar System
A lidar system for terrain mapping is typically composed of
the aircraft platform, sensor, Inertial Measurement Unit (IMU),

Inertial Navigation System (INS), and global positioning
system (GPS) control. For most mapping applications, the lidar
sensor is mounted in a fixed-wing aircraft or helicopter. The
GPS and INS (or inertial navigation unit (INU) is some cases)
are used to determine the position of the sensor and pointing
direction of the laser. The x, y, and z position of the object
the laser pulse is reflected from is determined by modeling
the round-trip return time and position/pointing direction of
the laser. The absolute accuracy of the GPS approach, INS,
pulse length (distance between the start and stop of a single
laser pulse), and the footprint size of the laser projected on
the ground interact to set the technological limits of lidar
data collection. Krabill et al., (2002) provides an empirical
approach to evaluating the Airborne Topographic Mapper
(ATM) laser system. He documented the combined effects of
the GPS, INS, and scan angle on elevation and horizontal
accuracy. Errors in the factors can result in appreciable errors
at large scan angles (e.g., 59 cm horizontal and 4 cm vertical).

A large number of laser pulses must be emitted to
obtain a large number of lidar “returns.” Commercial lidar
systems today use lasers with a pulse rate of 10,000 to about
70,000 pulses per second (Box, personal communication,
2003). Flying the aircraft at lower altitudes and at a reduced
forward speed will also result in a greater number of pulses
per unit area.

To obtain a large number of returns from the actual
“ground” surface, small laser pulse footprints and multiple
laser returns are needed. The footprint is defined by the
divergence of the laser and the flying altitude. The laser
divergence (0.2 mr to 0.33 mr) is set while the flying height
may be altered (Box, personal communication, 2003). Foot-
prints common for large-scale terrain mapping are between
24 cm to 60 cm. The footprint diameter varies, however,
depending on beam divergence and flying heights. From
this set of lidar returns, “ground” returns are identified
through automated and manual methods of “point cloud”
analyses.

The emitted pulse of from 6 to 12 ns (approximately
2 m to 4 m in length for the typical lidar sensor) interacts
with numerous features encountered in the landscape (Box,
personal communication, 2003). Some of the energy reflects
from airborne objects (e.g., birds, wires) while most of the
energy reflects off vegetation, anthropogenic features, such
as buildings, or the “ground.” The reflected energy is ob-
served by the sensor as a waveform of varying intensity.
Automated methods are used to determine what wave peak
is indicative of an object and thus, a “return.”

The last identified return pulse may be the best esti-
mate of the ground (often assumed to be the “bald earth”).
However, even the last return may not be the ground as
vegetation canopy may totally obscure the ground. In addi-
tion, the last return may be reflected from an anthropogeni-
cally created object (e.g., a building). The goal is to identify
these non-ground points using a combination of automated

Figure 1. The study area in the piedmont of North Carolina.
The underlying shaded relief model was created from USGS
Level 2, 30 � 30 m DEMs.

TABLE 1. IMPORTANT CONCEPTS RELATED TO LIDAR SURFACE ACCURACY VARIATIONS (THOSE EXAMINED IN THIS STUDY ARE IN SHOWN IN BOLD)

Data Collection

Sensor Aircraft Navigation Lidar Point Processing Geography

Pulse Length Altitude GPS constellation Return Identification Seasonality
(e.g., waveform)

Pulse Rate Forward Speed Inertial Navigation System Automated Labeling Algorithm Land Cover
(e.g., roll)

Wavelength Multipathing Human Classification Terrain Slope
Divergence Tropospheric Propagation Interpolation Algorithm
Scan Angle GPS Reference Station(s)
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procedures and manual editing through visual and statistical
processing of the lidar multiple returns.

Lidar Point Labeling for Elevation Mapping
The process typically used by lidar data vendors to classify
and remove non-ground points is a combination of an auto-
matic algorithm and a human operator’s manual efforts to
classify points in difficult areas. Vendors use their own
unique mix of automation and manual intervention (Petzold
et al., 1999). Some federal agencies collecting lidar (e.g.,
NOAA) do not perform point-labeling or attempt to remove
returns from vegetation.

While each vendor has developed their own approach
to labeling points, most use a two-stage process. Since it is
assumed that the final return from all returns associated
with a single pulse is the only point that could be a ground
return, only the final return from each laser pulse is entered
into the candidate ground return set. Using a moving
neighborhood window, “ground” points are selected based
on their elevation with respect to their neighbors. The
second step involves a human analyst who visualizes the
points in three-dimensions and/or with ancillary data (e.g.,
orthophotography). Previously labeled “ground” points may
be deleted or new “ground” points added. This second step
is very labor intensive, but may dramatically improve the
quality of the final product.

Some research efforts have specifically focused on this
point labeling process. Cobby et al. (2001) developed an
automated segmentation approach for lidar data so that the
point-labeling algorithm varied by land cover category
(Petzold et al., 1999). Raber et al. (2002) found that vertical
accuracy could be improved in lidar derived DEMs if the
lidar data was segmented into general land cover classes
prior to processing. Despite this effort and a few other
research studies on the lidar intensity data, little work has
been based on accurate empirical data. Published studies on
lidar elevation accuracy seldom include documentation of
the point labeling process and the parameter values used
(most vendors regard this as proprietary.)

Lidar-derived Elevation and Slope Accuracy
There are few published rigorous studies evaluating the
accuracy of airborne lidar data. Lidar companies have con-
ducted “in-house” assessments of the elevation accuracy. A
few states and counties have performed other rigorous
assessments. In a controlled study over the Greenland ice
sheet, Krabill et al. (2002) predicted an 8.6 cm RMSE theoret-
ical error and documented a 5.4 cm RMSE error. The func-
tional relationship between posting density of “ground”
returns and percent canopy closure was found to be strongly
linear in a study area predominately covered by pine and
some mixed deciduous canopy (Cowen et al., 2000). Al-
though some previous research has established a variability
in lidar accuracy by land cover, there is not a substantial
body of research that documents expected accuracy esti-
mates for specific land cover categories.

One of the largest lidar-mapping efforts in the world is
taking place in the State of North Carolina for FEMA’s flood-
plain mapping program (North Carolina, 2002). Lidar data
(4.5 m nominal posting) were collected, processed, conver-
ted to a TIN, and then to a 6.1 m (20 feet) and 15.2 m (50 feet)
cell size DEM. The target accuracy for their data is 20 cm
(RMSE) for coastal counties (composed largely of “flat” terrain)
and 25 cm for inland counties (composed largely of rolling
or hilly terrain). At least 20 reference points are collected in
each of five land cover categories: grass, weeds/crop, scrub,
forest, and built-up. A variation on the reporting of accuracy
is the “95 percent RMSE calculation” report. In this 95 per-
cent report, the state removes 5 percent of observations in

the accuracy assessment that have the highest errors. For the
41 counties studied in the first phase of their program the
overall accuracy based on the 95 percent RMSE calculation
was 15.15 cm.

Using similar land cover categories as the North Carolina
effort, elevation accuracy for leaf-off lidar data was assessed
in the piedmont of South Carolina piedmont (Hodgson
and Bresnahan, 2004). This study quantified the contribu-
tion of error from the lidar system, interpolation algorithm,
terrain slope, land cover, and reference data. RMSEs between
17.2 cm and 25.9 cm were found.

Hodgson et al. (2003) analyzed North Carolina lidar data
collected during leaf-on conditions and compared the results
to IFSAR-derived DEMs and USGS Level 1 and 2 DEMs. Eleva-
tion error for the lidar-derived elevation data varied by land
cover category and ranged from 33 cm (low grass) to 153 cm
(scrub/shrub). Errors in low grass and high grass were much
smaller than those in the more heavily vegetated canopies
except for pine forests. Elevation error was not correlated
with increasing slope except for the scrub-shrub land cover.
However, the slopes only ranged up to 10°. Kraus and Pfeifer
(1998) found a 57 cm error in a forested environment (the
Vienna woods). These authors also documented a �20 cm
systematic over-prediction in elevations.

In a coastal mudslide study area, Adams and Chandler
(2002) measured lidar-derived elevation accuracy as 26 cm
(RMSE). The lidar-derived elevation data were less sensitive
to terrain slope than a DEM derived from digital photogram-
metry. The authors also found a “slight bias” in the lidar
data i.e., a tendency to under-predict elevation. Bowen and
Waltermine (2002) assessed the accuracy of lidar derived
elevation data and how accuracy varied by topography.
Using data collected in a western river corridor, they found
an overall accuracy of 43 cm (RMSE). Reference data in the
form of transects were used to identify a weakness of vege-
tation removal algorithms in variable terrain compared with
flat terrain.

A few other studies have focused on the effects of lidar
post-processing methods on elevation accuracy. Lloyd and
Atkinson (2002) found that kriging with a trend model may
be more accurate when the density of lidar postings dec-
reases. In a study on lidar point-labeling research, a 17 cm
(RMSE) accuracy was observed in grass and cereal crop land
cover (Cobby et al., 2001). Elevation accuracy from the lidar
data decreased in a densely wooded environment.

Early work in topographic mapping resulted in the long-
standing Koppe’s formula for estimating the RMSE elevation
error caused by covariation of horizontal error and slope
(Maling, 1989). For a constant error in the horizontal location
of an observation, the elevation error will increase as slope
of the surface increases (Figure 2a). Fundamentally, Koppe’s
formula is based on the tangent of the surface slope (�) and
observed horizontal displacement:

(1)

For example, a constant surface slope of 20° and a 100 cm
typical horizontal displacement of lidar points may result in
an elevation error of up to 36 cm.

Little published work to date has focused on the evalua-
tion of terrain slope/orientation accuracy derived from lidar
data or any remotely sensed data source. Bolstad and Stowe
(1994) and Chang and Tsai (1991) previously noted that
modeled slope error in USGS DEMs (from photogrammetric
sources) increased with increasing slope in the actual
surface.

Fundamental to the problem of mapping elevation
and subsequently terrain slope/aspect is collecting enough
lidar returns from the ground. Reliably identifying “ground”

Elevation Error � Tan(a) � Horizontal Displacement
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Figure 2. Relationship between elevation error, surface
slope, and horizontal error.

returns is determined, in part, by the automated and manual
methods used in the point-labeling process. By increasing
the pulse density (i.e., the number of pulses emitted from
the lidar sensor per unit space) there is a greater likelihood
that more pulses will pass through openings in vegetated
canopies and reach the ground. As noted earlier, the pulse
density may be increased through manipulation of the air-
craft forward speed, altitude, and the use of lasers with
higher pulse rates. Less understood is the size of the ground
projected laser “footprint” on obtaining “ground” returns.
There is little empirical work to determine what the expected
percentage of “ground” returns from a lidar collection would
be in leaf-off versus leaf-on conditions or even in variable
canopy (Cowen et al., 2000). The authors are unaware of any
empirical assessment of the percentage of ground returns as
a function of land cover class.

Methodology
Study Area
The study area (45.65 km2) in northeastern North Carolina is
located in an area of gently rolling terrain (referred to as the
piedmont) and includes a portion of the Swift and Red Bud
Creek watersheds (Figure 1). It consists primarily of farm-
land, pine plantation, and hardwood forests. Numerous
forested areas have been clear-cut. Forest adjacent to rivers
and creeks are usually dense. The major agricultural crops
are soybeans and tobacco. Elevation ranged from 44 m to
136 m above mean sea level.

Data Sources
Airborne lidar data were collected by Earthdata, Inc. as part
of a floodplain mapping effort. The data were collected at

3,657 m (12,000 feet) AGL with a 4.5 m nominal post spacing.
Two dates were required to collect the leaf-off lidar data:
28 January and 01 February 2001. The number of emitted
lidar pulses (i.e., not returns) for the leaf-off data were, on
average, one pulse for every 20.48 m2. Calibration of lidar
overflights was conducted using a nearby airport. Block
adjustment between flight lines was not performed.

The lidar data were processed using automated methods
for identifying ground returns (i.e., using Terrasolid® soft-
ware) and using manual/visible interpretation methods for
identifying ground returns. Specific parameter settings for
Terrasolid® were not provided by the vendor. Digital ortho-
imagery was used as a “backdrop” to aide in the interpreta-
tion for both approaches. An average posting density of the
identified “ground” returns was one point every 31.1 m2.
Of the 2,218,079 pulses only 66 percent were classified as
“ground.” A triangulated irregular network (TIN) retaining all
lidar “ground” returns was created. For each reference point
(i.e., the field surveyed points), a TIN-linear interpolated
value was computed.

Reference Data
An initial set of in situ survey reference points (1,195) were
collected along 23 transects and additional scattered points
(i.e., pavement) throughout the study area. This initial set of
23 transects were collected for evaluating the accuracy of
leaf-on lidar data in the Hodgson et al. (2003) study. For
this new study, 30 additional points were collected over
pavement. The additional points over pavement were not
collected along a systematic transect as the previous collec-
tion and thus, could not be used for evaluating the slope of
the surface as with the other 1,195 survey points. Real-time
kinematic and static GPS surveying was used to establish the
endpoints for each transect and conventional total-station
based surveying was used to determine the elevation of the
intermediate points. The North Carolina Geodetic Survey
(NCGS) and the North Carolina Department of Transportation
conducted all surveying. All reference points were trans-
formed to the North Carolina High Accuracy Reference
Network (HARN NAD83/95) for 1995. Transects across stream
corridors ranged from 100 m to 840 m with a 6.88 m mean
distance between surveyed points.

Field crews visited the study area and characterized
the land cover at the survey point locations. The greatest
percentage of reference points were under forested canopy
as this land cover dominated the stream corridors (Table 2).
Reference points on pavement, low and high grass were not
obscured by tree cover. There were no large canopy breaks
in the forested areas where we collected reference data.

Errors in modeled surface slope were computed and
analyzed using the slope along survey transects. First, the
reference slope was computed along each survey transect
using the surveyed x, y, z data. The observed slope from
the different lidar datasets were computed using the Z
values interpolated from the TIN. The transect slope was,
in effect, slope in 1.5 dimensions as it was along a one-
dimensional linear feature but included elevations as
another dimension. Slope at each reference point i was

TABLE 2. FREQUENCY OF REFERENCE OBSERVATIONS AND DISTANCE (M) TO NEAREST LIDAR POINT

Statistic Pavement Low Grass High Grass Scrub/Shrub Pine Decid. Mixed Pr � Fa

Frequency 30 137 266 177 112 281 222
Mean Slope 1.6° 1.8° 1.8° 2.3° 3.3° 2.5° .000
Mean Distance to Nearest Point 1.9 2.0 2.2 4.2 2.9 2.4 3.5
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computed from the average slope of the absolute slope
along the survey transects:

(2)

This methodology did not consider whether the slope was
locally increasing or decreasing as would be necessary in a
solar insolation study, but only considers absolute slope as
in a rainfall runoff application. Observations representing
pavement land cover were not included in any analysis
involving surface slope.

The mean reference slope at each survey point was
derived by land cover category (Table 2). Both an F-test and
a t-test were used to determine if these means were signifi-
cantly different from one another and if some means were
in homogenous groups. Overall, there was a significant
variation in mean slope of the reference data by land cover
category. Terrain slope under deciduous and mixed canopy
was significantly steeper than other land covers. The other
land covers (i.e., low grass, high grass, scrub-shrub, and pine
forest) did not exhibit significantly different mean slopes.

Because steeper slopes were associated with certain
land cover categories, separate analyses were conducted to
investigate; (a) if elevation error increased with increasing
slope while holding land cover constant, and (b) if slope
error varied by land cover category while holding slope
class constant. These tests were performed by separating the
reference points into 2°-width slope classes, from 0° to 8°.
As the frequency of observations in the highest slope class
(8° – 10°) were so few (n � 16), this slope class was
removed from analyses with terrain slope.

Observed error was always computed by subtracting the
in situ values from the lidar-derived values computed as:

(3)

(4)

Negative values in elevation or slope error would indicate
the surface derived from the lidar data under-predicted
elevation or slope, respectively.

Results
Distance to Nearest Ground Return
The average distance to a “ground” return varied by land
cover category (Table 2). The mean distance to nearest return
was significantly greater under scrub-shrub or mixed forests
than the other categories. The complex vegetation structure
in a scrub-shrub environment had a large effect on the return
signal and was more problematic for the vegetation removal
method than other classes. Not surprisingly, the density of
ground returns in pavement, low grass, and high grass was
great. The density of ground returns under deciduous canopy
was greater than under pine or a mixed forest.

Slope Errori � Slope from LIDARi � Slope from Referencei

Elevation from Referencei

Elevation Errori � Elevation from LIDARi �

Slopei �
ƒ Transect Slope1 ƒ � ƒ Transect Slope2 ƒ

2

Elevation Error and Land Cover
Mean error in elevation ranged from 14.5 cm to 36.1 cm
(RMSE) by land cover category (Table 3). The error of sur-
vey points under scrub/shrub land cover was the highest
(36.1 cm RMSE) and was significantly different from all
other land cover categories. The error observed in the other
forested categories (pine, deciduous, and mixed) were not
significantly different from one another. The observed errors
in the low grass (14.5 cm) and high grass (16.3 cm) cate-
gories were the lowest and not significantly different from
one another. Elevation errors on pavement, however, were
significantly larger than the low and high grass categories.

Bias in Elevation Error
The mean signed errors for each land cover class was tested
(using a t-test) for a difference from 0.0 (Table 3). The means
for all land cover categories except high grass, were signifi-
cantly different than 0.0. Since all the mean signed errors
were negative, there was a tendency for the dataset to consis-
tently under-predict elevation, regardless of land cover class.

Elevation Error and Slope Angle
The expectation was that elevation error would increase as
surface slope increases based on fundamental research in
topographic mapping (Maling, 1989). Since elevation error
was previously found to vary by land cover category, a one-
way ANOVA test between mean absolute errors for slope
categories was conducted, controlling for land cover cate-
gory (Table 4). Surprisingly, only a few land cover categories
exhibited a significant relationship between elevation error
and terrain slope. Only for lidar elevations collected in low
grass did elevation error increase as terrain slope increased.
None of the other land cover categories exhibited a statisti-
cally significant relationship with terrain slope class.

The lack of a consistent relationship between land
cover, slope class, and elevation error was not anticipated.
Since elevation error was significantly related to slope under
low grass, it is possible that the strong effect of vegetation
cover for the other land cover categories dominated other
sources of elevation error. For these relatively small slopes
(0°-8° range) land cover appears to play a much larger
role in the introduction of elevation error for leaf-off
conditions as found by Hodgson et al. (2003) in leaf-on
conditions.

Slope Error and Slope Angle
The mean absolute slope error for each reference point was
computed using the observed slope of the transect segments
as reference values. Neighboring segments were averaged to
compute surface slope at the reference points (Equation 2). As
an entire set, mean absolute slope error was smaller for the
0° to 2° slope class than the other three slope classes (Table 5).
For the lowest slope class (0° to 2°) the mean error was 0.44°.
Slope errors for all higher categories ranged from 0.70° to 0.81°.

Another interpretation of the slope errors is to compute
a proportional error: the mean error for a slope class divided

TABLE 3. TERRAIN MODEL ERROR (CM) BY LAND COVER CLASS

Statistic Pavement Low Grass High Grass Scrub/Shrub Pine Decid. Mixed Pr � Fa

Mean Absolute Error 19.9 11.1 12.2 26.2 24.5 19.9 20.1 .000
Mean Signed Error �11.4 �6.7 �1.50 �15.7 �23.6 �16.0 �11.4
RMSE 22.6 14.5 16.3 36.1 27.6 27.3 24.3
Pr � T for signed error � 0.0 .004 .000 .134 .000 .000 .000 .000

aF-test for significant difference among land cover categories.
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TABLE 4. MEAN ABSOLUTE ELEVATION ERROR BY LAND COVER CLASS AND

SLOPE CLASS

Land Cover Class

Slope Low High Scrub/
Class Grass Grass Shrub Pinea Decid. Mixed

Leaf-Off 0 – 20 9.8 12.3 28.4 25.2 18.8 20.6
2 – 40 11.4 12.2 25.1 22.8 23.0 21.0
4 – 60 18.8 9.7 15.7 13.3 17.4
6 – 80 25.4 15.7 16.9 21.1 18.1

Pr � F .000 .560 .237 .371 .083 .747

aMean values for the larger slope classes are not reported as the
frequency of observations \was less than 5.

TABLE 5. MEAN ERROR (DEGREES) IN SLOPE BY REFERENCE SLOPE CLASS

Reference Slope Class (degrees)

Statistic 0° – 2° 2° – 4° 4° – 6° 6° – 8° Pr � F

Frequency 766 238 98 55
Mean Absolute Error .44° .74° .81° .70° .000
Mean Signed Error .10° �0.20° �0.26° �0.35° .000

TABLE 6. MEAN SIGNED SLOPE ERROR (DEGREES) BY LAND COVER CLASS

AND SLOPE CLASS

Land Cover Class

Slope Low High Scrub/
Class Grass Grass Shrub Pinea Decid. Mixed

Leaf-Off 0° – 20 .04 .11 .05 .15 .11
0° – 40 �.09 �.23 �.36 �.04 �.40
4° – 60 .00 �.78 �.18 .06 �.28
6° – 80 �.30 �.70 �.45 �.24 �.23

Pr � F .091 .000 .017 .252 .252
Linearity .091 .000 .008 .050 .001*

Test

aThere were not enough pine points in the higher slopes classes to
statistically evaluate the relationship between reference slope and
slope error.
*Indicates the deviation from linearity is significant; thus, the
results of the test are inconclusive.

by the midpoint of the slope class. For example, the lidar-
derived slope data showed a 0.44° to 1.00° or error rate of
44 percent of the observed slope angles. Mean error at the
highest slope class (6° to 8°) was larger but not as propor-
tionately large (only 10 percent).

As a set, slope was under-predicted as actual terrain
slope increased (Table 5). The mean signed slope errors,
however were relatively small, ranging from � 0.10° (0° to 2°
class) to �0.35° (6° to 8° class). If this trend continued
to even greater slopes, the error rates would be less than
10 percent but would be under-predicted.

Separate univariate linear models were computed between
mean signed error and slope class and land cover class.
Pine land cover was not included in this analysis as the
frequency of observations in the higher land cover categories
was low. The results indicate mean signed slope error varies
by slope class when controlling for land cover (Table 6). Slope
was over-predicted for the lowest slope category and under-
predicted for the higher categories. This relationship was
statistically significant for the high grass, scrub-shrub, mixed
land cover, and deciduous. Slope errors in the mixed forests
were not monotonically related to reference slope.

In summary, mapping terrain slope1 using leaf-off lidar
data increasingly under-predicted terrain slope for larger
slopes (i.e., between 2° and 8°) and over-predicted for very
low slopes. While the errors were not very large (e.g.,
typically less than 1°) the slopes in this study are relatively
small.

Discussion
Lidar point density (ground returns) for heavily vegetated
categories (i.e., scrub-shrub, pine, deciduous, and mixed)
were significantly lower than the other three categories. It is
not known if the higher elevation error in these categories
results from point density alone, return labeling, or other

sources. If larger errors in heavily vegetated land cover is
primarily from point density then increasing the lidar
posting density (e.g., through higher pulse rates and lower
AGLs) may obviate this problem.

The pattern of large RMSEs for heavily vegetated land
cover is consistent with some previous findings in leaf-off
conditions (e.g., Kraus and Pfeifer, 1998) and leaf-on condi-
tions (Hodgson et al., 2003). However, other studies in leaf-
off conditions found elevation error under pine cover to
exhibit error as low as pavement, low and high grass land
cover (e.g., Hodgson and Bresnahan, 2004). The findings that
scrub-shrub and deciduous land cover were the highest
appears to be consistent with all other studies regardless of
leaf conditions (e.g., Hodgson et al., 2003; Hodgson and
Bresnahan, 2004).

The lidar-derived elevations in this study were consis-
tently under-predicted regardless of land cover. An under-
prediction in elevations has been noted by Adams and
Chandler (2002) and Hodgson and Bresnahan (2004), but
this was not consistent for all land cover categories. Kraus
and Pfeifer (1998), however, noted a �20 cm over-prediction
in their Vienna woods. The consistent under-prediction in
this study could be just a characteristic of this specific
dataset. Several error sources might explain this bias. For
instance, a vertical error in the GPS or INS approach (Table 1)
could cause such a negative shift in the elevations (Kraus
and Pfeifer, 1998; Krabill et al., 2002; Maas, 2002). The
surprisingly large under-prediction for reference points on
pavement (�11.4 cm) is a pattern noticed by North Carolina
Flood Plain Mapping staff in many of their datasets.

There was little evidence that elevation error increased
with increasing surface slope across the low slopes (from
0° to 8°) typical of flood prone areas. Only the low grass
category exhibited the expected monotonic increase in error
as slope increased. It is likely that the relatively low slopes
in this study were not large enough to introduce strong
observable error greater than the error introduced from other
sources (e.g., point density, return labeling). Theoretically,
this range in slopes would, in the worst case of 8° slopes
only introduce vertical errors of 14 cm (assuming a 100 cm
horizontal error).

Surface slope angles were slightly over-predicted on
low slopes (0° to 2°) but almost always under-predicted
on higher slopes (�2°). The relatively high variability of
elevations resulting from laser returns on near-surface objects
would explain the over-prediction on low slopes. Addi-
tional research should explore the effects of interpolation

1The mapping unit size is considered 12 m as the slope at
reference points was averaged from the two adjacent transect
segments. The average distance for transect segments was
approximately 6 m.
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algorithms and slope algorithms for modeling surface slope
from lidar data. Krabill et al. (2002), for example, advocates
spatial averaging of lidar returns to minimize error. This
study used reference slope as the average slope of adjacent
segments along survey transects where the transect segments
were approximately 6 m in length. Modeled slope was
derived from linear interpolation of elevations in a TIN
model. Modeling surface slope may be effected by the ref-
erence data, lidar posting-density, interpolation algorithm,
land cover, and mapping unit (e.g., grid cell size).

Reporting the accuracy of a lidar-derived terrain dataset
without reporting the collection conditions or geography of
the study area is problematic. The results of this study indi-
cate the elevation accuracy of lidar data vary by land cover
type. Where summary statistics are reported (e.g., overall
RMSE) the distribution of reference points across different land
cover categories and slope classes should also be reported. If
the distribution of observations is not equal to the area within
each land cover category, the overall RMSE will not be repre-
sentative of the accuracy of the overall study area.
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