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While ozone design values have decreased since 2000, the values measured in Denton 

Airport South (DEN), an exurban region in the northwest tip of the Dallas-Fort Worth (DFW) 

metroplex, remains above those measured in Dallas Hinton (DAL) and Fort Worth Northwest 

(FWNW), two extremely urbanized regions; in addition, all three sites remained in 

nonattainment of National Ambient Air Quality Standards (NAAQS) ozone despite reductions 

in measured NOx and CO concentrations. The region’s inability to achieve ozone attainment is 

tied to its concentration of total non-methane organic compounds (TNMOC). The mean 

concentration of TNMOC measured at DAL, FWNW, and DEN between 2000 and 2018 were 

67.4 ± 1.51 ppb-C, 89.31 ± 2.12 ppb-C, and 220.69 ± 10.36 ppb-C, respectively. Despite being 

the least urbanized site of the three, the TNMOC concentration measured at DEN was over 

twice as large as those measured at the other two sites. A factor-based source apportionment 

analysis using positive matrix factorization technique showed that natural gas was a major 

contributing source factor to the measured TNMOC concentrations at all three sites and the 

dominant source factor at DEN. Natural gas accounted for 32%, 40%, and 69% of the measured 

TNMOC concentration at DAL, FWNW, and DEN, respectively. The Barnett Shale region, an 

active shale gas region adjacent to DFW, is a massive source of unconventional TNMOC 

emissions in the region. Also, the ozone formation potential (OFP) of the TNMOC pool in 

DEN were overwhelmingly dominated by slow-reacting alkanes emitted from natural gas 

sources. While the air pollutant trends and characteristics of an urban airshed can be determined 

using long-term ambient air quality measurements, this is difficult in regions with sparse air 

quality monitoring. To solve the lack in spatial and temporal datasets in non-urban regions, 



 

various machine learning (ML) algorithms were used to train a computer cluster to predict air 

pollutant concentrations. Models built using certain ML algorithms performed significantly 

better than others in predicting air pollutants. The model built using the random forest (RF) 

algorithm had the lowest error. The performance of the prediction models was satisfactory 

when the local emission characteristics at the tested site were like the training site. However, 

the performance dropped considerably when tested against sites with significantly different 

emission characteristics or with extremely aggregated data points. 
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CHAPTER 1 

INTRODUCTION 

The Dallas – Fort Worth (DFW) metroplex region is one of the largest metropolitan 

regions in the United States [1] and had seen a massive increase in oil and gas production 

activities in the past two decades from the Barnett Shale region [2]. The expansion in shale gas 

production had drastically increased emissions from non-conventional shale gas sources, and 

this threatens the environment and the people living in the metroplex. Shale gas production is 

a significant source of volatile organic compounds (VOC), a precursor for ground-level ozone 

formation. Ozone is a criteria pollutant that can cause severe health issues, especially in the 

sensitive group of young children, older adults, and those with existing lung conditions. 

Overexposure to ozone leads to several health problems such as chronic obstructive pulmonary 

disease (COPD), shortness of breath, and other respiratory ailments [3]. While the ozone levels 

in DFW had shown improvements since 2000, ten of the twelve DFW counties still consistently 

fail to comply with the design value designated by the United States Environmental Protection 

Agency (EPA) through the Clean Air Act’s National Ambient Air Quality Standard (NAAQS) 

[4]. Denton, Johnson, Tarrant, and Wise are the leading shale gas producing counties in the 

Barnett Shale, and all four counties consistently fail to meet ozone attainment under the 

NAAQS. 

The objective of this work is to study the long-term impact on DFW air quality due to 

elevated shale gas production over the past two decades. While the air quality impacts of shale 

gas are well-documented, relatively few studies truly focus on the Barnett Shale and its impact 

on the DFW metroplex region. The available literature on the subject does not provide a 

consensus on whether the increased shale gas production in the neighboring Barnett Shale had 

any significant impact on DFW’s air quality [5, 6, 7]. To the best of the author’s knowledge, 

this dissertation is the most comprehensive work on long-term VOC, oxides of nitrogen (NOx), 
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carbon monoxide (CO), and ozone concentrations measured in DFW. Data mining and data 

analysis techniques were also implemented to correlate unconventional shale gas production 

and local VOC concentrations. However, the lack of consistent air quality data from non-urban 

regions within the Barnett Shale severely hinders the progress of understanding the full extent 

of the shale gas production’s impacts. While traditional photochemical models can simulate air 

pollutant concentration and deposition at these non-urban/rural regions, the scale of these 

simulation predictions are very coarse and simulated by using specific air pollution episodes 

[8]. This dissertation describes an attempt to incorporate machine learning (ML) algorithms in 

air pollutant concentration prediction models. A model can be trained using regression-based 

ML algorithms to predict the non-linear ozone concentration in remote regions using the robust 

data collected from the DFW metroplex used as the training set. 

This dissertation covers the following issues: 

(i) Perform data mining and analysis to characterize the air quality trends observed 
in the DFW metroplex between 2000 and 2019. 

(ii) Identify the potential impacts of unconventional shale gas development in the 
Barnett Shale on local and regional air quality. 

(iii)  Perform source apportionment analysis to identify major emission sources 
contributing to air pollutant concentrations. 

(iv) Compare the performance of various ML algorithms on their ability to predict 
non-linear ozone concentrations and whether the ML models are comparable to 
more traditional air quality simulation models.  

Chapter 1 of this report introduces this study and states the objectives and outlines the 

work performed. Chapter 2 highlights the background and provides a detailed literature review 

relevant to this study. Chapter 3 details the descriptions of the study area covering the DFW 

metroplex, the air quality monitoring stations, and the data used in this study. Chapter 4 

summarizes the methods and techniques used in this dissertation. The results and discussions 

of each part of this study are available from Chapters 5 through 9. Chapter 5 describes the study 

of short-term VOC concentrations collected from five monitoring stations in DFW. Chapter 6 
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describes a long-term analysis of various air pollutants from three DFW monitoring stations. 

In Chapter 7, the impacts of unconventional gas development on the VOC concentrations in 

Denton, Texas, was studied. Chapter 8 details a source apportionment analysis using positive 

matrix factorization (PMF) method on long-term VOC concentration data collected in DFW. 

Chapter 9 describes a comparative study of various ozone prediction models trained using ML 

algorithms, their performance against traditional photochemical models, and their adaptability 

using non-local data. The conclusion of this study and recommendations for future work are 

provided in Chapter 10. 

The contents of Chapter 5 and Chapter 7 have been published in peer reviewed journals 

such as Science of the Total Environment [9] and Atmospheric Pollution Research [10], 

respectively. As of the writing of this dissertation report, a portion of the contents discussed in 

Chapter 6 was submitted for publication in Atmospheric Pollution Research.  Additional 

manuscripts from Chapters 8 and 9 are currently being developed for journal article 

submission. 
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CHAPTER 2 

BACKGROUND 

Energy production is predicted to rise in the upcoming decades to supply the growing 

demands from rapid urbanization and industrialization of many regions across the world. An 

increasing number of countries, including China and certain parts of Europe, sees natural gas 

as a cleaner alternative to coal due to significantly lower oxides of nitrogen (NOx), carbon 

dioxide (CO2), and sulfur dioxide (SO2) emissions [11, 12, 13, 14, 15]. The Energy Information 

Administration (EIA) has estimated a rapid growth in natural gas production by 7% per year 

(+7%/year) between 2018 and 2020, followed by a +1%/year increase through 2050. The EIA 

estimated the natural gas production by 2029 to be at 22.4 MMBtu/day from 13.5 MMBtu/day 

in 2018, and further development in shale gas resources is required to support this growth [16]. 

Shale gas is natural gas trapped under shale formation and is an increasingly valuable 

energy resource in the United States. Through advancements in hydraulic fracturing and 

horizontal drilling technologies [17], significantly harvesting shale gas is now possible, and the 

access to shale gas has increased the world’s available natural gas resources [18]. Shale gas 

production in the United States accounted for only 5% of total dry gas production in 2004; in 

2015, shale gas production was 56% of total dry gas production in the United States [15]. In 

2017, the United States Energy Information Administration (EIA) estimated about 62% of the 

total dry natural gas produced in the United States was from shale resources, which totals 

approximately 16.9 trillion cubic feet of dry natural gas. [19].  The International Energy 

Agency (IEA) has predicted the natural gas demand to increase by 42% by 2040 [18]. 

Environmental health controversies often surround shale gas extraction and production. 

Countless factors, from gas well preparation to gas processing, play a crucial role in increasing 

pollutant concentrations. The increased shale gas production activities around the U.S. are 

negatively affecting many local neighborhoods and communities. Contamination of water 
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resources, ambient air pollution, light and noise pollution, and seismic activities are among the 

most prominent environmental issues caused by shale gas production [20, 21]. Also, the 

extraction processes cause a significant drain on water resources as 12 to 20 million liters of 

water on average are required to produce a single horizontal well [22, 23]. Commonly used 

hydraulic fracturing liquids also contain toxic and carcinogenic chemicals that can affect 

human health [24]. Ground-water pollution from faulty seals in gas wells are not uncommon, 

and hydraulic fracturing liquid often contains toxic and carcinogenic elements [24, 25]. 

Regions with a large amount of shale gas production often have heightened the risk of seismic 

events, as fracking operations may lead to low magnitude earthquakes and gas well blowouts 

[26]. Shale gas operations tend to generate a lot of noise and light pollution [27]. The massive 

deforestation during shale gas operations also endangers the natural habitats of wildlife [28]. 

Rapid development in the Marcellus Shale, a shale formation that underlies parts of 

Ohio, West Virginia, Pennsylvania, and New York, caused an estimated $7.2 million to $32 

million in air quality damages. The population living close to active gas well regions is often 

at elevated health risks [29]. Shale gas productions in the United States tend to stay away from 

densely populated areas as much as possible. However, this was possible because the 

population density in the United States is considerably lower than in parts of Europe and China. 

Increased shale gas development in more densely populated regions may lead to endangerment 

of the population, especially in regions lacking a proper legal framework to protect both people 

and the environment [23].  

Shale gas operations emit a lot of air pollutants and greenhouse gases (GHG) into the 

atmosphere, which contributes to global warming and threatens human health [30, 31, 32]. 

Composition of natural gas emissions varies, and they usually contain 88% methane, 5% 

ethane, 2% propane, 1.4% carbon dioxide, 1.2% nitrogen, and 0.6% n-butane [33]. Methane is 

a potent GHG emitted during shale gas operations. Methane's hundred-year global warming 
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potential is 28 times that of CO2 [34]. An estimated 3.6% to 7.9% of shale gas produced escapes 

into the atmosphere as fugitive methane. Fugitive methane emissions escape through leaks 

from equipment during gas well completion, transportation, storage, and distribution [11]. In a 

typical shale gas operation, between 1.3% and 1.9% of the natural gas produced are lost to the 

atmosphere as fugitive methane [32]. 49 of the 50 sampling events in a study of ambient 

hydrocarbon analysis in North Texas’s Barnett Shale observed methane concentrations above 

the laboratory detection limit, and the concentrations in the region were higher than the reported 

urban background concentration of 1.8 to 2 ppm [7]. Direct exposure to the hydrocarbons 

released from petrochemical operations is known to be damaging to human health [29]. 

The U.S. EPA has listed: (i) completions with fracking, (ii) pneumatic vents, (iii) 

injection pumps, (iv) leakage from equipment, (v) workovers without fracking, (vi) liquid 

unloading, (vii) condensate tanks, (viii) gas engines, (ix) dehydrator vents, (x) reciprocating 

compressors, (xi)drilling of wells, (xii) well blowouts, and (xiii) coal beds as dominant active 

sources of methane emissions in most common shale gas production locations [30, 31]. During 

the development phase, major VOC sources include completion vents and condensate tanks, 

whereas drill rigs, fracturing pumps, and traffic emissions from trucks are minor VOC sources. 

Compressor stations are major VOC sources, while wellhead compressors, heaters, blowdown 

vents, and pneumatics are minor VOC sources during the production phase [35].  

Litovitz et al. [36] found Pennsylvania’s Marcellus Shale had gas well emissions that 

were ten times larger than associated diesel and road dust emissions. They identified shale gas 

production to be an incredibly damaging factor to regional air quality. Volatile organic 

compounds (VOC) are a group of carbon-based chemicals emitted from either anthropogenic 

or biogenic sources. The U.S. EPA defines VOCs as carbon compounds that react 

photochemically in the atmosphere, which also includes compounds with low photochemical 

reactivity, such as methane and ethane, but excludes carbon monoxide (CO), CO2, carbonic 
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acid, and carbonates [37]. Many VOC species are considered air toxins, and overexposure to 

VOC can lead to irritations, nausea, headaches, and damages to the nervous system, kidney, or 

liver [38]. Annual emissions of VOC in 2011 were in the range of 2,500 to 11,000 metric tons. 

There was a lasting long-term effect on air quality from enhanced shale gas operation as the 

VOC emission levels maintained despite a decrease in the number of active natural gas wells 

since 2011 [36].  

According to Schade and Roest [39], unregulated flaring operations at the Eagle Ford 

Shale gas region (SGR) in South Texas has resulted in a significant increase in the ethane 

mixing ratios in San Antonio and Floresville, Texas along the direction where the air mass 

interacted significantly with shale gas emissions. They suggested that these unconventional 

pollutant sources may undermine any ozone pollution reduction progress by the EPA. 

Monitoring stations closer to the SGR had considerably higher concentrations of oil and gas 

production-related alkanes species compared to monitoring stations further away [40]. Areas 

downwind of the Eagle Ford Shale formation in South Texas saw an increase in ethane, 

propane, n-butane, and isobutane concentrations, which are alkane VOC species closely 

associated with oil and gas production [39].  

The National Ambient Air Quality Standards (NAAQS) ozone design value is the 

annual fourth-highest daily maximum 8-hour average ozone concentration averaged over three 

years. 1997, 2008, and 2015 ozone design values are 80 parts-per-billion (ppb), 75 ppb, and 70 

ppb, respectively. Ten of the twelve DFW counties consistently fail to achieve ozone 

attainment under the NAAQS [4]. Ahmadi and John [6] studied the effects of Barnett Shale 

operations on regional ozone. They broke the study period into pre-2007 and post-2007 to 

reflect the increasing oil and gas well activities in the region since 2007. Before 2007, the 

average number of new gas wells build every year was 700, and this increased to an average 

of 1700 new shale gas wells post-2007. There were higher numbers of days exceeding the 
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ozone standard in the SGR than in the non-SGR. The DFW counties have never failed to 

achieve nitrogen dioxide (NO2) attainment status [41]. Oxides of nitrogen (NOx), which 

includes NO2, is one of the precursors to ozone generation [42]. The consistent NO2 

achievement would suggest that NOx was not the cause of ozone attainment in the three 

counties. Traffic, power plants, and other combustion sources are the primary NOx source in 

urban regions [43, 44]. Thus, DFW's failure to achieve ozone compliance under the NAAQS 

was unlikely the product of conventional urban emission sources and the emission of NOx.  

In a typical urban region, anthropogenic sources are the primary sources of VOC, which 

include gasoline vehicle exhaust, solvent use, fugitive emissions, industrial emissions, and 

oxidation [45, 46]. However, the elevated Barnett Shale natural gas production served as an 

unconventional source that adds to the VOC emissions from conventional urban emission 

sources in the DFW metroplex; natural gas production releases large concentrations of ethane, 

propane, n-butane, isobutane, isopentane, and n-pentane [47]. Alkanes were the most abundant 

total non-methane organic carbon (TNMOC) group measured in DFW, and there was a higher 

concentration of TNMOC in less urbanized regions with high natural gas production volume 

than in highly urbanized regions [9]. The dominant portion by weight percentage related to oil 

and natural gas extraction wells was found to be n-alkanes, including ethane, propane, 

isobutane, and n-butane. Vehicle traffic is the primary source of alkenes and alkynes emissions. 

While benzene and toluene are generally associated with traffic emissions, oil and gas activities 

also emit these hydrocarbon species [48, 49, 50, 51, 52, 53, 54]. Rutter et al. [46] identified 

natural gas emissions (25%) to be the most significant contributor to measured TNMOC at a 

monitoring station downwind of the city of Fort Worth. Natural gas emissions were followed 

by fugitive emissions (15%), internal combustion engine (15%), biogenic sources (7%), 

industrials emissions or oxidation 1 (8%), and oxidation 2 (18%). 
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In the realm of air pollution concentration studies, deterministic methods, statistical 

methods, and machine learning (ML) are the three most commonly utilized approaches [55]. 

In a deterministic method, a simulation model of atmospheric chemistry dispersion and 

transport can be built for air quality predictions. Deterministic method models can achieve 

detailed modeling of the diffusion mechanisms in ambient pollutants. However, the accuracy 

of deterministic method model predictions is considerably lower than other approaches because 

of the extensive use of default parameters and lack in the incorporation of real measurements 

[55, 56, 57]. On the other hand, the statistical method incorporates a large number of real-world 

measurements. However, the downfall of the statistical method came in the form that it assumes 

a linear relationship between the variables, which is unrealistic in a real-world setting [55]. The 

third most-commonly-used technique, the ML method, allowed researchers to built non-linear 

models that incorporate large amounts of real-world measurements. As a result, an increasing 

number of researchers are incorporating various forms of ML into air pollution studies [58, 59, 

60, 61, 62, 63].   
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CHAPTER 3 

STUDY REGION AND DATA 

The DFW metroplex region is currently ranked as the fourth largest metropolitan area 

in the USA and is among the top urban areas reporting strong population growth since 2010 

[1]. DFW is a massive commercial and economic hub in the southern United States with 

specialization in (i) mining, quarrying, oil and gas extraction, (ii) company and enterprise 

management, and (iii) insurance and finances. As of June 2018, the metroplex region had over 

3.7 million in employment, with the most prominent group within the transportation, trade, and 

utility sector, followed by the professional and business service sector. Between 2015 and 

2016, DFW saw a 1.84% growth in population, a 3.52% growth in median household income, 

2.88% growth in employment, and 9.6% growth in median property value [64].  

The Barnett Shale formation, located within the Bend Arch-Fort Worth basin and 

underlines 5,000 square-miles, lies just west of the DFW metroplex region. The edge of the 

formation lies beneath the City of Fort Worth, and the most productive counties fall within the 

DFW metroplex region. Due to the Barnett Shale activities, the mining, quarrying, oil, and gas 

extraction industries in DFW is twice as large as expected based on the region’s population and 

size [64]. The mining, logging, and construction sector saw the most significant change in 

percentage, by 5.5%, of all work sectors between 2017 and 2018 [65]. Significant growth in 

gas production occurred in the formation in the 2000s, when the gas well count increased from 

around 700 wells in 2000 to more than 18,000 wells in 2013 [66]. Natural gas production 

peaked in 2012, producing up to 5,743 million cubic feet (ft3) or 163 million cubic meters (m3) 

per day [67].  

The Texas Commissions on Environmental Quality (TCEQ) operates a network of air 

pollution monitoring stations across the DFW metroplex. The air pollutant concentration data 

is available at the Texas Air Monitoring Information System (TAMIS) online portal 
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(https://www17.tceq.texas.gov/tamis/index.cfm?fuseaction=home.welcome). Ozone, CO, and 

NOx concentrations were available in hourly updated values, whereas TNMOC concentration 

data were available either as canister data, daily average values collected over three days, or 

Automated Gas Chromatography (Auto-GC) data, hourly updated values. Canister TNMOC 

concentrations are collected using steel SUMMA canisters and analyzed using gas 

chromatograph-mass spectrometers by TCEQ scientists [33]. The Auto-GC sampler collects 

air samples with a Sorbent Trap, which are used to capture the compounds of interest and could 

be performed even with the presence of other compounds. Target compounds are separated 

chromatographically, and the separated compounds are detected by one or more detection 

methods, which could be Photoionization Detector (PID) or Flame Ionization Detector (FID). 

Finally, the onboard system identifies and quantifies the compounds [68].  

3.1 Monitoring Sites Equipped with Canister TNMOC Monitors 

Dallas Hinton (DAL), Fort Worth Northwest (FWNW), and Denton Airport South 

(DEN) are three monitoring stations equipped with SUMMA canister systems. Figure 3.1  

shows the locations of the monitoring stations and the active oil and gas wells within the Barnett 

Shale region. Dallas Hinton (DAL) is a monitoring station located in a highly urbanized region 

with no oil and gas operations (32.82006N; -96.860117W) in Dallas County. Landmarks 

around the site include the Dallas Love Field Airport and Interstate 35-East highway. DAL is 

in the city of Dallas, one of the largest cities in the state of Texas. Based on the 2017 U.S. 

Census vintage, an estimated 1.7 million people live in the city of Dallas. The city of Dallas 

saw a 12% growth in population between April 1, 2010, and July 1, 2017 [69]. In 2017, the 

daily vehicle miles traveled (DVMT) in the city of Dallas was 122.8-million miles per day [70]. 

Fort Worth Northwest (FWNW), in Tarrant County, is a moderately urbanized region with oil 

and gas operations (32.805818N; -97.356568W). FWNW is located just south of Fort Worth 

Meacham International Airport and is about 8-km north of downtown Fort Worth, one of the 

https://www17.tceq.texas.gov/tamis/index.cfm?fuseaction=home.welcome
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fastest-growing large cities within the U.S. There are two major highways within proximity to 

the monitoring station, the Interstate 35-West and the Interstate 820. There are an estimated 

874,000 people that live in the city of Fort Worth, and the population grew by 17.3% from 

2010 through 2017 [69]. In 2017, the DVMT in the city of Fort Worth was approximately 62.7-

million miles per day [70], which was roughly half of the city of Dallas’. Denton Airport South 

(DEN) is in an exurban region located in Denton County with a large amount of oil and gas 

operations (33.219069N; -97.1962836W). DEN is located 1-km north of the Denton Enterprise 

Airport and is just outside of the Denton city limit. The city of Denton has an estimated 136,000 

inhabitants, and the city saw a 17.1% growth in population since 2010 [69]. The city had a 

DVMT of 16.2-million miles per day in 2017 [70], which was the lowest among the three sites.  

 

Figure 3.1: Map of SUMMA canister sites along with active oil and gas wells. 
 

3.2 Monitoring Sites Equipped with Auto-GC TNMOC Monitors 

As the canister TNMOC samples were collected once every sixth-day, air pollution 

conditions between each cycle and diurnal characteristics of measured TNMOC concentrations 

could not be analyzed. The TNMOC dataset collected by the Auto-GC monitors will provide 

144 data points for each canister TNMOC data point and allowed for continuous monitoring 
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data. There was a total of fifteen Auto-GC monitoring stations set up within the DFW 

metroplex region; however, only five met the criteria of (i) located within the Barnett Shale 

region and (ii) activated before 2011. As shown in Figure 3.2, all five monitoring sites are in 

shale gas producing counties of the Barnett Shale; two of the five sites were in urban regions 

while the other three were in non-urban regions. 

 

Figure 3.2: Map of Auto-GC monitoring station along with active oil and gas wells. 

 
The Flower Mound Shiloh (C1007) monitoring station in Denton County’s town of 

Flower Mound (+33.045862N; -97.130002W). The monitoring station is located in a suburban 

residential area, close to a small urban forest, and is 5-km north of the Grapevine Lake. The 

2010 census data shows that C13 had a population of 22,545 on the zip code level [71]. By the 

end of 2015, there were 64 active gas wells within a 5-km radius from the monitoring station, 

200 active gas wells within 10-km, and 596 active gas wells within 15-km. The Fort Worth 

Northwest (C13) monitoring station, in Tarrant County, had a population of 35,389 on zip code 

level [71], which was the largest among the five Auto-GC sites. While Tarrant County had the 

highest natural gas production volume in the Barnett Shale, C13 had a significantly lower 

number of active gas wells compared to the non-urban sites. The number of active gas wells 
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within 5-, 10-, and 15-km from C13 during 2015 were 175, 483, and 1155, respectively. The 

Eagle Mountain Lake (C75) monitoring station, in northwest Tarrant County (+32.987891N; -

97.477175W), is located at the Eagle Mountain Lake reservoir and is 1.5-km from the Kenneth 

Copeland Airport. C75 is in a rural region, and the closest town to it, Newark, had an estimated 

population of only 1,005 [71]. There were 431, 1385, and 2893 active natural gas wells within 

5-, 10-, and 15-km from the monitoring station in 2015. The DISH Airfield (C1013) monitoring 

station in Denton County is on the small privately-owned Clark Airfield (+33.130930N; -

97.297650W). On the zip code level, C1013 had a population of 13,098 [71]. Also, a large 

natural gas facility owned by Atmos Energy is just south of the monitoring station. Among the 

five Auto-GC sites, C1013 had the highest number of active gas wells. There were 420 active 

gas wells within a 5-km radius, 1473 active gas wells within 10-km, and 3047 active gas wells 

within 15-km. Wise County’s Decatur Thompson (C88) monitoring station is in an exurban 

region (+33.221721N; -97.584445W). The monitoring station is located near Highway 81 and 

had a population of 15,587 at the zip code level, according to 2010’s census data [71]. During 

2015, there were 257, 837, and 1886 active gas wells within 5-, 10-, and 15-km from the 

monitoring station, respectively. C88 had the fewest gas wells among the non-urban sites, and 

it is also the only one of five sites located on the west side of the gas clusters (Figure 3.2). 
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CHAPTER 4 

METHODOLOGY 

4.1 R Programming Language 

The R programming language is an open-source statistical computing language and 

widely used in statistical applications, data analysis, and data visualization. R is an incredibly 

powerful open-source programming language specifically for statistical computing. Codes 

written using R can be easily modified or improved using extensions, which could be 

downloaded, unpacked, and added to the library within the console itself. The R is 

exceptionally effective at data handling and storage facility. There are numerous arrays of 

calculation operators for statistical applications, mainly matrices. The R also comes with a 

large-coherent-and-integrated collection of intermediate data analysis tools [72]. Also, many 

tools and packages are readily available online via GitHub [73]. The version of R used in this 

study was R-3.6.1 on the R-studio platform. 

The spatial-temporal analysis and PMF source apportionment analysis were enhanced 

through the “openair” package in R [74, 75]. The bivariate polar plot aids spatial analysis by 

visualizing the effect of wind speed and direction on the measured concentration of an air 

pollutant species. The bivariate polar plots were generated using the "polarPlot" command in 

"openair." The input data required are the source concentration profile (which can be either raw 

pollutant concentration or a PMF output), wind speed, and wind direction. The bivariate polar 

plots are accepted as equivalent to more traditionally used techniques, such as conditional 

probability function (CPF), and are powerful visualization tools for air pollution studies. The 

CPF plots are also generated using “openair” by setting the “polarPlot” statistics to “cpf” and 

the percentile to 90th. GIS tools can be included to quantify potential sources, such as power 

plants, traffic sources, and population size within the region [74, 75]. One of the hallmarks of 
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using the GIS tool is a regression analysis of variables. The “sp” package was used for 

analyzing spatial data and is comparable to a GIS tool [76].  

R was also implemented to perform statistical analysis using the Mann-Kendall’s (MK) 

test, the Kruskal-Wallis (KW) test, and the Dunn’s test. The MK test determines if the trend 

experienced by the group was significant [77]. The KW test was performed to identify if there 

were at least one significant difference in mean value within the group [78]. Finally, Dunn's 

test was used to determine whether a specific mean value was significant from the rest [79]. 

The alpha is 0.05, and the null hypothesis is rejected if the P-value was under 0.05. 

4.2 Machine Learning Algorithms 

Machine learning (ML) teaches a computer to learn from patterns and inference alone 

through an array of algorithms and statistical models [80]. The regression models of the 

artificial neural network (ANN), classification and regression tree (CaRT), k-nearest neighbor 

(knn), random forest (RF), and support vector machine (SVM) algorithms were implemented 

in this dissertation. Like any predictive simulation model, the accuracy of the model is a critical 

factor in determining its performance. In most ML-based studies, the performance of an ML 

model is evaluated through root-mean-square-error (RMSE), mean-absolute-error (MAE), and 

coefficient of determination (R2). The RMSE is the square root of the second sample moment 

of the differences between the predicted values of a model and the measured values, the MAE 

is the average of the absolute errors between the predicted and measured values, and the R2-

value measures the model’s ability to explain the total variance in data, scaled from 0-to-1 [80]. 

The equation for RMSE and MAE is given in Eq. (4.1) and Eq. (4.2), respectively. While there 

is no governing rule on what constitutes an acceptable RMSE and MAE, in general, a higher 

value depicts a less accurate system. The MAE assigns the same weight to all errors, whereas 

the RMSE assigns more weight to the errors with larger absolute values than the errors with 

smaller absolute values. Chai and Draxler [81] state that the RMSE is a more desirable measure 
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than the MAE when a larger error needs to be penalized more, where an error by 10 is more 

than twice as bad as an error by 5. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖)2𝑁𝑁𝑖𝑖=1 𝑁𝑁  (Eq. 4.1) 

𝑅𝑅𝑀𝑀𝑅𝑅 =  
1𝑛𝑛∑ |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃|𝑛𝑛𝑃𝑃=1  (Eq. 4.2) 

In addition to the RMSE, MAE, and R2-value, the performance of a predictive model 

can also be determined through fractional bias (FB), fractional error (FE), mean normalized 

bias (MNB), and mean normalized error (MNE) [82]. Bias is a measure of a model’s tendency 

to under- or over-estimate predicted values. Error is a measure of the difference between 

predicted and observed values in terms of magnitude. The formulas for calculating these 

statistical metrics are given in Eq. (4.3) through Eq. (4.6). FB ranges from -200% to +200%, 

while NMB and NME range from -100% to positive-infinity [8].  𝐹𝐹𝐹𝐹 = 100% ×  
2𝑁𝑁∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖+𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖) (Eq. 4.3) 

𝐹𝐹𝑅𝑅 = 100% ×  
2𝑁𝑁∑ |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖|

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖+𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖) (Eq. 4.4) 

𝑁𝑁𝑅𝑅𝐹𝐹 = 100% ×  
1𝑁𝑁∑(

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖 ) (Eq. 4.5) 

𝑁𝑁𝑅𝑅𝑅𝑅 = 100% ×  
1𝑁𝑁∑ |

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃𝑖𝑖 | (Eq. 4.6) 

4.2.1 Artificial Neural Network  

The artificial neural network (ANN) is the most widely known ML algorithm and is 

based on the biological neural network. The ANN is a network that consists of weighted 

interconnecting neutrons that form an input layer, an output layer, and an in-between hidden 

layer [83, 84, 85, 86]. Figure 4.1 shows a multilayer ANN framework based on work performed 

by Mitchell [80]. A multilayer ANN consists of multiple interconnected nodes, input 𝑋𝑋, output 𝑌𝑌, and weighted vectors 𝑀𝑀𝑃𝑃𝑖𝑖 and 𝐹𝐹𝑃𝑃𝑖𝑖. Initially, the algorithm a random weigh to all the linkages. 
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The algorithm then finds the activation rate of the hidden nodes using the input nodes and the 

linkages between the input and hidden nodes. Similarly, the activation rate of the output nodes 

is found using the activation rate of the hidden nodes and their linkages to the output nodes. 

The error rate at the output node is then used to recalibrate the linkages of the hidden and output 

nodes. The calculated weight and output errors then cascade down to the hidden nodes and are 

used to recalibrate the weights between hidden and input nodes. This process repeats until 

meeting a defined convergence criterion. The final linkage weights are then used to score the 

activation rate of the output nodes [87]. 

 

Figure 4.1: Framework of an artificial neural network (ANN) [80]. 

 
ANN requires a large amount of training data; thus, it is prone to over-fitting and 

generalization [87]. An ANN fitted too close to the training set causes over-fitting, and that 

made it difficult for the mode to generalize and make predictions. Generalization is the ability 

of a model to handle unseen data, mostly determined through the complexity and training of 

the ANN [88]. Due to the extensive training data, training the ANN can be very time consuming 

and computationally expensive [80]. 

The “caret” package on R was used to train the ANN algorithm in this study using the 

“nnet” method under the function “train” [89]. The training dataset must first be scaled from 0 
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to 1 because the ANN only outputs values from 0 to 1. The predicted values would have to be 

scaled back to the original scale.  

4.2.2 Classification and Regression Tree 

A decision tree, or classification and regression tree (CaRT), is a recursive data mining 

algorithm. The CaRT is a recursive algorithm that explores the structures of the dataset and 

develops a decision rule for predicting either a categorical (classification) and a continuous 

(regression) variable [90, 91]. The CaRT algorithm partitions and splits the data space 

repeatedly based on the governing formula of Xj ≤ s, where an optimal split is available for all 

variables j and all possible split points s. In a regression tree, the splitting rule tries to minimize 

the expected sum variances for two resulting nodes, as shown in Eq. (4.7). 𝑉𝑉𝑉𝑉𝑃𝑃(𝑌𝑌𝑃𝑃) and 𝑉𝑉𝑉𝑉𝑃𝑃(𝑌𝑌𝑃𝑃) are the response variables for the corresponding child nodes of a parent-node Y, 𝑥𝑥𝑖𝑖 is 

the variable j, 𝑥𝑥𝑖𝑖𝑅𝑅 is the best splitting value of variable 𝑥𝑥𝑖𝑖,  and M is the number of variables 𝑥𝑥𝑖𝑖 
[91]. The algorithm repeats this process until the stopping rule in Eq. (4.8) is met. Where {Rm} 

is the terminal nodes, and cm is the constant for the m-th region. These partitions can be 

visualized as a decision tree [92]. 𝑉𝑉𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑎𝑎 [𝑃𝑃𝑃𝑃  𝑉𝑉𝑉𝑉𝑃𝑃(𝑌𝑌𝑃𝑃) +  𝑃𝑃𝑃𝑃  𝑉𝑉𝑉𝑉𝑃𝑃(𝑌𝑌𝑃𝑃)]; 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖𝑅𝑅; 𝑗𝑗 = 1,⋯ ,𝑅𝑅 (Eq. 4.7) 𝑓𝑓(𝑥𝑥) =  ∑ 𝑃𝑃𝑚𝑚𝐼𝐼(𝑥𝑥 ∈  𝑅𝑅𝑚𝑚)𝑀𝑀  (Eq. 4.8) 

The CaRT can handle missing data and outliers easier than most algorithms because its 

algorithm deals with splitting data space into two based on predefined criteria and does not 

depend on the magnitude of the difference [91]. However, due to the binary split, any minor 

changes that occur at the trunk would propagate down the branches of the tree and affect all 

subsequent split decisions. Minor changes in the variables can often lead to drastically different 

terminal nodes on the tree [92]. 

The “rprart” package in R was used to build the regression tree using the “ANOVA” 

function [93]. Pruning of the tree was performed using the “prune” function in “rpart.” The 
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complexity parameter (cp) is a vital variable in pruning a decision tree. A variable will not be 

added to the tree if adding the variable will cost more than the designated cp value [93]. The 

pruning of a tree depends on the balance between the RMSE, the number of terminal nodes, 

and the cp. 

4.2.3 K-Nearest Neighbors  

The k-nearest neighbor (kNN) is a lazy learner algorithm, and it does not learn anything 

from the training data. The kNN algorithm uses the training data to populate the data space 

alongside the data used for prediction. First, the algorithm calculates the distance metric 

between samples from the target dataset against samples from the training dataset. The distance 

metric can be calculated using either Euclidean, Hamming, Manhattan, and Minkowski 

distance. The algorithm then adds the calculated distance and the index of the target to an 

ordered data frame where the distances and indices are sorted in ascending order by the 

distances. The kNN then picks the first k-entries from the sorted data frame and returns the 

mean value of the target output [94, 95, 96].  

The kNN is very slow at making predictions because it performs its entire algorithm 

during the predicting phase and none during the training phase [94, 95, 96]. When the k-value 

is too small for the dataset, the density estimation of the algorithm is unreliable, whereas the 

density estimate may be too coarse when the k-value is too large [97]. The performance of the 

kNN is susceptible to the scale of data. The curse of dimensionality is a phenomenon that 

occurs when processing data with large dimensions. It refers to when the dimensionality and 

volume increase at a rate where available data could not keep up. Due to the curse of 

dimensionality, the kNN algorithm’s performance is weaker when dealing with a larger dataset 

compared to a smaller one [98].  

The “knnreg” functions in the “class” package [99] in R were used to perform 

regression kNN models. The Euclidean distance metric is the most commonly used distance 
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metric in a kNN application. Eq. (4.9) shows the equation for Euclidean distance. Where, 𝑃𝑃(𝑥𝑥,𝑦𝑦) is Euclidean distance between samples x and y, and 𝑎𝑎 is the number of dimensions in 

feature space.  𝑃𝑃(𝑥𝑥,𝑦𝑦) =  (∑ (𝑥𝑥𝑃𝑃 − 𝑦𝑦𝑃𝑃)2𝑛𝑛𝑃𝑃=1 )1/2 (Eq. 4.9) 

4.2.4 Random Forest  

The random forest (RF) algorithm was first proposed by Breiman to introduce an 

additional random layer to the bagging process [100]. The RF constructs multiple decision trees 

during training time, and it outputs the class that was most frequently observed for 

classification models and outputs the mean prediction for regression models [100]. The user 

first defines the number of trees in the forest, 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The regression RF algorithm draws 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

number of bootstrap samples from the training dataset and grows a regression tree for each 

bootstrap sample drawn. The splitting criterion of each tree is identical to the previously 

discussed CaRT algorithm. The predictions made by the trees are aggregated as output [101].  

Since the RF overcomes overfitting through averaging and combining the results of 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-number of decision trees. Thus, RF is also less prone to variance than a single decision 

tree and can work with a broader range of dataset than a single decision tree [100]. However, 

compared to building a single decision tree, the RF requires significantly more computational 

resources and time to construct.  

The RF model was constructed using the “randomForest” package on R [102]. The 

number of trees, 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, was set to 350. The importance of each variable was also computed 

using the “randomForest” function with “importance = TRUE.”   

4.2.5 Support Vector Machines  

The support vector machine (SVM) is an algorithm to find the hyperplane between the 

data of two classes. The SVM algorithm finds the support vectors, which are points closest to 
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the hyperplane from both classes. The algorithm then calculates the margin, which is the 

distance between the hyperplane and the support vectors. The hyperplane with the maximized 

margin is considered the optimal hyperplane. the SVM algorithm uses a kernel trick to 

maximize the margin [103]. The kernel transforms input data into the required form and can 

be either linear, polynomial, or Gaussian-exponential [104]. 

The SVM implements the Structure Risk Minimization (SRM), which allows it to avoid 

overfitting training and local minima by balancing the complexity of the model against its 

success at fitting the training dataset [105, 106]. The goal of the SRM is to minimize 𝑅𝑅𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑛𝑛 +𝛽𝛽𝛽𝛽(𝑤𝑤), where 𝑅𝑅𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑛𝑛 is the training error,  𝛽𝛽(𝑤𝑤) is a user defined regulation function, and  𝛽𝛽 

is a constant [103]. While allowing the user to choose Kernels brings tremendous flexibility, 

choosing a wrong kernel for the application can lead to a catastrophic drop in model accuracy.  

The SVM model was constructed using the “SVM” function on the “e1071” package 

on R using the command line “type = eps-regression” [107]. A detailed description of the SVM 

tuning process can be found online [108]. 

4.3 Positive Matrix Factorization (PMF)  

The positive matrix factorization (PMF) is a multivariate table-driven source 

apportionment model first developed by Paatero [109]. The model is used to determine the 

number of source factors affecting an air pollutant concentration. It also calculates the factor 

contribution and factor profile of each source. The goal of the PMF is to minimize the Q-value, 

as shown in Eq. (4.10), where X is the data matrix consisting of concentration of n chemical 

species in m samples, p is the number of factors, f is the chemical profile of each factor, and g 

is the factor’s contribution to sample [110].  Also, it has been reported that the Q(robust)/Q(True) 

value must be under 1.5 to be for the run to be considered [111]. The PMF model used in this 

was the EPA PMF 5.0 version; its user guide is available online [110]. 
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𝑄𝑄 =  ∑ ∑ [
𝑋𝑋𝑖𝑖𝑖𝑖−∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖=1𝑢𝑢𝑖𝑖𝑖𝑖 ]2𝑚𝑚𝑖𝑖=1𝑛𝑛𝑃𝑃=1  (Eq. 4.10) 

The EPA PMF 5.0 requires two inputs: a concentration file and an uncertainty file. Air 

pollutant data is organized into columns in the concentration file. The PMF 5.0 does not take 

zeroes or non-available (NA) data. The user must classify all instances of zeroes and NA as "-

999", which signals the model to either replace them with species median or remove the entire 

column. The model detection limit (MDL) of the air pollutant monitor is required to generate 

uncertainty values in the uncertainty input file. The uncertainty is calculated using Eq. (4.11), 

if the measured concentration was lower than or equal to species MDL of species. If species 

MDL was lower than the measured concentration, uncertainty is calculated using Eq. (4.12) 

instead [110]. The MDL is air pollutant species-specific and can be retrieved from the TAMIS. 𝑈𝑈𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑎𝑎𝑃𝑃𝑦𝑦 =
56  × 𝑅𝑅𝑀𝑀𝑀𝑀 (Eq. 4.11) 

𝑈𝑈𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑎𝑎𝑃𝑃𝑦𝑦 = �(𝑅𝑅𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃 𝑓𝑓𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑎𝑎 × 𝑃𝑃𝐸𝐸𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝐸𝐸𝑎𝑎)2 + (0.5 ×𝑅𝑅𝑀𝑀𝑀𝑀)2 (Eq. 4.12) 

The quality of data is generally more critical than the volume of data. To improve model 

accuracy, only data that passes a specific signal-to-noise (S/N) ratio should be considered. The 

PMF 5.0 calculates the S/N ratio of each input species based on the concentration and 

uncertainty inputs. A “bad” species is removed from the dataset, and a “weak” species is kept, 

but the uncertainty assigned to it is tripled. The user guide recommends assigning any species 

with S/N ratio <0.5 as “bad”, 0.5≤ S/N ≤1 as “weak”, and >1 as “strong” species [110];  Paatero 

and Hopke’s [112] report shows that assigning species with S/N ratio <0.2 as “bad”, 0.2≤S/N≤2 

as “weak”, and >2 as “strong” yields a better model accuracy. 
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CHAPTER 5 

SPATIAL AND TEMPORAL CHARACTERISTICS OF AMBIENT ATMOSPHERIC 

HYDROCARBONS IN AN ACTIVE SHALE GAS REGION IN NORTH TEXAS* 

A trend analysis study was performed using the Auto-GC TNMOC concentration data 

collected between 2011 and 2015 at five monitoring stations within the Barnett Shale. A 40-

minute air sample is collected by the Auto-GC monitors every hour and process through on-

board chromatography systems. However, most of the Auto-GC sites in the DFW metroplex 

were built in the 2010s and did not have data points that showcased the shale gas boom and the 

recession period air quality.  

All five monitoring stations are within active shale gas producing counties of the 

Barnett Shale; however, there were significantly lesser shale gas production activities 

surrounding Flower Mound Shiloh (C1007) and Fort Worth Northwest (C13) as compared to 

Eagle Mountain Lake (C75), DISH Airfield (C1013), and Decatur Thompson (C88), as shown 

in Figure A9. The total natural gas production volume (MMBtu) from all producing gas wells 

within each 1.2 km × 1.2 km square box between 2011 and 2015 were summed up and were 

color scaled from blue (0) to red (3 × 107 MMBtu). The highest density of wells near C1007 

northwest of the monitoring station and were mostly outside of the 5-km radius. At C13, there 

were significantly more wells at the northwest and southeast sides, and the highest producing 

wells in the area were within 5-km from the monitoring station. C75 and C1013 have 

significantly higher number active wells compared to the two urban sites in all directions, and 

some of the highest producing wells near the respective sites were within 5-km. Active gas 

wells also surrounded C88 in all directions like the other two non-urban sites; however, the 

high producing wells in the region were outside the 10-km radius.  

* This chapter is reproduced from G. Q. Lim, M. Matin and K. John, "Spatial and temporal characteristics of
ambient atmospheric hydrocarbons in an active shale gas region in North Texas," Science of the Total 
Environment, vol. 656, pp. 347-363, 2019, with permission from Elsevier. 
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Slower wind speed often leads to an increase in localized air pollution events and results 

in higher ambient concentrations of air pollution near source-rich regions. On the contrary, the 

effects of dispersion and rapid dilution become stronger with increasing wind speeds, which 

results in decreased concentration of air pollutants [113]. In Figure 5.1, the wind rose diagrams 

were plotted using wind data collected from 2011 to 2015. The predominant winds at all five 

monitoring stations were from the south-southeast. C1007 had the slowest recorded wind 

speeds with a mean value of 8.1 kph or 2.25 m/s, whereas C75 had the fastest winds at 9.6 kph 

or 2.67 m/s. The wind rose diagrams showed no significant difference between wind speed 

measured at all five sites; however, C75 had a higher frequency of high-speed winds blowing 

from the northwestern side of the monitoring station. 

 

Figure 5.1: Wind rose diagrams for C1007, C13, C75, C88, and C1013: 2011-2015. 

 

5.1 Spatial Variation in TNMOC Concentration Distribution  

The TNMOC concentrations measured at the five sites between 2011 and 2015 are in 

Figure 5.2. C1007 had the lowest TNMOC concentrations, whereas C88 had the highest. Table 

5.1 highlights the summary statistics of TNMOC and the hydrocarbon groups of alkanes, 
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alkenes, alkynes, aromatics, and biogenic. C88’s mean TNMOC concentration was 2 ppb-C 

lower than C1013’s, but its median concentration was 34% larger than C1013’s, at 93.7 ppb-C 

and 69.89 ppb-C, respectively. The mean TNMOC concentration at C1013 was higher than its 

75th-percentile and was the only monitoring site of the five to show this characteristic. Outliers 

significantly influenced the mean TNMOC concentration at C1013, where its 95th-percentile 

value was 152.58 ppb-C higher than the next highest site’s. 

 

Figure 5.2: Annual trend of TNMOC (ppb-C) concentrations measured at C1007, C13, C75, 
C1013, and C88 from 2011 to 2015. 

 
Alkanes were the group with the highest measured concentrations at all five sites, 

making up 84% of the measured TNMOC concentrations at the urban sites and 93% of the 

TNMOC concentrations measured at the non-urban sites. C1013 had the highest mean 

concentration of alkane, at 131.85 ppb-C, whereas C1007 had the smallest mean alkane 

concentration, at 57.86 ppb-C. The aromatics group was the second-largest group, making up 

roughly 7% of the TNMOC at the urban sites and 4% of the TNMOC at the non-urban sites. 

C13 had the highest mean concentration of aromatics, at 4.04 ppb-C, whereas C75had the 

lowest, at 1.87 ppb-C. C13 also had the largest mean concentration of alkene, at 4.11 ppb-C, 

and C75 had the lowest mean concentration, at 1.77 ppb-C.  
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Table 5.1: Summary of TNMOC and hydrocarbon groups (ppb-C). 

  TNMOC Alkane Alkene Alkyne Aromatic Isoprene 

C1007 

Mean 65.68 57.89 2.07 0.62 3.37 2.71 

Min 5.97 4.30 0.01 0.03 0.06 0.00 

Median 43.45 36.31 1.61 0.51 2.45 0.55 

95th 187.39 175.51 5.03 1.39 8.53 10.09 

Max 3427.85 3218.73 206.70 196.53 983.97 96.37 

IQR 28.3 - 73.35 21.87 - 64.87 1.06 – 2.46 0.31 – 0.78 1.56 – 4.04 0.11 – 3.2 

StDev 76.61 73.11 2.65 1.16 6.79 4.83 

Num. 36996 36996 36969 36531 36926 23899 

C13 

Mean 88.46 77.36 3.55 0.96 6.21 0.36 

Min 8.82 7.04 0.18 0.02 0.25 0.01 

Median 56.00 47.57 2.19 0.67 3.83 0.19 

95th 271.99 242.57 11.19 2.71 19.39 1.21 

Max 1791.59 1715.34 155.71 20.81 228.00 6.44 

IQR 34.67 - 99.99 28.38 - 88.31 1.46 – 3.71 0.44 – 1.04 2.55 – 6.58 0.08 – 0.49 

StDev 98.55 90.03 4.57 1.05 7.71 0.43 

Num. 36614 36614 36614 33696 36614 27056 

C75 

Mean 96.55 91.44 1.71 0.56 2.66 0.59 

Min 4.47 2.64 0.01 0.03 0.01 0.00 

Median 54.39 50.01 1.27 0.42 1.93 0.26 

95th 307.10 297.03 4.52 1.36 7.45 2.17 

Max 3631.70 3499.52 29.38 12.36 118.88 20.15 

IQR 30.22 - 105.17 26.98 - 99.13 0.85 – 2.01 0.25 – 0.68 1.16 – 3.29 0.09 – 0.74 

StDev 140.37 137.48 1.50 0.55 2.51 0.88 

Num. 36145 36145 35703 30240 35498 20727 

C1013 

Mean 138.22 131.92 1.84 0.54 3.67 0.46 

Min 5.53 4.01 0.04 0.02 0.06 0.00 

Median 69.89 64.72 1.37 0.45 2.47 0.24 

95th 517.17 504.17 4.97 1.21 10.35 1.69 

Max 3688.11 3649.67 42.62 14.63 195.32 9.22 

IQR 44.48 - 126.74 40.58 - 118.93 0.86 – 2.21 0.28 – 0.68 1.5 – 4.25 0.09 – 0.58 

StDev 223.31 219.81 1.73 0.42 4.54 0.63 

Num. 36335 36335 36311 35790 36321 20313 

C88 

Mean 136.04 129.21 2.19 0.59 3.56 0.91 

Min 14.03 10.12 0.05 0.04 0.32 0.00 

Median 93.70 87.78 1.84 0.51 2.82 0.47 

95th 364.59 352.37 4.56 1.26 8.10 2.36 

Max 53320.20 51811.34 817.59 30.28 660.89 24.46 

IQR 54.7 - 165.65 49.94 - 158 1.3 – 2.61 0.3 – 0.79 1.88 – 4.26 0.11 – 1.38 

StDev 319.57 311.30 4.48 0.46 4.93 1.14 

Num. 37090 37090 37088 36963 37087 20016 
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C13 and C75 had the highest and the lowest mean alkyne concentrations, respectively, where 

the corresponding mean concentrations were 0.88 ppb-C and 0.47 ppb-C. The aromatic, alkene, 

and alkyne TNMOC species were more prevalent in urban areas than in the non-urban areas. 

The mean concentration of isoprene measured in C1007 was significantly higher than all the 

other sites, at 2.71 ppb-C. The mean concentrations of isoprene at the other sites were 

significantly lower than C1007’s, ranging from 0.36 ppb-C in C13 to 0.91 ppb-C in C88. The 

mean isoprene concentration at C1007 was more comparable to ground-level isoprene 

concentrations measured in the other major Texas cities, which ranges from 3.15 ppb-C in 

Houston, Texas [114] to 6 ppb-C in Austin, Texas [115]. Isoprene is a biogenic TNMOC 

species, and the most likely source was a small urban forest close to C1007.  

5.2 TNMOC Components and Characteristics  

Ethane, propane, and n-butane had the highest concentrations among measured 

TNMOC species at all five sites, and the non-urban sites had higher concentrations of these n-

alkane species than the urban sites. These n-alkanes are common emission species from oil and 

gas production activities [116, 117]. Inversely, the alkene, alkyne, and aromatic species had a 

higher composition percentage at the urban sites compared to non-urban sites, and C13 had the 

highest measured mean concentration of these three groups.  

The ratio between each group and TNMOC was calculated to determine further the 

impacts each group had on the measured TNMOC concentrations. There was a distinct 

variation between the urban and non-urban sites, as shown in Figure 5.3. The urban sites’ 

alkane/TNMOC ratios were lower than the non-urban sites, and urban sites’ median values 

were lower than the non-urban sites’ 25th percentile values. The interquartile range (IQR) for 

the urban sites’ alkane/TNMOC ratio was also significantly larger than the non-urban sites’. 

While the alkane/TNMOC ratios were at least 0.8 across all five sites, the alkane/TNMOC 

ratios had a significant separation between the urban and the non-urban sites. C13 had a lower 
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mean concentration, lower median value, and a larger IQR, whereas C75 had a higher mean, a 

higher median, and a smaller IQR.  

 

Figure 5.3: Comparison between urban and non-urban site TNMOC concentration, 
alkane/TNMOC, alkene/TNMOC, alkyne/TNMOC, aromatic/TNMOC, and isoprene/TNMOC 
concentration ratio. 

 

5.3 Seasonal Trend Analysis 

The combination of a lower photochemical reactivity in the atmosphere coupled with 

conducive meteorological conditions, such as lower mixing depths during winter months, 

typically contributes to a higher measured TNMOC concentration [118, 119]. In the northern 

hemisphere, the winter months are December through February, the spring months are March 
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through May, the summer months are June through August, and the fall months are September 

through November. The measured TNMOC concentrations were higher during winter months 

compared to summer months at all five monitoring sites, as shown in Figure 5.4. The mean 

concentration of TNMOC during winter months at C1007, C13, C75, C1013, and C88 were 

104.58 ppb-C, 136.76 ppb-C, 156.54 ppb-C, 210.05 ppb-C, and 181.35 ppb-C, respectively; 

the mean concentration of TNMOC during summer months were 40.39 ppb-C, 51.19 ppb-C, 

54.21 ppb-C, 89.86 ppb-C, and 112.78 ppb-C, respectively. The mean TNMOC concentration 

decreased by -61.59% at C1007, -62.56% at C13, -65.37% at C75, -57.22% at C1013, and -

37.8% at C88 from winter to summer months. The change between summer and winter months 

mean TNMOC concentration at C88 was significantly different from the other monitoring sites 

where the KW-test P-value was 0.012 (<0.05). 

Each hydrocarbon group should have different impacts on the TNMOC concentration 

during different seasons. As shown in Figure 5.4(a), the alkane/TNMOC ratios measured at all 

five monitoring sites had similar characteristics to their corresponding total TNMOC 

concentration, where winter months had the highest values and summer months had the lowest 

values. The mean concentrations of the alkane group for C1007, C13, C75, C1013, and C88 

during winter months were 96.86 ppb-C, 123.11 ppb-C, 150.15 ppb-C, 202.53 ppb-C, and 

173.92 ppb-C, respectively; while the corresponding mean concentrations during summer 

months were 30.61 ppb-C, 42.44 ppb-C, 49.79 ppb-C, 84.46 ppb-C, and 105.47 ppb-C, 

respectively. C1007 had the largest decrease in mean alkane concentrations from winter to 

summer, at -68.4%, whereas C88 had the smallest increase, at -39.4%. Again, the percentage 

change from summer to winter months at C88 was significantly different from the other sites 

where the KW-test P-value was 0.013. It is important to note that the median summer 

alkane/TNMOC value at the urban sites was closer to 0.8, while the median values at the non-

urban sites were closer to 0.9. The alkane concentrations measured at the urban sites were less 
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consistent than the non-urban sites where a larger alkane/TNMOC IQR was measured at the 

urban sites. The more abundant and more consistent alkane sources at the non-urban sites 

indicated a stronger influence from oil and gas production activities.  
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Figure 5.4: Seasonal variation of (a) TNMOC (ppb-C) and alkane/TNMOC concentration ratio, 
(b) alkene/TNMOC and alkyne/TNMOC concentration ratio, and (c) aromatics/TNMOC and 
isoprene/TNMOC concentration ratio. 

 
Four of the five monitoring sites, minus C1013, showed alkene/TNMOC ratio 

characteristics that were inverse to their respective alkane/TNMOC ratios, as shown in Figure 
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5.4(b), where the summer months had the highest ratios, followed by spring and fall, and the 

winter months had the lowest ratios. At C1013, the ratios measured in spring was slightly 

higher than in summer. The mean alkene concentrations measured in C1007, C13, C75, C88 

and C1013 during winter months were 2.69 ppb-C, 4.69 ppb-C, 2.34 ppb-C, 2.47 ppb-C, and 

2.66 ppb-C, respectively; while the mean concentrations measured during summer were 1.69 

ppb-C, 2.43 ppb-C, 1.3 ppb-C, 1.42 ppb-C, and 2.03 ppb-C, respectively. The decrease in 

alkene concentrations from winter to summer months ranged between -23.8% (C88) to -47% 

(C13). The percentile change in-between seasons at C88 was again statistically significantly 

different from the other sites with a KW-test P-value of 0.015. Despite higher alkene 

concentrations during winter, the alkene/TNMOC ratios were lower during winter months 

compared to the summer months. The higher summer month alkene/TNMOC ratios were the 

results of lower TNMOC concentrations during summer months and a lower denominator. 

There was a significantly larger decrease in the denominator (TNMOC) value from winter to 

summer months compared to the numerator (alkene) value where the TNMOC concentrations 

dropped by 88.17 ppb-C on average compared to the 1.19 ppb-C drop in alkene concentrations. 

Common anthropogenic sources of alkynes include vehicular exhaust emissions and 

industrial combustion sources. The highest alkyne/TNMOC ratios were measured during 

spring at all five monitoring sites, as shown in Figure 5.4(b). At C1007, C75, C1013, and C88, 

summer months had the lowest alkyne/TNMOC median values; however, at C13, the summer 

month median values were higher than the fall and winter months, where winter had the lowest 

median values. The mean concentration of alkyne measured during the winter months at 

C1007, C13, C75, C88, and C1013 were 0.98 ppb-C, 1.23 ppb-C, 0.77 ppb-C, 0.85 ppb-C, and 

0.92 ppb-C, respectively; in the summer months, the corresponding mean concentrations were 

0.34 ppb-C, 0.57 ppb-C, 0.25 ppb-C, 0.28 ppb-C, and 0.3 ppb-C, respectively. C1007 had the 

largest decrease in mean alkyne concentration from the winter to summer months, at 68.1%, 
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and C13 had the smallest decrease, at 53.9%. The percent-change at C13 was significantly 

different from the rest of the five sites where the KW-test P-value was 0.011. The larger 

alkyne/TNMOC ratios at urban sites were the result of lower TNMOC concentrations. The 

most urbanized C13 had the highest measured concentration of alkyne during the summer 

months and the smallest decrease in alkyne/TNMOC ratio from winter to spring, which 

indicated more abundant and more consistent alkyne sources from the urban combustion 

sources. 

As shown in Figure 5.4(c), the median values of the aromatics/TNMOC ratios measured 

at the urban sites were higher than the non-urban sites. Summer months have the highest 

aromatics/TNMOC ratios, whereas the lowest ratios were during winter months, despite 

aromatics concentration being the highest during winter and lowest during summer. The mean 

concentration of aromatics measured during winter at C1007, C13, C75, C88, and C1013 were 

4.03 ppb-C, 7.41 ppb-C, 3.26 ppb-C, 4.19 ppb-C, and 3.84 ppb-C, respectively; while their 

corresponding summer mean concentrations were 2.79 ppb-C, 4.98 ppb-C, 1.98 ppb-C, 3.03 

ppb-C, and 3.61 ppb-C, respectively. C75 had the highest decrease in mean aromatics 

concentration between winter and summer at -39.3%, whereas C88 had the smallest drop, at 

only 5.9%. The KW-test showed the difference in percentile change at C88 to be statistically 

significant from all the other sites with a P-value of 0.013.  

The isoprene concentrations measured at C1007 were significantly larger than the other 

sites. As shown in Figure 5.4(c), the isoprene/TNMOC ratio at C1007 was considerably higher 

than the other sites. The isoprene concentrations measured at all five sites were highest during 

summer months and lowest during winter months. Isoprene is a biogenic emission species and 

is commonly the most abundant during summer months [120]. The mean concentrations for 

isoprene measured during summer months were 4.96 ppb-C for C1007, 0.63 ppb-C for C13, 

0.88 ppb-C for C75, 0.67 ppb-C for C1013, and 1.38 ppb-C for C88, while their corresponding 
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mean concentrations during winter months were 0.025 ppb-C, 0.082 ppb-C, 0.013 ppb-C, 0.009 

ppb-C, and 0.01 ppb-C, respectively. Summer isoprene concentrations at C1007 were 201 

times larger than winter between winter concentrations; comparatively, the non-urban sites’ 

isoprene concentrations increased by an average of 92 times while C13 only increased by 6.7 

times. The percentile increase observed at C1007 and C13 were statistically significantly 

different from all other sites according to the KW-test, the P-values were 0.024 and 0.036, 

respectively.  

The variations in alkane concentrations were predominately responsible for the 

seasonal variations in TNMOC concentrations. The change in the mean concentration of 

TNMOC, alkane, alkene, and aromatics from winter to summer at C88 was statistically 

significantly different from the other site. Meteorological conditions at C88 were not 

significantly different from the other sites; thus, they were unlikely to have been the catalyst 

behind the significant difference in the seasonal change in TNMOC, alkane, alkene, and 

aromatics concentrations. 

5.4 Spatio-Temporal Distribution of TNMOC 

The conditional bivariate probability function (CBPF) plots for the 50th-75th percentile, 

75th-95th percentile, and >95th percentile TNMOC measured at the urban and non-urban sites 

are shown in Figure 5.5 and Figure 5.6, respectively. The 50th-75th percentile plot represents 

average concentrations, the 75th-95th percentile plot represents high concentrations, and the 

>95th percentile plot represents extreme conditions.  

The 75th-95th percentile CBPF plot for C1007 and C13 had high concentration regions 

that match the gas well surrounding the sites. The majority of the gas wells surrounding C1007 

are on the west-northwest-north sides of the monitoring station, which coincides with the 75th-

95th TNMOC CBPF. The 50th-75th CBPF at C13 showed similarities to the gas wells producing 

less than 1 × 107 MMBtu (blue squares) on Figure A9, whereas the 75th-95th CBPF plot 



 

 37 

resembles the pattern formed by the gas wells producing between 1 × 107 and 2 × 107 MMBtu 

(green squares). C75’s 50th-75th TNMOC CBPF also resembles the gas wells surrounding the 

monitoring station. The other two CBPF plots from C75 showed the highest probability at the 

northwest side of the monitoring station, which did not visually match the gas-producing wells 

at the site. Gas wells at C88 had the highest productivity at the southeast and the northwest end 

of the map, while the 75th-95th CBPF at C1013 had some similarities to its gas production map, 

as seen in the highest density of wells in the west-northwest-north side of the monitoring 

station.  

 

Figure 5.5: Conditional Bivariate Probability Function plot for 50th to 75th percentile, 75th to 
95th percentile, and >95th percentile at C1007 and C13. 
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Figure 5.6: Conditional Bivariate Probability Function plot for 50th to 75th percentile, 75th to 
95th percentile, and >95th percentile at C75, C1013, and C88. 
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The CBPF plot shows two higher probability regions, one in the gas well-dense region 

northwest of the C1013 site and one just south of it. The 50th-75th CBPF also showed a high 

concentration region at the southeast end of the plot. The Atmos Energy facility is located just 

south of the monitoring station and was likely the source of this emission. The 75th-95th and the 

over-95th CBPF plots showed similarities to the gas wells where the highest probability regions 

were either dense with gas wells (75th-95th plot) or having high production volume (95th plot). 

The 50th-75th CPBF at C88 had the highest probability at the southeast end of the plot, which 

was likely emissions from the densely packed gas wells at the southeast end. High probability 

regions on the >95th CBPFs were on the west side of C1007 and C13, northwest side of C75 

and C1013, and both northwest and southeast sides of C88.  

5.5 Summary Findings 

The emissions from unconventional oil and gas production activities within the Barnett 

Shale region has had a significant impact on the measured TNMOC concentrations at five 

ambient air quality monitoring stations in North Texas during 2011-2015. TNMOC 

concentrations observed at the non-urban sites were, on average, 1.61 times larger than those 

at urban sites. Alkanes, predominately ethane, were among the most significant contributors to 

the overall measured TNMOC concentrations.  Approximately 88% of the measured TNMOC 

concentrations at urban sites and 95% of the TNMOC at non-urban sites were n-alkanes. 

Despite the higher measured concentrations of n-alkanes, the urban sites also were influenced 

by anthropogenic sources of VOC from motor vehicles and industries, as highlighted by higher 

alkene, alkyne, and aromatics/TNMOC ratios. The IQR in alkane/TNMOC ratios at the urban 

sites were also larger than at non-urban sites. While all sites were close to nearby oil and gas 

activities, there was an evident spatio-temporal variation in the measured TNMOC 

concentration between the urban and non-urban sites. The measured TNMOC concentrations 

experienced winter highs and summer lows.  However, one of the non-urban sites (C88) was 
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impacted by VOC year-round from nearby oil and gas production activities.  Also, there were 

significantly elevated isoprene concentrations from biogenic emissions at C1007. The impact 

of elevated concentrations of TNMOC from oil and gas sources will be an essential factor in 

understanding the nature of local and regional air quality in North Texas.  
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CHAPTER 6 

A LONG-TERM TREND ANALYSIS OF AIR QUALITY IN THE DALLAS-FORT 

WORTH AREA: DISCERNING THE IMPACT OF OIL AND GAS EMISSIONS FROM 

THE BARNETT SHALE 

With the increase in exploration for and extraction of unconventional energy sources 

on a global scale, the impact of unconventional shale gas emissions on air quality has become 

an increasingly important factor.  In this chapter, a long-term study on ground-level ozone and 

its precursors was conduction using concentration data collected from 2000 to 2018. Air 

pollutant concentration data from monitoring stations at locations with the following 

characteristics were retrieved: (i) highly urbanized region with no oil and gas operations (Dallas 

Hinton, DAL), (ii) moderately urbanized region with significant oil and gas operations (Fort 

Worth Northwest, FWNW), and (iii) exurban region with a large amount of oil and gas 

operations (Denton Airport South, DEN). The air pollutant concentration data is on the TAMIS. 

Ozone, NOx, CO, and TNMOC concentrations collected between January 1, 2000, and 

December 31, 2018, were used. Ozone and NOx concentrations were available in hourly 

updated values at all three sites. Hourly CO concentration was only available at DAL and 

FWNW; however, FWNW discontinued its CO monitoring in 2014. While hourly updated 

TNMOC samples were available in DAL and FWNN, DEN only had access to daily averaged 

values. These daily averaged TNMOC values were updated every sixth-day. They are collected 

using steel SUMMA canisters and are analyzed using gas chromatograph-mass spectrometers 

by TCEQ scientists [33]. Also, FWNW had only started collecting TNMOC samples in 

November 2003. Since the sixth-day cannister TNMOC data were available for all three sites, 

we had decided to use this dataset in the study. 

Table 6.1 shows the 2008, 2011 and 2014 National Emissions Inventory (NEI) for 

Criteria and Hazardous Air Pollutants by 60 Emissions Inventory System (EIS) emission 
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sectors of CO, NOx, and volatile organic compound (VOC) for Dallas, Tarrant, and Denton 

county [121]. VOC is synonymous with TNMOC, except for the inclusion of methane 

concentrations. The U.S. EPA maintains and updates the NEI database every three years. 

However, the EIS data before 2008 was not publicly available, and the 2017 data was not ready 

at the time of writing this paper. Dallas county had the highest emissions for all three pollutant 

types, followed by Tarrant and Denton counties. Also, the emission trends of all three pollutant 

types were in the decrease between 2008 and 2014.  

Table 6.1: National Emissions Inventory (NEI) for Criteria and Hazardous Air Pollutants by 60 
Emissions Inventory System (EIS) emission sectors of VOC, CO, and NOx (tons) [121]. 

   2008 2011 2014 
Change 

(%/Year) 

Dallas 

NOx 62,707.54 51,422.35 45,223.37 -4.65% 

CO 309,104.00 287,281.23 249,323.80 -3.22% 

VOC 68,678.98 56,808.05 50,763.77 -4.35% 

Tarrant 

NOx 65,053.60 45,081.84 34,374.22 -7.86% 

CO 203,221.49 200,727.20 151,909.60 -4.21% 

VOC 55,176.21 50,651.33 45,873.04 -2.81% 

Denton 

NOx 20,877.80 13,784.60 12,331.40 -6.82% 

CO 62,935.37 60,568.24 50,934.00 -3.18% 

VOC 29,722.38 27,267.55 25,050.71 -2.62% 

 
Temperature, relative humidity, and wind speed play essential roles in ozone production 

and destruction [122, 123]. Between 2000 and 2018, the regional outdoor temperature 

increased while relative humidity decreased. The fastest winds (Figure A1) occurred during 

spring, and the mean wind speed at DAL, FWNW, and DEN were 8.87 km/hour, 11.92 

km/hour, and 11.51 km/hour, respectively. Aside from slightly slower wind speeds at DAL, all 

three sites had very similar meteorological conditions. Thus, the variation in air pollutant 

concentrations was unlikely to be caused by meteorological conditions. Figure A1 shows the 

seasonal wind rose diagram of each monitoring station. Throughout the year, the winds are 
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predominantly southeasterly. Since the monitoring stations were on the eastern end of the 

Barnett Shale, fugitive emissions from the Barnett Shale had to be carried in by westerly winds, 

which are uncommon in the region. Hence, any traces of oil and gas emissions found at the 

monitoring stations are mainly from local sources. 

The study period was divided into four distinct periods: 2000-2006, 2007-2009, 2010-

2012, and 2013-2018. Between December 2007 and June 2009, the U.S. economy went through 

a period of turmoil. It ultimately resulted in an economic recession, and this also influenced 

energy demand and production, which also had a downturn [124]. The observations made 

between 2000 and 2006 represented the pre-recession period, where the Barnett Shale region 

saw a massive expansion in shale gas operations. The 2010-2012 period saw the rebound of 

the U.S. economy and energy production demand. Finally, the 2013-2018 period saw a drop in 

natural gas productions across the Barnett Shale post-2013 due to low natural gas prices [2].  

6.1 Oxides of Nitrogen (NOx) 

Conventional urban anthropogenic sources of NOx, a precursor to the ozone formation, 

include gasoline vehicle exhaust, commercial and industrial solvent uses, and power plant 

emissions [43, 44]. Heavy-duty off-road trucks are used to bring materials to and from the gas 

wells, and these trucks emit NOx [125]. There are not many stationary NOx emission sources, 

outside of diesel-powered trucks, on shale gas production sites. Thus, NOx is a good indicator 

of conventional urban sources. 

Between 2000 and 2018, the mean NOx concentration measured at DAL, FWNW, and 

DEN were 20.853 ± 0.0814 ppb, 15.852 ± 0.0579 ppb, and 9.094 ± 0.028 ppb, respectively. 

Between 2000 and 2018, the NOx concentration decreased by -0.878 ± 0.612 ppb/year (-

3.87%/year) at DAL, -0.461 ± 0.374 ppb/year (-2.69%/year) at FWNW, and -0.231 ± 0.353 

ppb/year (-1.21%/year) at DEN. The decline in measured NOx concentration shown at all three 

sites was likely the result of improvement as a result of better emission control technologies 
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and the effective implementation of emissions regulation policies [126, 127]. While the mean 

and 90th-percentile NOx concentrations at DAL and FWNW had decreased consistently since 

2000, DEN’s concentration saw an increase from 2002 to 2005, and then followed by a decline 

post-2006, as shown in Figure 6.1. We suspect the increase in measured NOx concentrations at 

DEN from 2002 to 2005 was likely caused by high truck traffic during the development phase 

as the NOx emissions from diesel-powered vehicles are significantly higher than gasoline-

powered vehicles [128]. 

 

Figure 6.1: Trends of NOx concentration (ppb) at Dallas Hinton, Fort Worth Northwest, and 
Denton Airport South. 

 
The mean concentration of NOx measured at DAL during 2000-2006, 2007-2009, 2010-

2012, and 2013-2018 were 29.2 ± 0.177 ppb, 20.7 ± 0.201 ppb, 17.5 ± 0.151 ppb, and 13.7 ± 

0.09 ppb, respectively. The mean concentration of NOx at DAL had decreased by -0.53 ± 1.64 

ppb/year (-1.23%/year) during 2000-2006, -3.55 ± 0.05 ppb/year (-15.86%/year) during 2007-

2009, -0.95 ± 0.95 ppb/year (-5.25%/year) during 2010-2012, and -0.94 ± 0.72 ppb/year (-

5.63%/year) during 2013-2018. The mean NOx concentration measured at FWNW during 

2000-2006, 2007-2009, 2010-2012, and 2013-2018 were 19.8 ± 0.114 ppb, 18.4 ± 0.151 ppb, 
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13.9 ± 0.132 ppb, and 11.1 ± 0.073 ppb, respectively. Despite an overall downward trend, the 

annual mean NOx concentration saw a slight increase from 2000 to 2006 and from 2010 to 

2012, at the rate of +0.083 ± 0.592 ppb/year (+0.66%/year) and +0.1 ± 1.4 ppb/year 

(+1.22%/year), respectively. The mean concentration of NOx saw a decline by -3.05 ± 0.05 

ppb/year (-15.36%/year) during 2007-2009 during the recession and -0.4 ± 0.5 ppb/year (-

2.98%/year) during 2013-2018. The mean concentration of NOx measured at DEN was 11 ± 

0.053 ppb during 2000-2006, 9.44 ± 0.069 ppb during 2007-2009, 8.01 ± 0.067 ppb during 

2010-2012, and 7.24 ± 0.038 ppb during 2013-2018. The mean NOx concentration increased 

by +0.03 ± 0.91 ppb/year (+1.51%/year) during 200-2006, followed by decreased 

concentrations during the next three periods. The mean NOx concentration decreased at the rate 

of -1.625 ± 0.215 ppb/year (-16%/year), -0.425 ± 0.275 ppb/year (-5.17%/year), and -0.286 ± 

0.529 ppb/year (-2.2%/year) during 2007-2009, 2010-2012, and 2013-2018, respectively. 

The NEI for NOx (Table 6.1) had decreased by -4.65%/year at DAL, -7.86%/year at 

FWNW, and -6.82%/year at DEN between 2008 and 2014. During the same period, the mean 

concentration of NOx measured at DAL, FWNW, and DEN had decreased by -5.05%/year, -

7.12%/year, and -2.5%/year, respectively. The decreased in the measured concentrations at 

DAL and FWNW were very within a ±1% different from the decrease in the NEI for their 

respective counties. Both the measured concentrations at DEN and the NEI for Denton county 

experienced a decline between 2008 and 2014. However, the percent change in NEI was more 

significant than the percent change in the measured concentration of NOx at DEN. Thus, it 

appears that the percent reduction in NEI for NOx in Denton county may not accurately reflect 

the local NOx emissions from sources surrounding DEN.  

6.2 Carbon Monoxide (CO) 

Carbon monoxide (CO) is a combustion by-product closely associated with traffic and 

power plant emissions. Conventional urban anthropogenic emission sources can also be 
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quantified using measured CO concentrations. A high CO concentration is an indicator of 

fossil-based fuel combustion sources, including gasoline vehicle exhaust and power plant 

emissions. CO can react with hydroxyl radicals (OH) to form hydroperoxyl radical (HO2) and 

carbon dioxide (CO2), which can lead to ground-level ozone formation [129].  

 

Figure 6.2: Trends of CO concentration (ppm) at Dallas Hinton and Fort Worth Northwest. 

 
The mean concentration of CO measured at DAL between 2000 and 2018 was 0.299 ± 

0.0006 ppm, whereas the mean concentration of CO measured at FWNW from 2000 to 2014 

was 0.322 ± 0.0006 ppm. DAL and FWNW both saw a decrease in the mean and 90th-percentile 

CO concentrations, as shown in Figure 6.2. At the beginning of the monitoring period in 2000, 

the mean and 90th-percentile CO concentrations at FWNW was larger than DAL. While both 

sites saw an increase in CO concentration between 2002 and 2003, the increase at DAL was 

more significant than FWNW from 2003 through 2011 as a result of a higher mean and 90th-

percentile CO concentrations at DAL. In 2012, the CO concentration at FWNW was higher 

than DAL. It remained above that recorded in DAL until the monitoring stopped in 2015. 

Between 2000 and 2018, the mean concentration of CO at DAL decreased by -0.009 ± 0.009 
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ppm/year (-2.38%/year), whereas FWNW saw a decrease at the rate of -0.023 ± 0.01 ppm/year 

(-5.85%/year) between 2000 and 2014.  

The mean concentration of CO at DAL had experienced a decrease across all four 

periods. The mean concentrations of CO measured during 2000-2006, 2007-2009, 2010-2012, 

and 13-08 were 0.384 ± 0.0012 ppm, 0.328 ± 0.0015 ppm, 0.255 ± 0.0009 ppm, and 0.214 ± 

0.0006 ppm, respectively. The mean concentration of CO decreased by -0.0085 ± 0.022 

ppm/year (-1.46%/year), -0.0405 ± 0.0185 ppm/year (-11.48%/year), -0.0275 ± 0.0565 

ppm/year (-8.84%/year), and -0.0034 ± 0.0096 ppm/year (-1.09%/year) during 2000-2006, 

2007-2009, 2010-2012, and 13-08, respectively.  

At FWNW, the mean concentration of CO was 0.405 ± 0.0011 ppm during 2000-2006, 

0.266 ± 0.001 ppm during 2007-2009, and 0.238 ± 0.0009 ppm during 2010-2012. During 

2000-2006 and 2007-2009, the mean concentration of CO had decreased by -0.035 ± 0.022 

ppm/year (-7.17%/year) and -0.0255 ± 0.0215 ppm/year (-8.62%/year), respectively. Despite 

a lower mean concentration during 2010-2012 than the previous period, the mean concentration 

of CO during 2010-2012 increased by +0.016 ± 0.019 ppm/year (+7.12%/year). The increased 

in CO concentrations observed during 2010-2012 was also observed in the NOx concentrations 

measured during the 2010-2012 period.  

Between 2008 and 2014, the CO emissions in Dallas and Tarrant counties (Table 6.1) 

had decreased by -3.22%/year and -4.21%/year, respectively. During the same timeframe, the 

mean concentration of measured CO from DAL and FWNW had experienced a decrease at the 

rate of -5.4%/year and -2.31%/year, respectively. While the NEI and measured concentrations 

both showed decreases, the percent change in the measured concentrations of CO at DAL was 

significantly higher than the NEI for Dallas county whereas the percent change in the measured 

concentrations at FWNW was lower than the decreased in Tarrant county NEI for CO. The 

NEI for CO were countywide estimations whereas the measured concentrations are the result 
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of local emission sources and the percent change in CO emissions are not necessarily uniform 

across the county.   

Incomplete combustion of gasoline is the primary source of CO in an urban region. The 

decreased in measured CO concentration at DAL and FWNW was likely achieved through the 

improvements in vehicle engine efficiency and exhaust control technologies [126, 127].  

6.3 Total Non-Methane Organic Carbon (TNMOC) 

TNMOC are carbon compounds that react photochemically in the atmosphere. 

TNMOC includes compounds with low photochemical reactivity, such as methane and ethane, 

but excludes carbon monoxide (CO), CO2, carbonic acid, and carbonates. In a typical urban 

region, TNMOC sources include vehicular exhaust emissions, fossil fuel combustion, power 

plant emissions, industrial and domestic solvent use, oil and gas production facilities, and 

fugitive emission leaking from pipelines and storage tanks of fuels. 

 

Figure 6.3: Trends of TNMOC concentration (ppb-C) at Dallas Hinton, Fort Worth Northwest, 
and Denton Airport South. 

 
A detailed summary of the 84 TNMOC species measured at DAL, FWNW, and DEN 

is available in Table B1. Compared to DAL and FWNW, the mean concentration of TNMOC 
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measured at DEN was significantly larger. The mean concentration of TNMOC measured at 

DAL, FWNW, and DEN were 67.4 ± 1.51 ppb-C, 89.31 ± 2.12 ppb-C, and 220.69 ± 10.36 

ppb-C, respectively. The TNMOC concentration measured in DEN was 3.3 times larger than 

DAL and 2.5 times larger than FWNW. DEN was also the only one of the three sites to had 

shown an increase in measured TNMOC concentration between 2000 and 2018, as shown in 

Figure 6.3. The enhanced shale gas production activities from surrounding natural gas wells 

were likely responsible for the extremely high TNMOC concentrations measured at DEN. 

While not as significant as DEN, the TNMOC concentrations measured FWNW was 32.5% 

larger than DAL, despite only having approximately half the population size and traffic 

volume. Thus, unconventional shale gas sources had likely enhanced the TNMOC 

concentrations measured at FWNW. DAL is not within the Barnett Shale region; conventional 

urban sources, such as vehicular exhaust and powerplants, were the primary sources of 

TNMOC at DAL. Like NOx and CO, the downward trend in the TNMOC concentrations 

measured at DAL was the result of the successful implementation of clean air act regulations 

and improvement in emissions control technology. 

Between 2000 and 2018, the mean TNMOC concentration measured at DAL had 

decreased by -1.57 ppb-C/year (-1.62 %/year). The mean concentration of TNMOC measured 

during 2000-2006 was 73.8 ± 2.84 ppb-C and had experienced a decreased at the rate of -4.63 

ppb-C/year (-5.74%/year). During the economic recession in 2008, the mean concentration of 

TNMOC had dropped to 62.21 ± 2.83 ppb-C and decreased by -2.45 ppb-C/year ( -3.87%/year). 

The mean concentration of TNMOC rebounded to 67.2 ± 3.94 ppb-C during 2010-2012 as the 

economy came out from the recession; this period saw growth by +8.3 ppb-C/year 

(+13.06%/year). Finally, the mean concentration of TNMOC dropped to 63.4 ± 2.51 ppb-C 

and had decreased at the rate of -1.9 ppb-C/year (-2.13%/year) during 2013-2018.  
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From 2004 to 2018, the mean concentration of TNMOC measured at FWNW saw a 

slight decrease of -0.81 ppb-C/year (-0.63%/year). The mean concentration of TNMOC during 

2000-2006 was 88.2 ± 5.11 ppb-C, and it increased slightly by +0.75 ppb-C/year 

(+0.91%/year). While the mean concentration of 93.4 ± 4.24 ppb-C was higher when compared 

to the preceding period, TNMOC concentrations had experienced a decreased by -6.1 ppb-

C/year (-6.19%/year) during 2007-2009. The mean concentration of TNMOC measured during 

2007-2009 was 101.5 ± 5.6 ppb-C and saw an increase of +2.5 ppb-C/year (+2.51%/year). 

Lastly, the mean concentrations dropped to 81.4 ± 2.96 ppb-C had decreased by -4ppb-C/year 

(-4.43%/year) during 2013-2018.  

DEN was also the only site to had shown an increase in the mean concentrations of 

TNMOC between 2000 and 2018 at the rate of +3.59 ppb-C/year (+9.97%/year). The mean 

concentrations of TNMOC measured at DEN during 2000-2006 was 211 ± 17.6 ppb-C, and 

there was a +34.61 ppb-C/year (+37.53%/year) increase in the mean concentrations measured 

during this period. During the recession period of 2007-2009, the mean concentrations dropped 

to 178.3 ± 16.3 ppb-C, which corresponds to a decreased by -11 ppb-C/year (-5.88%/year). 

During 2010-2012, the mean concentration of TNMOC was 243.7 ± 23.3 ppb-C and saw an 

increased by +34.5 ppb-C/year (+15.14%/year). The mean concentration of TNMOC dropped 

to 241 ± 25 ppb-C and saw a decline by -42.4ppb-C/year (-16.69%/year) during 2013-2018.  

Between 2008 and 2014, the NEI for VOC (Table 6.1) decreased by -4.35%/year in 

Dallas county, -2.81%/year in Tarrant county, and -2.62%/year in Denton county. During 2008-

2014, the measured TNMOC concentrations at FWNW had a similar percent change as the 

NEI for Tarrant county, at the rate of -2.42%/year. However, DAL and DEN both saw an 

increase in the mean concentration of the TNMOC measured in the same period, at the rate of 

+0.48%/year and +13.37%/year, respectively. At DAL, the mean concentrations of TNMOC 

saw an increase during the 2010-2012 period as the economy was recovering from the 2008 
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recession. The NEI shows that the VOC emissions in Dallas county were decreasing during 

2008-2014. However, the decline may not be reflected in the emissions surrounding downtown 

Dallas, which is one of the largest economic hubs in the state of Texas. Despite a decreased in 

the NEI for VOC in Denton county, the measured TNMOC concentrations at DEN had 

increased significantly during 2008-2014. Extremely localized emission sources may impact 

the TNMOC concentrations measured at DEN. Also, the percent change in the NEI for VOC 

may not have accurately reflected the percent change in slow reactive hydrocarbon species. 

These slow reactive species more commonly found in unconventional emission sources, which 

include shale gas production.   

6.3.1 Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) 

Benzene, toluene, ethylbenzene, and xylene (BTEX) falls under the U.S. EPA’s 

hazardous air pollutants (HAPs) list, which contains 189 pollutants [130]. Exposure to elevated 

concentrations of BTEX can lead to eye, nose, and throat irritation, asthma, and increased risk 

of cancer [131].  

DAL had the highest mean concentration of BTEX (sum of mean concentrations of 

each species) at 7.529 ± 0.825 ppb-C, followed by FWNW at 6.303 ± 0.83 ppb-C, and finally 

DEN at 5.384 ± 1.099 ppb-C. There was a significant outlier in the measured concentrations at 

DEN. The mean concentration of toluene measured in 2004 at DEN (8.83 ppb-C) was 

significantly higher than the rest of the monitoring period (mean of 2.45 ppb-C). Removing the 

outlier, the mean concentration of BTEX was shown to be in decline at all three sites between 

2000 to 2018 at the rate of -0.263 ppb-C/year (-2.08%/year) in DAL, -0.183 ppb-C/year (-

2.19%/year) in FWNW, and -0.141 ppb-C/year (-1.99%/year) in DEN. Figure 6.4 shows the 

annual median concentration of each BTEX species at the three sites. The median 

concentrations in 2018 were significantly lower than the beginning of the monitoring period at 

all three sites. 
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Figure 6.4: Trend of median BTEX concentrations (ppb-C) in Dallas Hinton, Fort Worth 
Northwest, and Denton Airport South. 

 
The mean concentration of BTEX measured at DAL had decreased during 2000-2006, 

2007-2009, and 2013-2018 at the rate of -0.677 ppb-C/year (-6.82%/year), 0.71 ppb-C/year (-

9.92%/year), and -0.164 (-0.92%/year), respectively. However, DAL’s mean concentration of 
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BTEX saw in increase of +0.055 ppb-C/year (+1.12%/year) during the 2010-2012 period, 

which was the effect of increased economic and commercial activities following the rebound 

from the economic recession. During all four periods, the mean concentration of BTEX 

measured at FWNW were in decline, at the rate of -0.04 ppb-C/year (-0.55%/year), -1.375 ppb-

C/year (-16.17%/year), -0.59 ppb-C/year (-7.93%/year), and -0.202 ppb-C/year (-3.74%/year), 

respectively. At DEN, the mean concentration of BTEX increased during 2000-2006 and 2007-

2009 by +0.158 ppb-C/year (+3.66%/year) and +0.38 ppb-C/year (+7.74%/year), respectively. 

In 2010-2012, the mean concentration of BTEX measured in DEN dropped at the rate of -0.2 

ppb-C/year (-4.1%/year), and it decreased further during 2013-2018 by -0.66 ppb-C/year (-

12.56%/year). While BTEX concentrations at DEN was increasing during 2007-2009, the 

mean concentration in 2007 (4.76 ppb-C) was significantly smaller than 2006 (5.84 ppb-C), 

which was caused by the impacts from the economic recession starting in 2007. 

Between 2008 and 2014, the median concentration of BTEX at DAL, FWNW, and 

DEN had decreased at the rate of -1.65%/year, -5.25%/year, and -1.82%/year, respectively. 

While the percent change in the measured concentration of BTEX was different from the NEI 

for VOC (Table 6.1), we had observed downward trends for both the emission and measured 

concentrations. BTEX species are commonly found in urban [117, 48, 49]. Since the majority 

of the 60 EIS emission sectors are conventional urban emission sources [121], the overall trend 

of the NEI mirrors the measured BTEX concentrations. 

Bunch et al. [5] had correlated the mean concentrations of benzene at DAL and FWNW 

to the natural gas well count in the Barnett Shale. They had stated that conventional urban 

sources were the primary source of benzene emissions in the region, and the increased Barnett 

Shale activities do not have a direct correlation with benzene emissions. While decreased in 

BTEX concentrations were observed at DAL and FWNW, the increase in BTEX concentration 

at DEN between 2000 and 2010 strongly suggests that the influence of shale gas well 
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developments. Increased truck traffic in the region during the development phases of wells 

likely had caused the increase in BTEX concentration at DEN. 

6.3.2 Natural Gas Production Impacts on TNMOC Levels 

Tarrant and Denton are two major shale gas producing counties within the Barnett 

Shale. Since DAL is outside of the shale gas region, and there were no gas wells built within 

5-km of the monitoring station. Figure 6.5 shows the number of active gas wells within 5-km 

from FWNW and DEN; and their total annual production. By the end of 2018, there were 157 

active gas wells within 5-km of FWNW and 213 active gas wells within 5-km of DEN. From 

2000 to 2018, the gas wells within 5-km from FWNW and DEN produced a total of 2.75 × 108 

MMBtu and 2.5 × 108 MMBtu in natural gas, respectively. Between 2003 and 2012, FWNW 

saw an increased in the number of active gas wells surrounding the monitoring station, which 

correlated well with the increase in measured TNMOC concentrations during this period.  

 

Figure 6.5: Number of active gas wells within 5-km from Fort Worth Northwest and Denton 
Airport South along with the total natural gas production volume (MMBtu). 

 
The emissions released during the development and production phases of these gas wells 

contributed significantly to the growth in TNMOC concentrations at FWNW through 2011 
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(Figure 6.3). While the number of active gas wells surrounding FWNW had stayed relatively 

constant since 2012, their production volume had dropped significantly. There was a decline 

in natural gas production across the Barnett Shale gas region due to a drop in natural gas prices 

[2]. The TNMOC concentrations post-2012 also showed a similar trend to the natural gas 

production volume from the gas wells that surround FWNW.  

The 90th-percentile value of TNMOC measured at DEN had two peaks, one in 2006 

and the other in 2013 (Figure 6.3); both peaks were followed by a decrease, as shown during 

2007-2009 and 2013-2018. There was a substantial increase in the number of active wells 

surrounding DEN from 2000 through 2006. The increased gas well development activities had 

contributed to a rapid increase in the measured TNMOC concentrations, peaking in 2006. 

Starting in 2007, the growth in the number of active gas wells had significantly dropped due to 

the economic depression; this had contributed to the decrease in TNMOC concentrations 

during the 2007-2009 period. The production volume from the gas wells surrounding DEN 

increased consistently from 2009 through 2014, and this culminated in a peak in mean 

concentrations of TNMOC during 2013-2014. Since 2014, natural gas production volumes 

have dropped significantly. As a result, there was a substantial decrease in the measured 

TNMOC concentrations during 2013-2018. 

Acetylene/TNMOC and ethane/TNMOC concentration ratios were used to identify the 

changes in emissions from vehicle exhaust and natural gas sources, respectively. Ethane is a 

TNMOC species found abundantly in oil and gas emissions, whereas high concentrations 

acetylene points to fossil fuel burning and vehicular exhaust emissions [48, 49, 50, 51, 117, 

132]. The mean of acetylene/TNMOC concentration ratios calculated for DAL, FWNW, and 

DEN was 0.028 ± 0.0007, 0.019 ± 0.0004, and 0.01 ± 0.0004, respectively; whereas the mean 

of ethane/TNMOC concentration ratios was 0.229 ± 0.002 at DAL, 0.296 ± 0.003 at FWNW, 

and 0.342 ± 0.003 at DEN. Figure 6.6 shows all a decrease in the acetylene/TNMOC 
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concentration ratio and an increase in the ethane/TNMOC concentration ratio at all three sites.  

 

Figure 6.6: Trends of acetylene/TNMOC, ethane/TNMOC, CO/TNMOC, and NOx/TNMOC 
concentration ratio. 

 
Like acetylene, CO, and NOx concentrations in urban regions are also usually emitted from 

vehicular exhaust sources. The mean of CO/TNMOC concentration ratios was 5.467 ± 0.105 

at DAL and 4.184 ± 0.117 at FWNW. In contrast, the mean of NOx/TNMOC concentration 

ratios was 0.298 ± 0.004, 0.176 ± 0.003, and 0.0995 ± 0.003 at DAL, FWNW, and DEN, 

respectively. CO/TNMOC and NOx/TNMOC concentration ratios increased during 2000-2004 
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but was followed by a continued decrease throughout 2018 except for a slight increase during 

2010-2011. The acetylene/TNMOC, CO/TNMOC, and NOx/TNMOC concentration ratios all 

followed a similar downward trend. The decline indicates deceased impacts from the gasoline-

powered vehicular exhaust and other combustion-related sources. On the other hand, the 

increase in ethane/TNMOC concentration ratios suggests the increased impacts of 

unconventional oil and gas emissions in the region.  

According to Baker et al. [133], the typical concentrations of propane in U.S. cities 

during summertime is between the range of 0.87 ppb-C to 10.53 ppb-C. The mean 

concentrations of propane measured during summertime at DAL and FWNW were 6.283 ± 

0.167 ppb-C and 8.02 ± 0.307 ppb-C, respectively, and were both within the range observed in 

other major U.S. cities. The mean concentration of propane measured in DEN during 

summertime was 26.028 ± 2.62 ppb-C, which was much higher than the typical urban propane 

concentrations. The mean concentration of summertime propane measured at DEN more 

closely resembled the concentrations measured at other oil and gas regions. The concentration 

fall between the concentrations measured at Colorado’s Northern Front Range metropolitan 

area (24 ppb-C) [134] and the Marcellus Shale (39 ppb-C) [135]. 

 

Figure 6.7: Relationship between isopentane and n-pentane at Dallas Hinton, Fort Worth 
Northwest, and Denton Airport South. 

 
Oil and gas production-related emissions can be differentiated from gasoline-powered 



 

 58 

vehicular emissions through isopentane/n-pentane concentration ratios. Regions with higher 

vehicle emissions have isopentane/n-pentane ratios greater than one. In contrast, regions with 

higher natural gas emissions have an isopentane/n-pentane ratio under one and closer to 0.9 

[135]. As shown in Figure 6.7, DAL and FWNW have isopentane/n-pentane ratios higher than 

one, at 1.931 and 1.514, respectively. DEN’s ratio was lower than one, at 0.959. Thus, there 

was a stronger impact from gasoline vehicle sources at DAL and FWNW, while DEN had a 

stronger impact from natural gas sources. 

While the gas wells surrounding FWNW had the highest total production volume 

among the three, FWNW showed a weaker influence from the oil and gas activities compared 

to DEN. We suspected that local legislatures and regulations on gas well development and 

production played an important role in lowering the measured TNMOC concentration at 

FWNW. Lewis et al. [136] stated that setback distance for new wells should be at least a 

quarter-mile (402.34-m) from human activity. Also, extra distance should be placed when 

dealing with sensitive groups such as the sick and young children. A setback distance prohibits 

new wells to be built within a designated distance of residences, hospitals, parks, and religious-

use buildings. However, there is no consensus setback distance in the state of Texas. The 

setback distance in place in the city of Fort Worth is 600-feet (182.88-m). Between 2001 and 

2012, the setback distance of new wells in the city of Denton was just 500-ft (152.4-m); the 

city increased the distance to 1,200-feet (365.8-m) in January 2013 (Fry, et al., 2015). While 

the difference between the setback distance in the city of Fort Worth and Denton was only 

30.48-m throughout most of the study period, it more heavily affects the gas well developments 

in Fort Worth than Denton. FWNW is in a densely populated urban region in the city of Fort 

Worth, while DEN is in a sparsely populated exurban region outside of the city of Denton. 

There are minimal locations where new wells can be built in the city of Fort Worth and comply 

with the Fort Worth Ordinance's setback distance. In contrast, the wells that surround DEN had 
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much more building freedom as there are fewer safe use structures that surround the site. Also, 

regulation of gas well air emissions is maintained by the local government [33]. The gas wells 

within the city would be regulated more strictly compared to gas wells outside city limits, as 

the emissions from these gas wells would pose a more severe threat to human health. 

6.3.3 Implication on Methane Levels 

Emissions from natural gas sources are predominantly composed of methane; however, 

none of the three monitoring stations have methane monitoring equipment. In a previous study, 

the ethane-to-methane (C2/C1) molar ratios for dry and wet natural gas in the Barnett Shale 

were 0.03 and 0.15, respectively [137]. A fence line measurement study identified that the 

mean concentration of methane is significantly higher at regions that produce dry gas compared 

to regions that produce wet gas [138]. FWNW in Tarrant County is a dry gas site while DEN 

in Denton County is a wet gas site with productions of both natural gas and liquid condensates 

[139]. Based on the C2/C1 molar ratios, we estimated the mean concentration of methane at 

FWNW and DEN to be 468.21 ± 14.7 ppb-C and 266.98 ± 13 ppb-C, respectively. Also, there 

were 84 instances where the estimated methane concentration at FWNW was larger than 1 

ppm-C from 2003 to 2018. In contrast, there were only 60 instances at DEN from 2000 to 2018.  

6.4 Ozone 

Ozone nonattainment is a significant air quality issue in the DFW metroplex region. 

Nine of the thirteen counties in the DFW metroplex, including Dallas, Tarrant, and Denton, 

consistently fail to comply with the U.S. EPA's ozone NAAQS [41]. The design value for ozone 

is the annual fourth-highest daily maximum 8-hour ozone concentration averaged over three 

years. Since its inception, the U.S. EPA had made several revisions to the ozone compliance 

thresholds. The ozone design values to obtain ozone attainment status, based on 1997, 2008, 

and 2015 revisions, are 80-, 75-, and 70-ppb, respectively [140].  
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Figure 6.8: Ozone values at for Dallas Hinton, Fort Worth Northwest, and Denton Airport South. 

  
While the three-year averaged annual fourth-highest daily maximum 8-hour ozone 

concentration (ozone value) in 2018 was lower than in 2002, the most substantial reduction 

occurred before 2010. Figure 6.8 shows the ozone values for DAL, FWNW, and DEN 

alongside the U.S. EPA's ozone NAAQS design values. FWNW and DEN were never in 

attainment throughout the study period. In contrast, DAL was briefly attainment the NAAQS 

for ozone from 2008 through 2011. Aside from 2005, the ozone value at DEN was consistently 

higher than the two urbanized sites. DAL's ozone value dropped from 91.7 ppb in 2002 to 75.6 

ppb in 2018, a rate of -1 ± 1.17 ppb/year or -1.03%/year. FWNW saw a -1.53 ± 0.69 ppb/year 

or -1.57%/year decline in the ozone value from 97.3 ppb to 72.8 ppb. DEN’s ozone value 

dropped from 100 ppb to 75.6 ppb, which was a -1.53 ± 0.78 ppb/year or -1.67%/year decrease 

on average. Ozone values had experienced a decreased at all three sites before 2010. During 

the 2000-2006 period, the ozone values decreased by -0.88 ± 0.84 ppb/year (-0.96%/year) at 

DAL, -0.4 ± 0.82 ppb/year (-0.4%/year) at FWNW, and -0.95 ± 1.04 ppb/year (-0.95%/year) 

at DEN. The ozone values decreased further during 2007-2009, at the rate of -8.25 ± 1.95 

ppb/year (-10.22%/year), -6.3 ± 2.5 ppb/year (-7%/year), and -4.7 ± 1.3 ppb/year (-5.05%/year) 
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at DAL, FWNW, and DEN, respectively. During 2010-2012, the ozone values increased by 

+7.3 ± 0.6 ppb/year (+10.2%/year) at DAL, +0.45 ± 2.45 ppb/year (+0.61%/year) at FWNW, 

and +1.7 ± 1.9 ppb/year (+2.11%/year) at DEN. The 2013-2018 period saw a decrease in ozone 

values at the rate of -1.86 ± 1.54 ppb/year (-2.22%/year) at DAL, -1.62 ± 0.89 ppb/year (-

2.06%/year) at FWNW, and -2.44 ± 1.36 ppb/year (-2.89%/year) at DEN.  

 

Figure 6.9: Trends of ozone concentration (ppb) at Dallas Hinton, Fort Worth Northwest, and 
Denton Airport South. 

 
Figure 6.9 shows the mean concentrations of ozone measured at DAL, FWNW, and 

DEN between 2000 and 2018, which were 25.98 ± 0.044 ppb, 26.91 ± 0.045 ppb, and 29.61 ± 

0.046 ppb, respectively. Despite the fact that a uniform decreased in ozone value between 2000 

and 2018 across all three sites, the mean concentration of ozone measured at DAL increased 

by +0.21 ± 0.56 ppb/year (+1.28%/year), from 23.6 ± 0.22 ppb in 2000 to 27.5 ± 0.17 ppb in 

2018. FWNW and DEN both saw a slight decrease in the mean concentration of ozone at the 

rate of -0.02 ± 0.57 ppb/year (-0.3%/year) and -0.02 ± 0.47 ppb/year (-0.15%/year), 

respectively. During 2000-2006, all three sites saw an increase in the mean concentration of 

ozone, at the rate of +0.73 ± 1.13 ppb/year (+3.4%/year) at DAL, +0.7 ± 1.07 ppb/year 
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(+2.96%/year) at FWNW, and +0.633 ± 0.68 ppb/year (+2.25%/year) at DEN. Despite the 

recession during 2007-2009, DAL was the only site that saw a decreased in the mean 

concentration of ozone, at the rate of -0.35 ± 1.25 ppb/year (-1.4%/year); at FWNW and DEN, 

the mean concentration of ozone increased by +0.8 ± 0.3 ppb/year (+3.27%/year) and 0.95 ± 

015 ppb/year (+3.35%/year), respectively. All three sites saw a rise in the mean concentration 

of ozone during 2010-2012. The mean concentration of ozone increased by +1.35 ± 1.65 

ppb/year (+5.29%/year) at DAL, +0.7 ± 2.1 ppb/year (+2.97%/year) at FWNW, and +1.3 ± 2.9 

ppb/year (+5%/year) at DEN. Finally, the mean concentration of ozone fell by -0.24 ± 0.39 

ppb/year (-0.81%/year), -0.58 ± 0.76 ppb/year (-1.98%/year), and -0.6 ± 0.55 ppb/year (-

1.94%/year) during 2013-2018 at DAL, FWNW, and DEN, respectively. 

Any day with observed eight-hour averaged daily maximum ozone concentration 

greater than 70 ppb was regarded as a high ozone day. 70 ppb was chosen as the threshold 

based on the 2015 NAAQS revisions. The total high ozone days during 2000-2018 was 345 at 

DAL, 416 at FWNW, and 582 at DEN. Despite its location in the least urbanized site of the 

three, DEN had the highest ozone value, the mean concentration of ozone, and the number of 

high ozone days. Thus, conventional urban emission sources are not the primary factor that 

was severely contributing to ozone formation in the region, especially at DEN. 

6.4.1 TNMOC-NOx-Ozone Relationship 

TNMOC/NOx concentration ratios are often integrated into the development of ozone 

control strategies. These concentration ratios can identify whether a region's ozone generated 

is limited by either TNMOC or NOx concentrations [129]. The formation of ozone is highly 

depended on the reaction of OH radicals between TNMOC and NOx, where ozone generation 

peaks when the OH reaction rate from TNMOC and NOx are equal. The reactions between OH 

radicals and TNMOC is dominant when the TNMOC/NOx concentration ratio is high. In 

contrast, the reactions between OH radicals and NOx is more dominant when the TNMOC/NOx 
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concentration ratio is low. When the OH radical's reaction with TNMOC is more dominant, the 

ozone generation will be more sensitive to changes in NOx concentration. The ozone generation 

will be more susceptible to changes in the TNMOC concentrations if the reaction between OH 

radicals and NOx is dominant. In a TNMOC-sensitive ozone regime (TNMOC/NOx 

concentration ratio < 4), the percent reduction in TNMOC will result in a higher rate of decrease 

in ozone relative to percent reduction in NOx. In a NOx-sensitive ozone regime (TNMOC/NOx 

concentration ratio > 15), the percent reduction in NOx will be more effective in reducing ozone 

relative to percent reduction in TNMOC [129]. 

 

Figure 6.10: Relationship between ozone concentration and the corresponding TNMOC/NOx 
ratios. 

 
All the high ozone days in DAL and FWNW between 2000 and 2018 occurred when 

the TNMOC/NOx concentration ratio was under 15. In contrast, close to half (48%) of all high 

ozone days in DEN occurred when the TNMOC/NOx concentration ratio was over 15, as shown 

in Figure 6.10. In DAL, 88% of the high ozone days occurred when the TNMOC/NOx 

concentration ratios were <4. About 47% of all high ozone days measured in FWNW occurred 

when the TNMOC/NOx concentration ratio was between 4 and 15. The average TNMOC/NOx 

concentration ratio during high ozone days at DAL was around 2.9. It showed characteristics 

of a TNMOC-sensitive ozone regime. At FWNW, the average TNMOC/NOx concentration 

ratio was 4.76 during high ozone days, which would barely place it in a transitional regime. 
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Reductions in both TNMOC and NOx concentrations would help reduce ozone formation [141]. 

The high ozone days TNMOC/NOx concentration ratio at DEN had an average ratio of 28.1, 

which implied a NOx-sensitive ozone regime.  

Figure A3 through Figure A5 shows the TNMOC/NOx concentration ratios measured 

at all three sites, had shown a constant increase throughout the four periods. The increase in 

TNMOC/NOx concentration ratio at DAL was predominately the result of the decreased in NOx 

concentrations (R2-value for changes in NOx and TNMOC versus changes in TNMOC/NOx 

concentration ratio were 0.88 and 0.1, respectively). In contrast, DEN's TNMOC/NOx 

concentration ratio showed stronger influence from increased in TNMOC and decreased in 

NOx concentrations (R2-value for changes in NOx and TNMOC versus changes in 

TNMOC/NOx ratio were 0.38 and 0.56). FWNW’s R2-values for the changes in NOx and 

TNMOC versus the changes in TNMOC/NOx concentration ratio were both <0.001. Thus, 

there was no linear relationship between changes in NOx and TNMOC concentration with 

changes in TNMOC/NOx concentration ratio at FWNW. 

The mean concentrations of TNMOC measured at DAL during high ozone days was 57 

± 2.86 ppb-C and was 15.6% smaller than the concentrations measured during non-high ozone 

days at 67.52 ± 1.59 ppb-C. The mean concentrations of reactive TNMOC species (species 

with MIR >2) were 12.8 ± 0.123 ppb-C and 12.4 ± 0.114 ppb-C on high and non-high ozone 

days, respectively. Reactive TNMOC concentrations were 3.2% larger during high ozone days. 

The mean concentration of DAL's isoprene was almost three times larger during high ozone 

days. Isoprene [142]is a highly reactive biogenic species. Isoprene concentrations play a critical 

role in ozone generation [142] The NOx concentrations on high ozone days (21.86 ± 1.43 ppb) 

were 6.3% higher than non-high ozone days (20.57 ± 0.67 ppb). As shown in Figure A3, the 

TNMOC/NOx concentration ratios on high ozone days were slightly higher than its non-high 



 

 65 

ozone days during 2000-2006 and 2010-2012. In contrast, the non-high ozone days 

TNMOC/NOx concentration ratios were significantly higher during 2007-2009 and 2013-2018.  

The difference between the mean concentrations of TNMOC measured at FWNW 

during high (90.87 ± 7.18 ppb-C) and non-high ozone day (89.29 ± 2.23 ppb-C) was minor 

(1.8%). However, the mean concentration of reactive TNMOC species was 47.6% larger on 

high ozone days (15.2 ± 0.61 ppb-C) than on non-high ozone days (10.3 ± 0.094 ppb-C). There 

was also a 50.6% difference in the mean concentrations of NOx measured during high (22.32 

± 1.82 ppb) and non-high ozone days (14.82 ± 0.46 ppb). As shown in Figure A4, the 

TNMOC/NOx concentration ratios measured during high ozone days at FWNW were lower 

than the concentration ratios measured during non-high ozone days in all four periods. Since 

the 2007-2009 period, the TNMOC/NOx concentration ratios at FWNW had consistently 

exceeded 4, which indicated a transition from TNMOC-sensitive to a transitional ozone regime. 

The mean concentration of TNMOC measured at DEN was 33.9% larger during high 

ozone days (242.66 ± 26.12 ppb-C) compared to non-high ozone days (181.17 ± 8.72 ppb-C). 

However, the difference in the mean concentration of reactive TNMOC species was only 2.9%. 

During high ozone days, the reactive TNMOC species had a mean concentration of 7.1 ± 0.08 

ppb-C; whereas on non-high ozone days, the mean concentration was 6.9 ± 0.08 ppb-C. While 

the majority of TNMOC concentrations measured at DEN were slow reactive, elevated 

concentrations of slow reactive alkanes species can also lead to an increase in ozone 

concentration (Katzenstein et al., 2003). Thus, the abundant pool of slow reactive TNMOC at 

DEN has the potential of increasing ozone levels at DEN. The mean concentration of NOx 

measured was 24.5% higher (10.83 ± 0.46 ppb versus 8.71 ± 0.23 ppb) during high ozone days. 

As shown in Figure A5, the TNMOC/NOx concentration ratios measured at DEN were higher 

during high ozone days compared to non-high ozone days in all four periods. 
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High NOx concentrations were the driving force behind the high ozone days at all three 

monitoring sites. During high ozone days, an elevated concentration of reactive TNMOC 

species was measured in DAL and FWNW, while slow reactive TNMOC species were 

measured in DEN. Thus, in addition to the continuation of NOx reduction efforts, regulating 

reactive TNMOC species emissions will be beneficial in reducing ozone generation at DAL 

and FWNW. Alongside the further continuation of the NOx reduction efforts, the efforts to 

reduce the number of high ozone days in DEN must include the regulation of slow reactive 

TNMOC species. 

6.4.2 Ozone Formation Potential  

Calculating the ozone formation potential (OFP) of each TNMOC species is a crucial 

step in the development of ozone control strategies [143, 144, 145, 146, 147]. The maximum 

incremental reactivity (MIR) value used in this study is from Carter's report [148]. The OFP of 

TNMOC species at DAL, FWNW, and DEN were 35.28 ± 0.87 ppb, 35.98 ± 0.82 ppb, and 

50.38 ± 2.04 ppb, respectively. The species that generated the highest OFP of TNMOC at DAL 

were ethylene (30.64%), propylene (12.19%), ethane (5.66%), 1-butene (5.65%), m/p-xylene 

(5.62%), and n-butane (5.43%). At FWNW, the species that generated the highest OFP of 

TNMOC were ethylene (26.93%), ethane (10.17%), propylene (9.79%), propane (7.01%), n-

butane (12.88%), and 1-butene (6.21%). At DEN, ethane (20.57%), propane (15.32%), n-

butane (16.16%), ethylene (10.38%), isobutane (8.53%), and isopentane (6.2%) contribute to 

the highest OFP of TNMOC. Figure 6.11 shows the cumulative column chart for measured 

TNMOC concentration and calculated OFP of TNMOC at the three sites. Alkenes were the 

dominant group at DAL and FWNW, whereas alkanes were dominant at DEN. OFP of alkene 

and aromatics TNMOC species increases with the TNMOC concentration at DAL and FWNW 

but remained relatively constant at DEN. In contrast, the OFP of alkane TNMOC species 

increases with measured TNMOC concentrations at DEN. 
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At DAL, the OFP of the alkane, alkene, alkyne, aromatics, and diene TNMOC species 

were 9.63 ± 0.23 ppb, 18.1 ± 0.53 ppb, 1.03 ± 0.03 ppb, 5.3 ± 0.15 ppb, and 2.15 ± 0.07 ppb, 

respectively. The OFP of TNMOC at FWNW was 13.8 ± 0.34 ppb from alkanes, 16.8 ± 0.43 

ppb from alkenes, 0.82 ± 0.02 ppb from alkynes, 3.99 ± 0.13 ppb from aromatics, and 1.16 ± 

0.04 ppb from dienes. Alkanes were the most significant contributors to the OFP of TNMOC 

in DEN at 38.6 ± 1.89 ppb, followed by alkene (8.43 ± 0.25 ppb), aromatics (2.84 ± 0.23 ppb), 

diene (1.06 ± 0.05 ppb), and alkyne (0.55 ± 0.01 ppb). Between 2000 and 2018, the OFPs of 

TNMOC at DAL and FWNW were in constant decrease, but the OFP of TNMOC at DEN 

mostly followed the TNMOC concentration trend, as shown in Figure A2. DAL and FWNW’s 

OFP of TNMOC decreased by -2.24 ± 0.98 ppb/year (-4.57%/year) and -1.94 ± 1.23 ppb/year 

(-4.14%/year), respectively; while DEN’s saw an increase of 0.02 ± 2.6 ppb/year (+2.7%/year). 

 

Figure 6.11: Relationship between ozone formation potential (OFP) with the TNMOC 
concentration by hydrocarbon groups. 

 
Despite a relatively lower reactivity and MIR, alkanes were responsible for 26.59% of 

total OFP at DAL, 37.74% of total OFP at FWNW, and 74.99% of total OFP at DEN. Alkanes 
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were the largest group in terms of measured concentrations at all three monitoring stations, 

which was 79.67% at DAL, 87.79% at FWNW, and 96.95% at DEN. Elevated alkane emissions 

from natural gas production activities were responsible for the increased in OFP of TNMOC at 

DEN. Alkane emissions from oil and gas productions were also shown to had contributed to 

more than half of TNMOC reactivity in other oil and gas regions [149, 150, 134]. At DAL, the 

correlation between OFP of alkanes and the OFP of non-alkanes reactive groups was high. The 

Pearson’s R-value between OFP of alkanes and the OFP of reactive species at DAL was 0.983, 

0.931, 0.998, and 0.898 during 2000-2006, 2007-2009, 2010-2012, and 2013-2018, 

respectively. The correlation between the OFP of alkanes and the OFP of reactive groups was 

also high at FWNW except for during 2007-2009. At FWNW, the Pearson’s R-value was 0.935 

during 2000-2006, -0.608 during 2007-2009, 0.973 during 2010-2012, and 0.974 during 2013-

2018. During 2007-2009, the OFP of reactive groups decreased while the OFP of alkanes 

increased. At DEN, the OFP of alkanes and the OFP of reactive groups had Pearson’s R-values 

of -0.83 during 2000-2006, 0.998 during 2007-2009, -0.996 during 2010-2012, and 0.913 

during 2013-2018. During both 2000-2006 and 2010-2012, the OPF of reactive groups at DEN 

fell during both periods while the OFP of alkanes increased. Both periods saw increased shale 

gas production from the gas wells surrounding DEN (Figure 6.5). 

As shown in Table 6.2, both OFP of reactive group and OFP of alkanes have positive 

Pearson’s R-value with ozone values at DAL. At FWNW, the OFP of alkanes has a negative 

correlation with ozone values during 2007-2009 and 2010-2012. Also, both the OFP of reactive 

groups and the OFP of alkanes have a bad correlation with ozone values where Pearson’s R-

values are 0.167 and -0.066, respectively. At DEN, the OFP of reactive groups has a negative 

correlation with ozone values during 2010-2012, with Pearson’s R-value of -0.614, whereas 

the OFP of alkanes has a negative correlation with ozone values during 2000-2006, with 

Pearson’s R-value of -0.932. Despite strong growth in OFP of alkanes during 2000-2006, its 
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correlation with the ozone values measured at DEN was negative. During 2010-2012, there 

was a rise in ozone values at DEN despite a drop in OFP of reactive species. Therefore, the 

positive correlation between the OFP of alkanes and the ozone values during this period shows 

the impacts of elevated slow reactive species on ozone values. Before 2010, ozone values 

measured at DEN appear to have had a high correlation with the OFP of reactive species. 

However, there was a shift in the ozone formation regime around 2010, where the OFP of 

alkanes had a higher correlation with the ozone values.  

Table 6.2: The Pearson's R-value between the (i) OFP of reactive groups and (ii) OFP of alkanes 
with ozone values at Dallas Hinton, Fort Worth Northwest, and Denton Airport South. 

 Period 
OFP of Reactive Groups 

versus Ozone Values 
OFP of Alkanes versus 

Ozone Values 

Dallas Hinton 

2000-2006 0.766 0.760 

2007-2009 0.999 0.946 

2010-2012 0.966 0.950 

2013-2018 0.913 0.700 

Fort Worth 
Northwest 

2000-2006 0.574 0.824 

2007-2009 0.997 -0.663 

2010-2012 0.167 -0.066 

2013-2018 0.855 0.939 

Denton Airport 
South 

2000-2006 0.809 -0.932 

2007-2009 0.993 0.982 

2010-2012 -0.614 0.682 

2013-2018 0.904 0.768 

 

6.5 Summary Findings 

An argument can be made for spatially varying emission control strategy within a single 

urban airshed based on the predominance of precursor emission. Since 2000, we had observed 

a decrease in emissions from vehicular exhausts and other combustion-related emissions, as 

evident from the constant decrease in NOx and CO concentrations. Despite the decrease in 

conventional urban source emissions, the ozone values were still consistently failing to achieve 
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ozone attainment under the NAAQS. However, since 2013, the ozone values at all three sites 

began to decrease. The decline in ozone values also coincided with the decrease in the measured 

TNMOC concentrations and overall natural gas production volume in the Barnett Shale. We 

have strong evidence that the unconventional emissions from the Barnett Shale were a 

significant influence on the TNMOC concentrations measured in DEN, and to a smaller degree, 

in FWNW. DEN, the least urbanized of the three sites, had the largest pool of measured 

TNMOC, which was 3.5 and 2.2 times larger than the concentrations at DAL and FWNW, 

respectively. DEN was also the only site among the three to see an increase in the mean 

TNMOC concentration between 2000 and 2018. Ethane was the hydrocarbon species with the 

highest measured concentrations at all three sites, and it was among the TNMOC species that 

generated the highest OFP despite a relatively low MIR value. From 2000 to 2018, the OFP of 

TNMOC species at DAL and FWNW decreased while the OFP of TNMOC at DEN, which 

was heavily influenced by natural gas-related alkane species, had increased. We believe DAL 

and FWNW would benefit from a reduction in NOx and reactive TNMOC species. In contrast, 

the ozone generation in DEN can be controlled via a reduction in both NOx concentration and 

all TNMOC species associated with the shale gas operations.  
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CHAPTER 7 

IMPACTS OF SHALE GAS PRODUCTION ON LONG-TERM AMBIENT 

HYDROCARBON CONCENTRATION IN DENTON, TEXAS* 

The city of Denton is located at the northwest end of the DFW metroplex region and is 

the 12th most populous city in the region, with 136,268 inhabitants based on the 2017 U.S. 

Census Bureau data [69]. The city of Denton is also the seat of the Denton County Government. 

There are two universities in the city of Denton including the University of North Texas and 

Texas Woman's University. The city had a 17.1% growth in population size between 2010 and 

2017. There were 9631 firms and businesses within the city of Denton, and approximately 

67.1% of the total population above 16 years old were in the civilian labor force [151]. While 

several air monitoring studies focused on the greater DFW and the Barnett Shale region, to the 

best of the authors’ knowledge, none focused on the impact of shale gas development on air 

quality in the city of Denton. However, several energy policy papers used the city of Denton 

as a testbed to address the socio-political impacts of the 2014 fracking ban and its subsequent 

nullification [152, 153, 154]. 

Figure 7.1: Map of the Denton Airport South monitoring station and nearby gas wells. 

* This chapter is reproduced from G. Q. Lim and K. John, "Impact of energy production in the Barnett Shale gas
region on the measured ambient hydrocarbon concentrations in Denton, Texas," Atmospheric Pollution Research, 
vol. 11, no. 2, pp. 409-418, 2020, wth permission from Elsevier. 
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The Denton Airport South (DEN) air quality monitoring station is an exurban region 

outside of the Denton city limit. It is located west of the city of Denton, is close to the Denton 

Enterprise Airport, and two major arteries: the U.S. 380 highway and the U.S. Interstate 35W 

highway. As shown in Figure 7.1, the monitoring station is surrounded by many gas wells, and 

most of the gas wells in this region are located outside of the city of Denton. This study 

incorporates 24-hour averaged canister TNMOC concentration samples collected between 

2000 and 2017 at the monitoring station. A detailed summary of the 84 measured TNMOC 

species is available in Table B2. 

7.1 Unconventional Gas Development (UGD) in North Texas 

UGD in the Barnett Shale experienced tremendous growth over the past two decades, 

growing from 223,992 MMBtu of natural gas per day in 2000 to 5,955,491 MMBtu per day in 

2012, as shown in Figure 7.2. Between 2000 and 2008, there was a +48.7%/year increase in 

drilling permits issued and a +46.64%/year increase in natural gas production volume. The 

region was affected by the global downturn in the economy during 2008-2009, followed by a 

recovery from 2010. The U.S. economy rebounded from the recession since 2010; however, 

the drilling permits issued, and the natural gas spot price was still in decline, at the rates of -

4.78%/year and -6.32%/year, respectively. The recession in the U.S. economy in 2008 severely 

crippled demand for energy and caused the natural gas spot price to plummet from 

$8.86/MMBtu to $3.95/MMBtu. Drilling permits issued dropped from 4,065 in 2007 to 1,719 

in 2008. While natural gas production continued to grow, the growth was significantly lower 

than in previous years, at +6.71%/year. From 2014 onwards, the production volumes for natural 

gas and liquid condensate has declined, likely due to low energy prices and maturing of the gas 

fields. Natural gas production in the Barnett Shale has been in decline since 2012, primarily 

due to lower natural gas prices and a maturing play [2]. Based on these observations, four 
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distinct evaluation periods were established for this study: 2000-2006, 2007-2009, 2010-2013, 

and 2014-2017. 

 

Figure 7.2: Barnett Shale natural gas production (MMBtu/day), new gas well permit issued, and 
average natural gas spot price ($/MMBtu). 

 
Table 7.1 and Table 7.2 shows that the natural gas and liquid condensate production 

volume from facilities within 2-km from the monitoring station experienced significant growth 

between 2002 and 2006, followed by a decline in production volume through 2009. The 

recession in the U.S. economy caused a decline in production between 2007 and 2009. Since 

2010, the economy has rebounded, and the demand for energy has risen once again.  The natural 

gas and liquid condensate productions in the Barnett Shale peaked in 2013. From 2014 

onwards, the production volumes for natural gas and liquid condensate has declined, likely due 

to low energy prices and maturing of the gas fields.  

Table 7.1: Number of natural gas wells and their total annual production volume. 

Year 

Well Count Production Volume (MMBtu) 

1-km 2-km 5-km 
10-
km 

1-km 2-km 5-km 10-km 

2000 0 0 0 16 0 0 0 728,647 

2001 0 0 2 45 0 0 82,887 3,790,163 

2002 0 5 38 161 0 388,261 2,064,374 15,106,145 

2003 3 16 78 287 238,260 1,448,331 5,847,322 26,145,173 

(table continues) 
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Year 

Well Count Production Volume (MMBtu) 

1-km 2-km 5-km 
10-
km 

1-km 2-km 5-km 10-km 

2004 5 20 110 386 369,144 1,533,774 8,026,249 32,326,549 

2005 5 23 128 451 263,073 1,716,966 11,710,660 37,190,709 

2006 5 29 142 503 127,782 2,585,061 11,391,068 35,082,785 

2007 5 29 147 544 101,228 1,949,661 10,394,317 35,209,822 

2008 6 30 152 560 220,045 1,757,127 10,569,948 32,477,684 

2009 9 37 164 589 949,838 3,002,149 11,381,193 36,713,021 

2010 8 37 176 614 743,463 3,147,381 13,522,651 41,327,564 

2011 9 39 178 630 580,236 3,052,748 16,304,777 45,825,426 

2012 9 45 186 657 509,964 3,967,714 15,461,203 52,655,317 

2013 9 47 192 665 2,129,518 7,138,755 19,964,261 55,673,082 

2014 9 47 208 670 1,476,172 5,722,529 25,588,831 59,043,187 

2015 9 47 209 667 1,138,068 4,424,722 23,057,589 52,070,084 

2016 9 45 218 677 1,107,834 3,998,616 25,425,278 51,959,763 

2017 9 44 216 667 953,763 3,546,569 20,426,570 43,751,053 

 

Table 7.2: Number of liquid condensate wells and their total annual production volume. 

Year 
Well Count Production Volume (BBL) 

1-km 2-km 5-km 10-km 1-km 2-km 5-km 10-km 

2000 0 0 0 3 0 0 0 235 

2001 0 0 0 30 0 0 0 16,157 

2002 0 5 36 133 0 2,956 21,938 110,290 

2003 3 16 72 230 1,259 6,349 61,727 189,675 

2004 5 20 95 264 2,287 6,162 49,937 182,751 

2005 5 21 89 260 1,173 8,154 61,207 157,185 

2006 4 21 89 275 238 9,044 43,705 146,757 

2007 4 23 92 321 442 5,462 30,727 120,761 

2008 5 25 99 306 116 2,281 32,464 114,242 

2009 6 24 93 293 355 1,945 44,757 104,236 

2010 8 23 103 299 503 2,784 40,138 85,196 

2011 8 25 107 307 581 3,864 48,786 120,535 

2012 9 32 109 294 289 3,970 29,481 69,098 

2013 9 32 123 302 3,146 6,904 25,512 79,324 

2014 9 29 128 305 2,104 4,072 64,954 143,428 

(table continues) 
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Year 
Well Count Production Volume (BBL) 

1-km 2-km 5-km 10-km 1-km 2-km 5-km 10-km 

2015 9 32 123 306 1,069 2,871 49,765 100,282 

2016 9 33 135 313 991 2,347 69,575 113,945 

2017 8 31 142 324 413 1,333 30,541 64,004 

 

7.2 Energy Policies in Texas 

The United States prohibits fracking activities in some regions of the country because 

of the environmental backlashes that surround the operations. The state of Texas does not have 

such prohibitions and had accused the U.S. federal government of overreaching into state 

affairs [155]. UGD is an unprecedented usage of land for industrial purposes, where it is legal 

for operators not to disclose the chemical contents used in fracking operations [27]. In 2010, 

the U.S. EPA found water sources near gas wells had high concentrations of methane and tried 

to issue an endangerment order against a shale gas company operating within the Barnett Shale. 

However, due to limited regulations on fracking operations, the U.S. EPA was not able to 

pursue any further actions against the shale gas operator [27]. In 2014, the citizens deemed 

fracking activities, close-to or within city limits, to be harmful to human health, the 

environment, and the quality of life, and voted for a fracking ban. However, House Bill 40 in 

the Texas legislature nullified the fracking ban in mid-2015. House Bill 40 was written to 

ensure control of oil and gas activity regulations lies with the state and not by the local 

governing body. It also explicitly prevents any oil and gas bans within Texas [152, 153, 154]. 

While UGD has helped improve the local economy by indirectly generating more jobs, 

however, Fry et al. [152] argued that the burdens placed on the city of Denton and its citizens, 

especially non-mineral owners, by UGD outweigh the potential economic benefits. In Denton 

County, the setback distance between new wells and existing infrastructure varies between 

300-ft (or 91.4 m) to 1,500-ft (or 457.2 m). The city of Denton adopted an ordinance to increase 

the setback distance from 500-feet (or 152.4 m) to 1,200 feet (or 365.8 m) in 2013 [156]. 
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Unfortunately, setback distances were not determined based on scientific consensus, but rather, 

a compromise reached between citizens and policymakers [152].  

7.3 Air Quality in Denton, Texas 

Since the 2000s, there have been numerous air quality measurement studies in DFW 

that had shown the heightened environmental impact from UGD in the Barnett Shale. Methane 

concentrations were above detection limits in 98% of the samples collected in the SGR and 

were higher than the urban background concentration range of 1.8 to 2 ppm [7]. A mobile 

measurement around natural gas production facilities showed that 9.7% of fence-line air quality 

samples collected in Denton County had methane concentrations exceeding 3 ppm [138].  

7.3.1 Total Non-Methane Organic Carbons (TNMOC)  

The mean measured TNMOC concentration during 2000 – 2017 in Denton was 226.17 

± 10.84 ppb-C, and it increased by +8.03 ± 12.92 ppb-C/year (+12.75 %/year) from 57.27 ppb-

C in 2000 to 193.75 ppb-C in 2017. As shown in Figure 7.3, two peaks were noted in the mean 

and 95th-percentile TNMOC concentration trends. The mean concentration peaked in 2005 and 

2014 while the 95th-percentile peaked in 2006 and 2013. A significant increase in drilling 

permits was issued in the Barnett Shale during the early 2000s that mirrored the growth shown 

in the measured TNMOC concentrations, and this peaked in 2005. Activities tied to the gas 

well development stage of UGD, which includes drilling and increased truck traffic, resulted 

in elevated measured TNMOC concentrations during the pre-2007 period. The economic 

recession that started in 2007 caused the drilling permits issued to drop, resulting in a decrease 

in the measured TNMOC concentrations from 2007 through 2009. Post-2010, the Barnett Shale 

gas region had largely matured, and the number of new permits issued dropped significantly. 

Post-recession, the natural gas production volume continued to increase through 2012, despite 

a relatively stagnant number of producing wells, and this explained the growth in the measured 
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TNMOC concentrations as it peaked in 2013. Natural gas production and subsequently, the 

measured TNMOC concentrations have declined since 2013. 

 

Figure 7.3: TNMOC concentration (ppb-C) timeseries plot for 2000 – 2017. 

 

Table 7.3: Mean TNMOC concentration measured and the average change in annual TNMOC 
during the 2000-2006, 2007-2009, 2010-2013, and 2014-2017 periods. 

Period 
Mean TNMOC Concentration 

(ppb-C) 
Average change in annual 

TNMOC 

2000 – 2006 211.34 ± 17.57 +37.58%/year 

2007 - 2009 178 ± 16.31 -5.88%/year 

2010 - 2013 265.8 ± 23.51 +16.1%/year 

2014 - 2017 246.27 ± 26.95 -15.74%/year 

 
The TNMOC concentrations measured in Denton increased by +37.58%/year during 

2000-2006 and had a mean concentration of 211.34 ± 17.57 ppb-C during this period, as shown 

in Table 7.3. This dropped significantly during the economic downturn during the recession 

period in 2007-2009. The TNMOC concentrations decreased by -5.88%/year, and the mean 

TNMOC concentration of 178 ± 16.31 ppb-C was lower than the earlier period. Since the 

economy rebounded in 2010, TNMOC concentration saw an increase at the rate of 

+16.1%/year, and the mean concentration grew to 265.8 ± 23.51 ppb-C during the 2010-2013 

period. Finally, during the 2014-2017 period, a -15.74%/year decrease was noted in the 
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TNMOC concentrations, and the mean TNMOC concentration was observed to be 246.27 ± 

26.95 ppb-C.  

 

Figure 7.4: TNMOC concentration [ppb-C] box-whiskers plot, (b) ambient temperature [℃], and 
(c) windrose diagrams [km h-1]. 

 

The observed TNMOC concentrations were higher during the winter months than in 

the summer in Denton. Figure 7.4 shows the monthly TNMOC concentration along with the 
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monthly outdoor temperatures, and the corresponding wind rose plots. Mean TNMOC 

concentration was the highest in November and was lowest in July, which was inverse of the 

temperature profile. Although TNMOCs are more volatile with warmer temperatures, TNMOC 

reactivity lowers during winter months due to smaller concentrations of free OH radicals, 

leading to a higher TNMOC concentration during winter months [157, 158, 159, 123]. The 

wind was blowing predominantly from the southeast of the monitoring site year-round, and 

westerly winds were the least uncommon during summer months. Faster winds usually result 

in lower measured TNMOC concentrations, and November’s average wind speed was 1.7 

km/hour greater than July. However, the influence of the lowered OH radicals was more 

significant than that of the increased wind speed, resulting in higher TNMOC concentrations. 

 

Figure 7.5: (a) Alkane/TNMOC, (b) alkene/TNMOC, and (c) aromatics/TNMOC concentration 
ratios box-whiskers plots. 

 
Alkanes were the largest TNMOC group at Denton, and their compositions 

(alkane/TNMOC ratio) had increased significantly since 2000, whereas the alkene/TNMOC 

and aromatics/TNMOC ratios were consistently in decline, as shown in Figure 7.5. Alkanes 

are the predominant TNMOC group emitted during UGD production activities, and the 



 

 80 

increased alkane composition in the measured TNMOC concentrations suggest an increasing 

influence from UGD emission sources between 2000 and 2017. The alkene and aromatic 

species’ decline in the TNMOC composition suggests a lowered influence of urban emission 

sources, which indicated an improvement because of conventional emission source controls.  

 

Figure 7.6: Alkanes (ethane, propane, and n-butane), alkenes, and alkynes (acetylene, ethylene, 
and propylene), and aromatics (benzene, toluene, ethylbenzene, and xylene) concentrations from 
2000 to 2017. 
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Figure 7.6 shows box-whiskers plots for select alkane (ethane, propane, n-butane, and 

isobutane), alkene (ethylene, and propylene), alkyne (acetylene), and aromatics (benzene, 

toluene, ethylbenzene, and (O + M/P) xylenes) species. All four alkane species experienced 

trends similar to the measured TNMOC concentration and the UGD production, which 

strengthens the correlation between both variables. Since 2000, the alkene and alkyne species 

had seen a decline in measured concentration. Acetylene, an alkyne species, along with 

ethylene and propylene, which are alkene hydrocarbon species, are commonly associated with 

the combustion of gasoline-powered engines [116]. Thus, the decrease in the observed 

concentration of these species strongly suggests the influence of decreasing exhaust emissions 

from vehicles. Unlike other TNMOC groups, each of the aromatic species had different trends 

that were independent of all the other members of the group. 

The trend showed by benzene was similar to that shown by the alkane species and 

TNMOC, which would indicate some correlation between benzene and natural gas production. 

Benzene is a hazardous air pollutant (HAP) species known to be carcinogenic and can cause 

serious health issues [160]. While the primary source of benzene in an urban region is vehicle 

exhaust emissions, benzene is also found in natural gas emissions. Benzene concentrations in 

the other parts of DFW were shown to be decreasing and were stated to be mostly released 

from sources other than natural gas production [5]. However, the benzene concentrations 

measured at the Denton site had a higher correlation with ethane than acetylene with R2-values 

of 0.212 and 0.09, respectively. Ethane is a dominant natural gas species, whereas acetylene is 

commonly emitted from vehicle exhausts [116]. The higher correlation between benzene and 

ethane indicated that the benzene concentrations observed in Denton were more likely to be 

emitted from natural gas sources. Nevertheless, the benzene concentrations measured at the 

Denton site, with a mean and median value of 1.39 ppb-C and 1.14 ppb-C, respectively, were 
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lower than the median background concentration of benzene in the United States cities (2.05 

ppb-C) [132] and were not likely to be a significant hazard to human health.  

Toluene can be emitted from internal combustion engines of on-road vehicles, where 

its decrease coincided with the decline in alkene and alkyne concentrations. Ethylbenzene 

concentrations showed a fluctuating upward trend from 2000 through 2008, followed by a 

consistent decrease in post-2009. Truck traffic increased during the development phase of the 

UGD wells prior to 2008 was likely the primary contributor to the ethylbenzene concentration; 

the truck traffic volume dropped with the decrease in UGD. Xylene concentrations saw rapid 

growth from 2000 through 2014, which was followed by a significant drop from 1.46 ppb-C to 

0.723 ppb-C from 2015 onwards. Xylenes are commonly found in industrial solvents and 

fracturing fluids; the decline in xylene concentrations post-2015 may be the result of reduced 

fracking activities after the initiation of the fracking ban. 

7.4 Impacts of UGD on TNMOC Concentrations 

Between 2001 and 2002, the mean TNMOC concentrations showed a significant 

increase of +156.32% from 75.16 ppb-C to 192.64 ppb-C (Figure 7.3). During the same 

timeframe, the natural gas production volumes from wells within 2-km from the Denton site 

had also increased from zero to 388,261 MMBtu (Figure 7.2). The increase in liquid condensate 

production during the early 2000s also correlated with the peak in the mean TNMOC 

concentration in 2005. Mean concentrations of ethane (79.77 ppb-C), propane (50.37 ppb-C), 

n-butane (24.12 ppb), and isobutane (14.79 ppb) observed in Denton, suggested the influence 

of natural gas sources. These four are considered to be natural gas emission species [116] and 

can be found in high concentrations throughout the Barnett Shale gas region [161]. While the 

reactivity of alkane species is low towards the formation of ozone, alkanes were crucial 

contributors to the bulk of TNMOC reactivity observed in other oil and gas regions [134, 149]. 
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Thus, we believe that the elevated concentrations of alkanes at the Denton site potentially could 

impact the local ozone formation despite lower reactivity. 

 

Figure 7.7: (a) Ethane/TNMOC concentration ratio; (b) log-normal trend of natural gas and 
liquid condensate production volume and mean ethane concentration. 

 
Ethane/TNMOC concentration ratios, as shown in Figure 7.7(a), saw significant growth 

(p-value = 0.0009) during 2000-2006, but remained relatively constant post-2007. The growth 

in the pre-2007 ethane/TNMOC ratio was the product of rapid growth in UGD and an increase 

in the issuance of drilling permits. The normalized log trends (Figure 7.7(b)) for natural gas 

and liquid condensate production within 2-km from the Denton air monitoring site and the 
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observed ethane concentrations showed a high correlation, and there was no significant 

difference between the three variables (p-value = 0.828). The lack of significant difference 

between the ethane concentration and UGD production strongly suggests UGD activities were 

the predominant source of ethane and in-extension the major contributor to TNMOC 

concentration in the region. Thus, the decreased in TNMOC concentration post-2013 (Figure 

7.3) was likely caused by the decrease in natural gas production in the region (Figure 7.2). On 

the contrary, an increase in natural gas production will likely increase the TNMOC emissions 

in the region if emission regulation and emission control technology remains the same. 

 

Figure 7.8: (a) Location of natural gas wells overlaid with total production volume contour 
[MMBtu]; (b) location of liquid condensate facilities overlaid with total production volume 
contour [BBL]; and (c) bivariate polar plot for measured ethane concentrations [ppb-C]. 

 
Figure 7.8 shows the cumulative sum of natural gas and liquid condensate production 

volume and the ethane bivariate polar plot for the entire study period (2000 to 2017), while the 

annual natural gas production, liquid condensate production, and ethane bivariate polar plots 

are available in Figure A6 through Figure A8. The production volume plots scale from green 

to red, where green represents the lowest production volume, and red represents the highest 

production volume. The rings on the bivariate polar plots represent wind speed, where a high 

concentration region near the origin, or 0 km/hour, shows that the measured air pollutant 



 

 85 

concentration was not carried in by high-speed winds and is an indication of a local emission 

source. Natural gas wells with higher production volumes were located south-southwest of the 

Denton site, whereas liquid condensate facilities with higher production volumes were located 

north-northwest of the monitoring station. The largest concentration of ethane was found on 

the west side of the monitoring station. This high concentration region was close to the 

5km/hour radius, which would strongly suggest the influence of a localized source. 

The ethane bivariate polar plots (Figure A8) follows the high production regions of the 

liquid condensate production volume (Figure A8) very closely between 2002 and 2008; the 

regions with high liquid condensate production volume were in the west-northwest side of the 

monitoring station between 2002 and 2008, which coincided with the high concentration 

regions on the ethane bivariate polar plot. Between 2011 and 2014, the region with high ethane 

concentrations (Figure A8) appeared to have a higher correlation with natural gas production 

volume (Figure A6) more closely than liquid condensate (Figure A8). Also, high ethane 

concentrations observed after 2008 were predominately linked to regions in the west of the 

monitoring site with a high density of both natural gas and liquid condensate facilities. The 

ethane concentrations observed were very likely to be from fugitive emissions from natural gas 

compressor stations and liquid condensate storage tanks. Compressor stations, storage tanks, 

and gas processing plants were likely sources of elevated TNMOC levels as opposed to the 

operation of single gas wells. More importantly, the number of existing facilities and 

production volume do not always translate directly to the measured emissions.  In an earlier 

study, it was found that just 10% of the facilities were mainly responsible for 90% of the 

emissions within the Barnett Shale [162].  

7.5 Summary Findings 

Over the past two decades, shale gas activities have had a significant influence on the 

TNMOC concentration measured in Denton, Texas. The annual mean TNMOC concentrations 
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grew from 57.3 ppb-C to 194 ppb-C from 2000 through 2017, and it followed the trend set by 

natural gas and liquid condensate production from wells located within 2-km from the 

monitoring site. Ethane was the most abundant component in the measured TNMOC 

concentration, and it originated from regions with a high density of active natural gas and liquid 

condensate facilities. Furthermore, while the concentration of alkane hydrocarbon species 

increased, the alkene, alkyne, and aromatic species decreased during the study period. The 

TNMOC concentrations measured has declined since 2014, which coincided with a decrease 

in shale gas production due to lower gas prices. This study showed that shale gas activities in 

Denton had a strong influence on the measured TNMOC concentrations in the ambient 

atmosphere. While lower reactivity alkane species dominated the observed TNMOC 

concentrations, the large concentration of alkanes was sufficient to offset their lower reactivity 

and potentially contributed to elevated ozone levels in the region. For now, the shale gas play 

in this region has matured, and a declining trend in both production and corresponding ambient 

concentrations of TNMOC was noted.  However, in the future, if shale gas production were to 

rise again within this mature play, it would likely cause a potential increase in the ambient 

TNMOC concentrations. Further studies are required using hourly measured TNMOC 

concentration data along with the photochemical modeling of these UGD emission sources to 

understand the complex air quality challenges faced by exurban areas with significant oil and 

gas development and production activities. 
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CHAPTER 8 

SOURCE APPORTIONMENT ANALYSIS OF AMBEINT TNMOC CONCENTRATIONS  

USING POSITIVE MATRIX FACTORIZATION TECHNIQUE 

The previous chapters had established that the ambient TNMOC concentrations 

measured at the exurban Denton Airport South (DEN) monitoring station were more severely 

affected by oil and gas emissions compared to those measured at the highly urbanized Dallas 

Hinton (DAL) and Fort Worth Northwest (FWNW) monitoring stations. In this chapter, a 

source apportionment analysis was performed to identify and quantify the various emission 

source factors impacting TNMOC concentrations at all three sites using the long-term canister 

dataset. Source apportionment is a useful tool that can aid in the decision making of urban 

planners and policymakers [163]. The positive matrix factorization (PMF), a statistical analysis 

tool has been used to quantify sources of TNMOC emissions [116, 117, 164, 165]. In this study, 

we employ PMF to apportion potential emission sources affecting the measured ambient 

hydrocarbon concentrations at three air quality monitoring stations within the study region. 

8.1 Breakdown of the Measured Hydrocarbon Groups 

Between 2000 and 2018, the mean concentration of TNMOC was estimated to be 

highest in DEN (217.18 ppb-C), followed by FWNW (89.65 ppb-C), and finally in DAL (68.28 

ppb-C). Figure 8.1 shows that the n-alkane hydrocarbon group had the predominant share of 

the TNMOC concentrations measured at all three sites. Alkanes are most commonly found in 

oil and gas emissions [45, 46, 47, 116, 166]. Alkanes made up pf 96.11% of the TNMOC 

concentration measured in DEN, in comparison, the alkane group was 76.31% and 84.61% of 

the measured TNMOC concentration at DAL and FWNW, respectively. The aromatic group 

was the second-largest hydrocarbon group, which was followed by alkenes, alkynes, and 

dienes. All four of these hydrocarbon groups can be found abundantly in conventional urban 

source emissions, such as vehicle exhaust, power plant, and solvent emissions [116, 166, 167]. 
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Since DAL and FWNW are in highly urbanized regions within the DFW metroplex, 

unsurprisingly, these two sites had larger amounts of measured alkenes, alkynes, aromatics, 

and dienes than compared to DEN. 

 

Figure 8.1: Hydrocarbon group profile breakdown (ppb-C, %). 

 

8.2 PMF Source Apportionment Analysis  

The PMF requires two input datasets: a concentration file and an uncertainty file. Based 

on the uncertainty, some subsets of the input files will be removed to decrease the error of the 

model run. Based on S/N ratios (Table B3), 38, 40, and 35 species were considered for the 

PMF run of the DAL, FWNW, and DEN dataset, respectively. The optimal number of factors 

depends on the Qtrue/Qexpected value generated by the PMF, where the decrease in 

Qtrue/Qexpected value is insignificant after the optimal number of factors were met. After repeatedly 

running the PMF with an increasing number of factors, it was identified that the optimal 

number of factors for DAL, FWNW, and DEN were five, six, and five, respectively. A factor 

profile consists of the concentration and percentage of each TNMOC species within the factor. 

Table 8.1 shows the factor profiles of the resolved models for DAL, FWNW, and DEN 

alongside the key signature species used to classify them. The key signature species of each 
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factor are the most common TNMOC species associated with the factor, found from cross-

validating results published in various studies on TNMOC source apportionment. 

Table 8.1: Resolved PMF sources factor profile (ppb-C, %) and their respective key species. 

Sources DAL FWNW DEN Key Species 

Diesel  7.13, 9%  
1-Butene, n-Undecane, 1,2,3-
Trimethylbenzene, 1,2,4-Trimethylbenzene, n-
Nonane 

Fuel 
Evaporative 

11.02, 
18% 

10.03, 
13% 

10.07, 
6% 

n-Pentane, isopentane, n-Butane, 2-
Methylpentane 

Natural Gas 
19.66, 
32% 

32.03, 
40% 

115.04, 
69% 

Propane, ethane, n-Butane, isobutane 

Refrigerant 5.1, 8% 6.65, 8% 
16.35, 
10% 

Chloromethane, Dichlorodifluoromethane, 
Trichlorofluoromethane, p-Ethyltoluene 

Solvent 
16.35, 
27% 

14.12, 
18% 

10.99, 
7% 

2-Methylhexane, 1,2,4-Trimethylbenzene, 
2,3,4-Trimethylpentane, 3-Methylhexane 

Vehicle 
Exhaust 

9.25, 
15% 

10.05, 
13% 

14.23, 
9% 

Acetylene, Ethylene, Propylene, Benzene 

 

8.2.1 Dallas Hinton (DAL) 

DAL is in a highly urbanized region with a large population density within the city of 

Dallas. Dallas is currently the third-largest city in the state of Texas by population [151] and is 

a major economic hub in the southern United States. DAL is the only one of the three sites in 

this study that is not located within a shale gas region (SGR) within the Barnett Shale. As 

shown in Figure 8.2, the PMF had resolved fuel evaporative, natural gas, refrigerant, solvent, 

and vehicle exhaust as the five dominant factors contributing to the measured TNMOC 

concentration in DAL. The spatial extent analysis for each factor was performed using a 

conditional probability function (CPF) bivariate polar plots. These CPF plots consider the 

impact of wind speed and wind direction to identify major hotspots where the source of each 

factor was likely originating from. The CPF plot corresponding to the five factors resolved for 

DAL is shown in Figure 8.3.  
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Figure 8.2: Summary of the 5-factor profile at DAL: (a.) Fuel evaporation; (b.) natural gas; (c.) 
refrigerants; (d.) solvent; and (e.) vehicle exhausts. 
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Figure 8.3: 90th-percentile CPF plots (%) for the 5-factors at DAL: (a.) Fuel evaporation; (b.) 
natural gas; (c.) refrigerants; (d.) solvent; and (e.) vehicle exhausts. 
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Fuel evaporative was 18% of the TNMOC composition and had a concentration of 

11.024 ppb-C. The key species of the fuel evaporative factor were n-pentane, isopentane, n-

butane, and 2-methylpentane [45, 166, 167]. According to the CPF plot, the fuel evaporative 

factor was mainly from a nearby source west of the monitoring station. The natural gas factor 

has high concentrations of ethane, propane, n-butane, and isobutane [45, 46, 47, 116, 166]. 

Natural gas emissions had a concentration of 19.66 ppb-C and were the most substantial factor 

contributing to measured TNMOC concentration at 32%. Natural gas was predominantly 

carried in from the west side of the monitoring station during low wind speeds, which could 

indicate the influence of a higher localized source in close proximity. The CPF plot for natural 

gas was very similar to fuel evaporative, which would indicate a correlation between the two 

factors. There were natural gas and refined liquid petroleum pipelines less than 5-km west of 

the monitoring station. The fuel evaporative and natural gas factors were subsequently 

influence by the fugitive emissions from these pipelines. The refrigerant factor was 5.1 ppb-C 

and contributed to 8% of the measured TNMOC at DAL. The key signature species found in 

refrigerant emissions are chloromethane, dichlorodifluoromethane, trichlorofluoromethane, 

and p-ethyltoluene  [168, 169]. Refrigerant emissions were carried in by southerly winds, 

indicating that the source was not local and the monitoring station was influenced by long-

range transport of the refrigerant chemicals. The solvent factor has high concentrations of 2-

methylhexane, 1,2,4-trimethylbenzene, 2,3,4-trimethylpentane, and 3-methylhexane. While 

the exact chemical compositions of the solvent differ depending on the type of solvent used, 

they generally are composed of aromatics, n-alkanes, pentanes, and butanes [116, 170, 46, 

167]. The solvent factor at DAL was 16.35 ppb-C and was the second most significant factor 

contributing to the measured TNMOC concentration at 27%. The CPF plot shows the highest 

probability surrounding the origin, which indicates an extremely localized source. The CPF 

plot also showed solvent factors carried in by low-speed winds from the northwest side of the 
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monitoring station, which suggests commercial solvent use by local businesses near the 

monitoring station. There were more commercial buildings towards the northwest of the 

monitoring station compared to the southeast, which primarily consists of residential housing. 

The final factor was vehicle exhausts, which was characterized by acetylene, ethylene, 

propylene, and benzene [116, 166, 167]. Vehicle exhaust contributed to 15% of the TNMOC 

measured at DAL and was 9.25 ppb-C. Like solvent, the vehicle exhaust factor was an 

extremely localized source with a more significant frequency from the northwest side of the 

site, indicating the influence of nearby highways and major roadway arteries. 

 

Figure 8.4: Annual variation in the mean concentration of the 5-factors at DAL. 

 
The mean concentration of TNMOC measured in DAL was lower in 2018 than it was 

in 2000, as shown in Figure 8.4. TNMOC concentrations were in decline from 2000 through 

2009, which marked the end of the U.S. economic recession in 2008. From 2010 to 2012, 

TNMOC concentration saw a brief period of increase, which corresponded to the increased 

activity of the post-recession economic rebound in the DFW metroplex. Since 2013, the 

measured TNMOC concentrations have shown a declining trend. From 2000 to 2018, the fuel 

evaporative, natural gas, and vehicle exhaust factors were in decline at the rate of -0.4 ppb-
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C/year (-3.58%/year), -0.31 ppb-C/year (-1.55%/year), and -0.75 ppb-C/year (-7.8%/year), 

respectively. On the other hand, the solvent and refrigerant factors experienced an increased 

by +0.22 ppb-C/year (+1.33%/year) and +0.07 ppb-C/year (+1.48%/year), respectively. The 

massive decrease in fuel evaporative and vehicle exhausts was successful in mitigating the 

slight increase in solvents and refrigerants; thus, the overall influence of urban emissions at 

DAL showed a decrease between 2000 and 2018.   

8.2.2 Fort Worth Northwest (FWNW) 

The mean concentrations of alkene, alkyne, aromatics, and diene hydrocarbon species 

measured in FWNW were lower than those measured in DAL. However, the concentrations of 

alkanes measured at FWNW were higher than DAL, which indicated a more substantial 

influence from oil and gas-related emissions in FWNW. The chemical profile of the six factors 

contributing to the measured TNMOC concentrations in FWNW as well as their corresponding 

CPF bivariate polar plots are shown in Figure 8.5 and Figure 8.6, respectively. The six emission 

source factors resolved by the PMF were diesel, fuel evaporation, natural gas, refrigerants, 

solvent, and vehicle exhausts. 

The key TNMOC species used to identify the diesel source factor were 1-butene, n-

undecane, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, and n-nonane [167, 171]. Diesel 

contributed to 7.13 ppb-C or 9% of the measured TNMOC concentration at FWNW. The diesel 

emissions were carried in during low wind speeds from downtown Fort Worth (southeast of 

the monitoring station). Gasoline-powered vehicle exhaust emissions had a concentration of 

10.05 ppb-C and was 13% of the measured TNMOC at FWNW. Similar to the diesel factor, 

vehicle exhaust emissions had extremely localized sources. Solvents were responsible for 14.12 

ppb-C or 18% of the measured TNMOC concentration in FWNW. The CPF plot shows that 

solvents were emitted from extremely localized sources surrounding the monitoring station, 

likely from commercial and industrial uses from residents and local businesses.  
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Figure 8.5: Summary of the 6-factor profile at FWNW: (a.) Diesel, (b.) fuel evaporation, (c.) 
natural gas, (d.) refrigerants, (e.) solvent, and (f.) vehicle exhausts. 
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Figure 8.6: 90th-percentile CPF plots (%) for the 6-factors at FWNW: (a.) Diesel, (b.) fuel 
evaporation, (c.) natural gas, (d.) refrigerants, (e.) solvent, and (f.) vehicle exhausts. 
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Emissions from refrigerant sources had a concentration of 6.65 ppb-C and was 8% of the 

measured TNMOC concentration at FWNW. Since the refrigerant factor was carried in by 

high-speed easterly-, southeasterly-, and southerly winds, the factor was likely influenced by 

long-range transport of refrigerant chemicals. 

Fuel evaporative emissions were responsible for 10.03 ppb-C or 13% of the measured 

TNMOC concentration at FWNW. Emissions from fuel evaporative were carried-in to the 

monitoring station by low-speed westerly winds; fuel evaporative had a non-local source within 

a close proximity to the west of the FWNW monitoring station. Lastly, natural gas was the 

most significant source of TNMOC at FWNW; the natural gas factor had a concentration of 

32.03 ppb-C and was 40% of the measured TNMOC concentration at FWNW. Despite being 

surrounded by active natural gas wells in all direction, the largest concentrations of natural gas 

emissions were carried in to the monitoring station during low-speed westerly winds. Since the 

Fort Worth city limit stops around 8-km west of the monitoring station, the gas wells located 

outside of the city limit operated on less stringent requirements and were more prone to 

leakages when compared to the gas wells located within city limits. Since the FWNW 

monitoring station is located on the eastern edges of the Barnett Shale play SGR, the natural 

gas factor was also likely influenced by the long-distance transport of oil and gas emissions 

through westerly winds.  

The mean concentration of TNMOC measured at FWNW had decreased considerably 

between 2003 and 2018, as shown in Figure 8.7. From 2004 to 2007, the mean concentration 

of TNMOC concentration experienced an increasing trend, which corresponded to an increased 

production in the Barnett Shale SGR. A decline in the mean concentration of TNMOC was 

measured between 2007 and 2009 due to the effects of the U.S. economic recession. 

Corresponding to the rebound experienced shortly after the 2008 recession, the mean 

concentration of TNMOC measured during 2010 to 2012 experienced an increase. Since 2013, 
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the mean concentration of TNMOC measured at FWNW had declined mainly due to the overall 

decreased in natural gas production activities in the Barnett Shale [172]. Similar to DAL, the 

refrigerant and solvents factors had experienced growth between 2003 and 2018, at the rates of 

+0.24 ppb-C/year (+3.64%/year) and +0.18 ppb-C/year (+1.33%/year), respectively. Diesel, 

fuel evaporative, natural gas, and vehicle exhaust declined by -0.61 ppb-C/year (-8.19%/year), 

-0.22 ppb-C/year (-2.13%/year), -0.45 ppb-C (-0.47%/year), and -0.78 ppb-C (-7.38%/year), 

respectively. Diesel, fuel evaporative, and vehicle exhaust saw consistent decrease throughout 

the monitoring period whereas the natural gas factor saw a significant increase prior to 2013 

but was followed by a massive decrease since 2013. Thus, it was shown that the increased in 

impact from natural gas sources had significantly mitigated the efforts in regulating urban 

emission sources prior to 2013.  

 

Figure 8.7: Annual variation in the mean concentration of the 6-factors at FWNW. 

 

8.2.3 Denton Airport South (DEN) 

The DEN monitoring station is located in an exurban SGR site just outside of the 

jurisdiction of the Denton City Council. The monitoring station in the Industrial Center District 
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of Denton County, where the minimum setback distance was 76.2 m [173], which was much 

lower than the city of Fort Worth’s 182.9 m [174]. The mean concentration of TNMOC and 

alkanes measured at DEN were significantly higher compared to those measured at DAL and 

FWNW, which suggests larger influence from unconventional oil and gas emissions. The mean 

concentration of alkene, alkyne, aromatics, and diene measured at DEN were also substantially 

lower than those measured at DAL and FWNW, suggesting much smaller influence from 

conventional urban emission sources. Figure 8.8 and Figure 8.9 shows the chemical profiles of 

the five source factors resolved for DEN and their corresponding CPF bivariate polar plots. 

The five factors resolved for DEN were fuel evaporation, natural gas, refrigerants, solvent, and 

vehicle exhausts. 

Natural gas was the most dominant factor in DEN, it had a concentration of 115.04 ppb-

C and was responsible for 69% of the TNMOC concentration measured at DEN. While natural 

gas were significant sources of TNMOC at all three sites, the concentration of the natural gas 

factor at DEN was 5.9 and 3.6 times larger compared to those resolved for DAL and FWNW, 

respectively. The CPF plot for DEN’s natural gas factor showed to had extremely localized 

sources within close proximity to the monitoring station, the highest concentrations were 

carried in to the monitoring station by low-speed southwesterly winds from a region with a 

high number of active natural gas wells. Solvent had a concentration of 10.99 ppb-C and was 

7% of the TNMOC concentration measured at DEN. The CPF plot for solvent was almost 

identical to natural gas, suggesting a high degree of overlap between the both sources. Fuel 

evaporative contributed to 10.07 ppb-C or 6% of the TNMOC concentration measured at DEN. 

The primary source of fuel evaporative was from the southwest side of the monitoring station, 

likely from the storage facilities of nearby oil and gas operations. Traces of solvent were also 

carried in from city of Denton by northeasterly winds, mainly from commercial and industrial 

solvent usage in the city of Denton.  
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Figure 8.8: Summary of the 5-factor profile at DEN: (a.) Fuel evaporation, (b.) natural gas, (c.) 
refrigerants, (d.) solvent, and (e.) vehicle exhausts. 
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Figure 8.9: 90th-percentile CPF plots (%) for the 5-factors at DEN: (a.) Fuel evaporation, (b.) 
natural gas, (c.) refrigerants, (d.) solvent, and (e.) vehicle exhausts. 
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Vehicle exhaust had a concentration of 14.23 ppb-C and had contributed to 9% of the 

TNMOC concentration. It is important to point out that the vehicle exhaust factor resolve for 

DEN was larger compared to those resolved for DAL and FWNW, despite a comparatively 

smaller population and traffic volume surrounding the DEN monitoring station. DEN’s vehicle 

exhaust was a highly localized source that had originated from the Industrial Center District on 

the northwest side of the monitoring station instead of the city of Denton. The notable 

commercial structures in the Industrial Center District includes the Peterbilt Motors 

manufacturing plant and distributing centers for Fastenal, Target, and WinCo Foods. The 

vehicle exhaust factor at DEN also had a significantly larger composition of ethane and propane 

compared to the two urban sites, which may be influenced by the manufacturing plants of 

Peterbilt Motors, a leading manufacturer in natural gas-powered commercial vehicles. Lastly, 

refrigerants had a concentration of 16.35 ppb-C and was 10% of the TNMOC concentration 

measured at DEN. The CPF plot for refrigerant shows a significant influence from long-

distance deposition of refrigerant chemicals during high-speed southerly winds. Since the DEN 

monitoring station is downwind from the DFW metroplex, the refrigerant chemicals were likely 

carried in from the major urban regions in the metroplex, which explains why the refrigerant 

factor in DEN was 3.2 and 2.5 times larger than those at DAL and FWNW, respectively.  

As shown in Figure 8.10, the mean TNMOC concentration measured at DEN was 

heavily influenced by its natural gas factor. From 2000 to 2018, the natural gas factor grew at 

the rate of +3.03 ppb-C/year (+2.69%/year). There was significant growth in the natural gas 

factor in between 2000 and 2006, where the concentration increased from 6.66 ppb-C to 130.81 

ppb-C, which corresponded to the enhanced shale gas production across the Barnett Shale 

region. The natural gas factor dropped to 83.04 ppb-C at the beginning of the economic 

recession in 2007, but had climbed back to 89.11 ppb-C by the end of the recession period in 

2009. Following the economic rebound in 2010, natural gas emissions saw a continued 
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increased until it peaked in 2012. Since 2013, natural gas emissions dropped significantly 

corresponding to the decreased in shale gas production throughout the Barnett Shale [172]. 

Solvent was the only other factor that had experienced a growth since 2000, at the rate of +0.15 

ppb-C/year (+1.35%/year). Since the CPF plots for natural gas and solvent were nearly 

identical, solvent use during oil and gas operations surrounding the DEN monitoring station 

were significant and the amount of solvent used likely depended heavily on oil and gas 

operations. Fuel evaporative, refrigerant, and vehicle exhaust all experienced a decrease 

between 2000 and 2018, at the rates of -0.68 ppb-C/year (-6.66%/year), -0.08 ppb-C/year (-

0.47%/year), and -0.3 ppb-C/year (-2.1%/year), respectively. 

 

Figure 8.10: Annual variation in the mean concentration of the 5-factors at DEN. 

 

8.3 Summary Findings 

Despite being the least urbanized site among the three, the highest mean concentration 

of TNMOC from 2000 to 2018 was measured in DEN. DEN also had the highest concentration 

of alkanes, whereas DAL had the highest concentrations of alkene, alkyne, aromatics, and 

diene. Since 2000, the mean concentrations of TNMOC measured at DAL and FWNW had 
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showed significant decline; however, the mean concentration of TNMOC measured at DEN 

was more abundant in 2018 when compared to 2000 despite a considerable decline since 2012. 

Using the PMF method, the TNMOC concentrations measured at DAL, FWNW, and DEN 

were resolved into five, six, and five-factor models, respectively. The TNMOC concentration 

measured at DAL was influenced by natural gas (32%), solvent (27%), fuel evaporative (18%), 

vehicle exhaust (15%), and refrigerant (8%). At FWNW, the TNMOC concentration was 

mainly influenced by natural gas (40%), solvent (18%), fuel evaporative (13%), vehicle 

exhaust (13%), diesel (9%), and refrigerant (8%). The factors that were influencing the 

TNMOC concentration measured at DEN includes natural gas (69%), refrigerant (10%), 

vehicle exhaust (9%), solvent (7%), and fuel evaporative (6%). Across all three monitoring 

stations, localized emission sources had a higher influence local TNMOC concentrations 

compared to those from long-range transport. Natural gas was a significantly larger factor at 

DEN compared to the other two sites and it had a direct impact on the measured TNMOC 

concentration at DEN since 2002. While the impact of the natural gas factor in FWNW was 

smaller than DEN, there was also strong evidence of its impact on measured TNMOC 

concentrations in FWNW. Before 2013, the TNMOC concentrations in FWNW had remained 

high despite a decline in conventional urban emission factors due to enhance influence from 

the natural gas factor. The natural gas factor was also the largest component of the measured 

TNMOC in DAL, despite not being located within an active SGR, which implied fugitive 

emissions from oil and gas storage and transport facilities. Thus, it can be concluded that the 

decrease in the measured TNMOC concentrations since 2013 was a direct result of the decrease 

in shale gas production volume across the Barnett Shale.  

 

  



105 

CHAPTER 9 

ADOPTING MACHINE LEARNING TECHNIQUES FOR AIR QUALITY DATA 

ANALYSIS 

In recent years, the increase in computing power in everyday computers has provided 

the data-driven machine learning (ML) approach as an alternative to traditional deterministic 

or physics-based air pollutant predicting and forecasting strategies [58, 59, 60, 61, 62, 63]. 

Unlike more conventional methods, mechanical and chemical models that dictate air pollution 

concentration are not required in ML approaches; instead, the variables are fed to the black 

box, and it will try to produce a model with the least error between measured and predicted 

values [63]. Five ML algorithms were trained with Fort Worth Northwest (FWNW) dataset to 

predict ozone concentration. The five ML algorithms are artificial neural network (ANN), 

classification and regression tree (CaRT), k-nearest neighbor (kNN), random forest (RF), and 

support vector machine (SVM). Ultimately, the models will be tested using data collected from 

a different location, with different terrain, emission characteristics, and data quality, to 

determine whether the ML approach can mitigate the lack of good quality air pollution data in 

majority of the country including rural locations. The goal was not to build a model to predict 

future air pollution episodes, but to generate data samples that would fill in non-available data. 

9.1 Training and Validating Dataset Variables 

To successfully predict air pollutant concentrations, the training dataset of the ML 

model frequently includes both meteorological and pollutant emissions variables [63]. 

Temperature, relative humidity, and wind speeds are meteorological variables that play an 

essential role in ozone generation. Ozone generation is high when the temperature is high, and 

the wind condition is calm; and it decreases with the increase in relative humidity [175]. Table 

9.1 shows the summary of the training (2000 -2016) and validating (2017 – 2018) dataset, 

which consists of hourly concentrations of air pollutants (previous-day-ozone, NOx, and 
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TNMOC categorized by hydrocarbon groups) and meteorological data (outdoor temperature, 

relative humidity, and wind speed) measured at the FWNW monitoring station. The training 

dataset has 91,815 individual samples, and the validating dataset has 7,014 individual samples. 

Table 9.1: Summary of the training (2000 – 2016) and validating (2017 – 2018) datasets. 

 Variables Mean Median Min-Max IQR 

T
ra

in
in

g 
da

ta
se

t (
20

00
 –

 2
01

6)
 

Ozone (ppb) 28.216 ± 0.059 26.614 -3.596 - 144.565 15.178 - 38.734 

Alkane (ppb-C) 72.971 ± 0.298 44.108 0.388 - 3996.47 26.108 – 82.578 

Alkene (ppb-C) 3.879 ± 0.016 2.356 0 - 155.708 1.491 - 4.153 

Alkyne (ppb-C) 0.7867 ± 0.004 0.5298 0 - 42.417 0.2581 - 0.9111 

Aromatics (ppb-C) 6.917 ± 0.034 3.97 0 - 1271.373 2.382 – 7.375 

Diene (ppb-C) 0.4643 ± 0.002 0.2747 0 - 10.5535 0.1169 - 0.6161 

NOx (ppb) 15.421 ± 0.072 8.202 -3.889 - 438.969 4.142 - 17.498 

Relative humidity (%) 58.793 ± 0.069 58.793 7.492 - 100 41.827 - 75.849 

Wind speed (Mph) 7.499 ± 0.014 6.969 0.044 - 32.297 4.431 - 9.802 

Outdoor temperature (oF) 68.15 ± 0.056 70.34 11.45 - 108.07 55.58 - 81.33 

V
al

id
at

in
g 

da
ta

se
t (

20
17

 –
 2

01
8)

 

Ozone (ppb) 29.657 ± 0.187 29.232 -4.564 – 93.061 18.465 – 40.008 

Alkane (ppb-C) 54.41 ± 0.645 36.528 0.978 – 715.381 23.301 – 64.381 

Alkene (ppb-C) 2.883 ± 0.033 2.064 0 – 43.572 1.495 – 3.195 

Alkyne (ppb-C) 0.475 ± 0.007 0.35 0 – 7.615 0.186 – 0.573 

Aromatics (ppb-C) 4.872 ± 0.066 3.21 0 – 103.118 2.131 – 5.2 

Diene (ppb-C) 0.48 ± 0.007 0.288 0 – 9.816 0.139 - 0.618 

NOx (ppb) 10.516 ± 0.177 5.832 -2.09 – 189.556 2.678 – 12.005 

Relative humidity (%) 57.88 ± 0.233 57.776 9.727 – 97.302 43.56 – 73.506 

Wind speed (Mph) 7.653 ± 0.051 7.069 0.239 – 30.426 4.563 – 9.968 

Outdoor temperature (oF) 68.77 ± 0.185 71.35 14.12 – 100.46 558.26 – 80.33 

 

9.2 Simple vs Ensemble ML Model 

The training dataset can be divided into two groups, the mechanical meteorological 

data, and the chemical air pollutant concentration data. An ensemble ML model where the 

mechanical and chemical ML models were trained separately and then combined at the end 

was built to ensure these datasets do not get lumped together. According to Graczy et al. [176], 

there are three popular methods of creating ensemble ML models: bagging, boosting, and 
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stacking. The bagging process builds multiple models of the same type using different subsets 

of the same training dataset; the predictions made are then averaged. Boosting builds several 

models of the same type in a chain. Each subsequent model fixes the errors in the prediction 

made by the model before it on the chain. Lastly, stacking builds multiple different models and 

a supervisor model at the end to identify the best way to combine the predictions made by the 

various models [176]. Since the ensemble model divides the training dataset into subsections 

and separately trains them using the same algorithm, the bagging ensemble method is ideal.  

A simple, all-encompassing ANN model was trained alongside the ensemble ANN 

model that split the mechanical and chemical datasets, using 80% of the training dataset and 

validated using validating datasets. The prediction made by both side of the ensemble ANN 

model were averaged into a single prediction. However, the mean error of the ensemble ANN 

model was -0.583 ±8.767 ppb, which was more than twice as high as the mean error of the 

simple ANN model at -0.219 ± 7.633 ppb. Attempting the ensemble method once more with 

the RF algorithm again showed higher mean errors produced by the ensemble model compared 

to the simple RF model, at -0.681 ± 8.641 ppb and -0.583 ± 8.767 ppb, respectively. Errors 

were introduced during the partitioning of the training dataset and averaging of the predicted 

values. The training dataset was not partitioned for the rest of this study to avoid these errors. 

9.3 Identifying the Ideal Training Dataset Sample Size  

Over- and underfitting an ML model decreases its prediction accuracy [177]. 

Overfitting happens when the model is trained with too much data, and it picks up knowledge 

from noise and inaccurate data. On the other hand, when a model is under fitted, it cannot 

capture the entirety of the trend due to a lack of data [177]. To overcome over- and underfitting, 

an RF model was trained repeatedly with increasing training size and validated using a 

randomly generated subset of validating dataset. Table 9.2 shows the performance statistics of 

the ML model with the training dataset size of 100 through 20,000. The performance of the 
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ML increases with the size of the training dataset; however, the improvement in the model’s 

performance past 3,000 training dataset samples were not as significant. The percentage 

changes in performance improvement from the size of 3,000 onward were under the standard 

error. Thus, a training dataset size of 3,000 was the most ideal for training the ML models. 

Table 9.2: The performance of the ML model using different training dataset sizes. 

Size RMSE MAE R
2
 FB FE MNB MNE 

100 9.64 7.52 0.63 10.72% 32.72% 28.19% 69.91% 

500 7.86 6.08 0.76 12% 30.48% 22.66% 52.91% 

1,000 7.41 5.69 0.79 9.32% 26.54% 18.18% 47.54% 

2,000 7.24 5.54 0.80 8.89% 25.81% 17.44% 46.75% 

3,000 7.18 5.49 0.80 8.74% 26.09% 16.54% 45.17% 

4,000 7.18 5.48 0.80 9.73% 27.09% 15.82% 44.08% 

5,000 7.18 5.49 0.80 6.8% 24.36% 14.54% 43.43% 

6,000 7.17 5.48 0.80 6.48% 23.71% 14.47% 42.94% 

7,000 7.08 5.39 0.80 6.51% 23.37% 14.28% 42.69% 

8,000 7.07 5.39 0.80 6.9% 24.08% 13.69% 41.54% 

9,000 7.06 5.38 0.80 5.9% 23.15% 13.04% 41.83% 

10,000 7.04 5.37 0.80 6.98% 24.02% 13.35% 42.3% 

15,000 7.01 5.34 0.80 6.97% 24.33% 12.7% 41.97% 

20,000 6.98 5.32 0.81 8.04% 25.22% 13.07% 42.18% 

 

1.1. Performance of ML models 

The multivariate linear regression (MLR) is very commonly used in statistical 

applications and assumes that the relationship between the target and associated variables can 

be modeled using linear predictor functions [178]. The MLR correlates each variable and 

associates a coefficient number according to the relationship. A higher coefficient is given to 

the variables with a higher importance in predicting the target variable. However, the MLR 

model is limited to linear relationships and can be severely affected by an outlier [179]. Since 

most air pollutant concentration datasets are full of outliers, it would be challenging to produce 
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an accurate prediction using the MLR model. The performance statistics of the MLR serves as 

a benchmark for the ML models. Figure 9.1(a) ozone concentration predicted by the MLR 

versus the measured concentrations in the validation data. The MR predicted significantly more 

negative values than the ones in the validation data, at 109 versus 29. 

 

Figure 9.1: Predicted versus measured ozone concentration (ppb) for (a) MLR, (b) ANN, (c) 
CaRT, (d) kNN, (e) RF, and (f) SVM with their respective RMSE, MAE, and R2-values. 
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9.3.1 Artificial Neural Network (ANN) 

The performance of an ANN model can be manipulated by adjusting the weight decay 

and the size of the model. Weight decay prevents the weight assign to each link from growing 

too large [89]. A grid with different combinations of weight decay (0.1 to 0.5) and size (1 to 

10) was constructed. ANN models with different combinations were built, and the optimal 

model would be the model with the smallest RMSE, smallest MAE, and largest R2-value. It 

was identified that the best performing model had a size of 9 and a weight decay of 0.2. As 

shown in Figure 9.1(b), the ANN model’s predicted ozone concentration had an RMSE of 7.58, 

MAE of 5.873, and an R2-value of 0.77. Compared to the MLR, the ANN’s predicted values 

had a 14.66% lower RMSE, 14.48% lower MAE, and a 12.14% higher R2-value.  

9.3.2 Classification and Regression Tree (CaRT) 

When building a regression tree model, a large tree is first grown and then pruned to 

balance fitting versus over-fitting [180]. Figure 9.2 depicts the relationship between tree size, 

complexity parameter (cp), and the relative error. Cp controls the decision tree size and is used 

to select the optimal size for the decision tree. If adding a variable to the decision tree from the 

current node will cost more than the cp value, then the additional variable will not be added to 

the decision tree [93]. The tree was pruned to 7 terminal nodes or cp of 0.015 because the 

decrease in relative error after 7 terminal nodes was insignificant, and represents the best 

regression tree model based on the training data (Figure 9.3). As shown in Figure 9.1(c), the 

RMSE, MAE, and R2-value of the predicted values were 10.49, 8.327, and 0.556, respectively, 

and these were -18.12%, -21.27%, and -18.93% worse than the MLR. As discussed by Mitchell 

[80], decision trees have problems making an out-of-sample prediction since the predicted 

values were strictly limited to the values on the terminal nodes. Also, the predictions are 

sensitive to minor changes as a slight difference can lead to an entirely different terminal node. 
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Figure 9.2: Relative error versus cp and tree size. 

 

 

Figure 9.3: Pruned regression decision tree. 

 

9.3.3 k-Nearest Neighbor (kNN) 

The kNN model does not learn anything from the training data; instead, it memorizes 

the training data and uses it to populate the validating dataset. Thus, the kNN is often used in 
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applications where the dataset is continuously updated [94, 95, 96]. The kNN model was 

trained to predict based on the Euclidean distance. To maximize its performance, the most 

critical step in training a kNN model is choosing the optimal number of neighbors, k [94, 95, 

96]. The kNN model was trained repeatedly with increasing k-value until there was no 

significant decrease in the RMSE. As shown in Figure 9.4, the decrease in RMSE significantly 

drop after the k-value of 10; thus, 10 was the optimal k-value for this training dataset. In Figure 

9.1(d), the optimized kNN model had predicted ozone concentration with an RMSE of 8.075, 

an MAE of 6.188, and an R2-value of 0.739 with the measured values. These predicted values 

were 9.09%, 9.89%, and 7.68% better than the MLR, respectively.  

 

Figure 9.4: Number of k-values versus RMSE for the kNN regression. 

 

9.3.4 Random Forest (RF) 

While the RF is composed of multiple individual decision trees, it overcomes the lack 

of smoothness in predicted values through aggregating the predicted values of the individual 

trees [100]. As shown in Figure 9.1(e), the ozone concentrations predicted by the RF model 

had an RMSE of 7.455, an MAE of 5.733, and an R2-value of 0.788. The performance of the 

RF model was 16.07%, 16.52%, and 14.79% better than the MLR model in terms of RMSE, 
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MAE, and R2-value, respectively. The importance of each variable to an RF model can be 

found using the “Boruta” and “caret” packages. The “Boruta” use mean-decrease-in-accuracy 

as an estimate of importance [181]. Mean-decrease-in-accuracy is a measure of the increase in 

error when the variable is removed from the training dataset. The “varImp” function in “caret” 

tracks the changes in the generalized cross-validation (GCV) estimate of error when a variable 

is added to the model. The lower the overall GCV estimate of error, the less valuable a variable 

is to the model [89]. As shown in Table 9.3, relative humidity and previous day ozone were the 

two most important variables to the RF function. The “Boruta” function shows the outdoor 

temperature to be the third most crucial feature, whereas the “caret” function showed had NOx 

as its third most important variable.  

Table 9.3: Training dataset variable importance to the RF model. 

Variable “Boruta” - MeanImp “caret” - Overall 

Alkane 30.9950 33.1972 

Alkene 23.3755 18.5858 

Alkyne 20.4013 28.5692 

Aromatics 23.9412 24.8781 

Diene 34.3227 56.5070 

NOx 36.4179 63.7649 

Relative Humidity 69.9235 124.9604 

Wind Speed 29.2461 47.2515 

Temperature 37.0579 42.5721 

Previous-day-O3 50.1916 81.1483 

 

9.3.5 Support Vector Machine (SVM) 

The SVM model was constructed using the polynomial kernel. The epsilon (ϵ) -value 

defines the tolerance margin of the SVM model where no penalty is given to errors within the 

specified range; the default ϵ-value in the “e1071” package is 0.1 [107]. The SVM model also 

has an adjustable cost parameter, which avoids overfitting by balancing margin maximization 

and loss [107]. The process of tuning the SVM model involves identifying the best possible 
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combination of the ϵ-value and the cost parameter. Numerous SVM models were trained with 

different ϵ-values (0 to 1 with intervals of 0.1) and cost parameters (22 to 24 with intervals of 

2) to find a combination with the best performance using the “tune” function in “e1071”.  

 

 

Figure 9.5: Tuning graph of the SVM model: (a) ϵ = 0 – 1, and (b) ϵ = 0 – 0.4. 

 
Figure 9.5 shows the tuning graphs for the SVM regression model with ϵ-value ranging 

from (a) 0-to-1 and (b) 0-to-0.4, respectively, where the darker shaded regions represent 

combinations of cost and ϵ-value with lower errors as shown in the sidebar [107]. In Figure 9.5 

(a), the model combination with the least error was found in ϵ-values between 0 and 0.4, and 

cost between 7 and 16. According to the model summary, the best model can be trained using 

ϵ-value at 0.3 and cost parameter at 16; and the error of the best performing model was 102.337. 

The performance of the SVM regression model can be further turned by narrowing the ϵ-values 

range to 0-to-0.4, as shown in Figure 9.5(b). The intervals between ϵ-values were narrowed 
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from 0.1 to 0.01. The model with the least error was found in the region between the cost of 13 

to 16 and ϵ-values between 0.2 and 0.3. The best performing model had an error of 94.279, and 

its best parameters were ϵ-value of 0.25 and the cost parameter of 16. As shown in Figure 

9.1(f), the predicted values of the tuned SVM model have RMSE, MAE, and R2-value of 7.301, 

5.451, and 0.796, respectively. The performance of the tuned SVM model is better than the 

MLR by 17.81%, 20.62%, and 15.9% in terms of RMSE, MAE, and R2-value, respectively. 

9.3.6 ML Model Performance Comparison 

Table 9.4 shows the performance of each ML algorithm compared to the MLR model. 

The SVM is the best performing algorithm, followed by RF, ANN, and kNN. Of the five ML 

models, the CaRT was the only one with a worse performance compared to the MLR. The 

CaRT algorithm’s weakness is the inability to produce predictions outside of the terminal nodes 

[80], which had resulted in a weaker performance than the other ML models and the MLR. The 

terminal node value produced by the CaRT represents the mean value of variables with similar 

characteristics in training data [80]. However, air pollution concentrations do not follow a 

linear pattern; thus, the CaRT is likely unsuitable for air pollution concentration predictions. 

While the performance of the kNN model was better than the MLR, it was significantly worse 

than SVM, RF, and ANN. The kNN model does not learn from the training dataset; instead, it 

memorizes the training dataset and uses it in tandem with the validation set to make a 

prediction. The performance of the kNN drops when faced with imbalanced data, missing data, 

and outliers [94, 95, 96]; thus, it leads to a weaker performance when used in tandem with air 

pollution concentration data that is imbalance and has plenty of missing or outlier data. The 

ANN is weaker than the RF and SVM because it tends to be unstable when the training dataset 

is large due to generalization [88]. The SVM is exceptionally robust when solving large 

datasets with many variables, which makes the algorithm a good fit for predicting air pollution 

concentration [182]. 
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Table 9.4: The performance of the MLR and each ML models on the validating dataset. 

Model RMSE MAE R2 FB FE NMB NME 

MLR 8.882 6.867 0.686 10.281% 26.784% 6.077% 97.991% 

ANN 7.580 5.873 0.770 8.652% 27.698% 16.368% 52.587% 

CaRT 10.491 8.327 0.556 8.977% 36.430% 32.480% 83.968% 

kNN 8.075 6.188 0.739 10.188% 27.757% 19.116% 57.298% 

RF 7.455 5.733 0.788 7.65% 25.981% 15.964% 48.131% 

SVM 7.301 5.451 0.796 5.319% 18.773% 10.282% 39.087% 

 

 

Figure 9.6: Error residuals of the predicted values using ML models versus MLR. 
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Error residuals are the difference between predicted and measured values, and they 

were used as a measure to assess the quality of an ML model. Figure 9.6 shows the detailed 

comparisons between the residual distributions of MLR and each ML models. Four of the five 

ML models, excluding the CaRT, have higher frequencies at the zero compared to the MLR. 

A higher frequency of zero residuals indicates higher prediction accuracy and lower errors. The 

SVM has the highest frequency at the zero, followed by the ANN, RF, and kNN. Again, the 

CaRT model was the only one that produced a lower frequency at the zero than the MLR.  

9.4 Testing the ML Models against Photochemical Models 

Photochemical models are often used to predict air pollutant concentration and 

deposition with numeric algorithms, which take into consideration the effects of mechanical 

transport, particle physics, emission sources, deposition, and atmospheric chemistry [8]. The 

TCEQ’s 4-km domain 2012 ozone base case scenario is the most up to date model for 

simulating 8-hour ozone currently available for the DFW and the Houston-Galveston-Brazoria 

(HGB) regions [82]. The base case is to be used in tandem with the Comprehensive Air‐Quality 

Model with Extensions (CAMx) photochemical model. TCEQ stated that their base case model 

could generate prediction at equal or better quality than the 69 photochemical models 

documented by Simon et al. [8, 82]. 

The operations of the CAMx photochemical model is described in detail in CAMx 

Version 6.50 user guide [183]. The CAMx is commonly used to stimulate concentration and 

deposition of ozone, particulate matter, and other toxics. It can be applied from neighborhood 

to continental geographical scales. CAMx has a two-way nested grid structure, where the user 

can specify grid spacing in the model. The user can define a coarse grid when high spatial 

resolution is not required and still run a finer grid in areas of interest in the same model run. 

CAMx simulations consider physical governing models. Vertical diffusion is simulated using 

a hybrid of the local K-theory diffusion [184] and non-local convective surface-and-upper-
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layer transport. CAMx accounts for and simulates the effects of lateral and top boundary 

conditions using chemical models such as GEOS-Chem or MOZART. The CAMx also 

considers the pollutant mass sorption and deposition, the degradation and transformation of 

chemicals, and the re-emission of pollutants back into the air. In terms of chemistry governing 

equations, the CAMx has several photochemical chemistry mechanisms models, including 

several carbon-bond-chemistry-models and the 2007 Statewide Air Pollution Research Center 

chemistry (SAPRC07TC) model. In terms of chemistry models, the CAMx has several 

algorithms for particulate matters and mercury, including inorganic aqueous chemistry 

(RADM-AQ), inorganic gas-aerosol partitioning (ISORROPIA or EQSAM), and organic gas-

aerosol partitioning and oxidation (SOAP or VBS). The user can also use their chemistry model 

to the CAMx.   

Table 9.5: The performance of each ML model in comparison to TCEQ’s 2012 base case ozone 
on CAMx.  

Model  RMSE MAE R
2
 FB FE MNB MNE 

TCEQ 2012 

base case + 

CAMx [82] 

11.87 9.513 0.626 8.32% 33.15% 44% 63.99% 

ANN 9.803 7.672 0.734 14.43% 26.62% 34.87% 45.60% 

kNN 9.641 7.364 0.722 7.32% 25.21% 23.64% 38.93% 

RF 8.38 6.200 0.801 11.06% 21.94% 23.81% 33.39% 

SVM 8.882 6.867 0.686 10.281% 26.784% 6.077% 97.991% 

 
The CAMx simulation run, performed by the TCEQ, using their 4-km grid 2012 ozone 

scenario base case on a testing period from May 1, 2012, to September 31, 2012 [82], was 

treated as a benchmark for the ML models. The four ML models were trained using 3,000 

randomized samples from the training dataset, with the sample from the testing period 

removed. The ML model’s performance in comparison to the CAMx is available in Table 9.5. 

The ozone concentration predicted by all four ML models has smaller errors and higher R2-

values than the CAMx. The CAMx predictions have a mean error of 2.277 ± 11.652 ppb, which 
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was more significant in magnitude than all four ML models. The mean error for ANN, kNN, 

RF, and SVM were -0.389 ± 8.874 ppb, -2.04 ± 10.942 ppb, -0.065 ± 9.573 ppb, and -0.894 ± 

9.542 ppb, respectively. The CAMx model over-predicted the ozone concentrations, whereas 

all four ML models had under-predicted. RF was the ML model with the best performance in 

terms of RMSE, MAE, and R2-value, followed by SVM, kNN, and finally, ANN. However, 

the FB, MNB, and NME of the RF’s predicted ozone concentrations were higher than the 

SVM’s. Since the SVM had a lower bias, this meant the SVM had a lower tendency to under- 

or over-estimate predicted values compared to the RF. The ANN model had the worst 

performance among the four ML models. The ANN algorithm tends to overfit and considers 

noises as part of the pattern. It also tends to converge on the local minima rather than the global 

minima, which leads to higher bias and errors [80]. 

Figure 9.7 shows the measured ozone concentration versus the values predicted by the 

CAMx and the four ML models. The daily averaged values of the measured and predicted 

ozone concentrations are available in Figure 9.8. The values predicted by all four ML models 

were closer to the measured values than the values predicted by the CAMx. However, the 

CAMx model had a lower error during the period between August 28 and September 3. The 

error residuals of the ML models for the entire May 1 – September 31 run and the error residuals 

from during August 28 – September 3 are shown in Figure 9.9. The ANN and kNN models 

tend to slightly over-predict the May 1 – September 31 training dataset, whereas the RF and 

SVM models tend to slightly under-predicts. However, all four models severely overpredict 

the ozone concentration on the August 28 – September 3 testing dataset. The mean 

concentration of NOx and the mean relative humidity measured during the August 28 – 

September 3 period were about 19% lower than the August 28 – September 3 period. Ozone 

generation should be higher when the relative humidity is lowered [175], but a decrease in NOx 

would lead to a decrease in the ozone concentration [42]. Since relative humidity was a more 
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critical variable than NOx concentration (Table 9.3), the ML models may have had a bias on 

the drop in relative humidity and over-predict the ozone concentration.  

 

Figure 9.7: Observed versus predicted ozone concentration (ppb) using the TCEQ photochemical 
model and ML models. 
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Figure 9.8: Daily averaged observed versus predicted ozone concentration (ppb) using the TCEQ 
photochemical model and ML models. 
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Figure 9.9:  Error residuals for ANN, kNN, RF, and SVM of the May 1 to September 31, 2012, 
and the August 28 and September 3, 2012, testing dataset. 

 

9.5 Testing the ML Models for Various Locations 

The ANN, kNN, RF, and SVM models were used to predict the ozone concentrations 

using an hourly-updated dataset collected from Eagle Mountain Lake (EML) and Dallas Hinton 

(DAL) and sixth-day daily average data collected from FWNW (FWNW-CAN) and Denton 

Airport South (DEN). Table 9.6 shows a summary of the four testing datasets, which were 

collected during 2018 at EML, DAL, FWNW-CAN, and DEN, respectively. Among the four 

testing datasets, EML was the most similar to the training dataset (Table 9.1) in terms of ozone, 

alkane, diene, and meteorological conditions. The training dataset had a significantly higher 

concentration of the anthropogenic species (alkene, alkyne, aromatics, and NOx) compared to 

all four testing datasets as a result of the reduction in anthropogenic emissions throughout the 

United States. While FWNW-CAN was collected at the same location as the training dataset, 

it is significantly augmented. FWNW-CAN and DEN served as a test to identify whether the 

ML models can retain their accuracy when faced with extremely aggregated data. 



 

 123 

Table 9.6: Summary of the EML, DAL, FWNW-CAN, and DEN datasets collected. 

 Variables Mean Median Min-Max IQR 

E
ag

le
 M

ou
nt

ai
n 

L
ak

e 

Ozone (ppb) 28.661 ± 0.213 26.95 -0.43 - 100.27 18.22 - 37.9 

Alkane (ppb-C) 71.493 ± 1.239 43.72 4.34 - 1274.28 23.2 - 82.4 

Alkene (ppb-C) 1.456 ± 0.0168 1.08 0.14 - 13.38 0.74 - 1.73 

Alkyne (ppb-C) 0.359 ± 0.004 0.29 0 - 2.86 0.14 - 0.48 

Aromatics (ppb-C) 2.628 ± 0.026 1.63 0.2 - 16.46 1 - 2.59 

Diene (ppb-C) 0.486 ± 0.011 0.21 0 - 9.02 0.01 - 0.71 

NOx (ppb) 5.843 ± 0.098 3.52 0.13 - 80.94 1.95 - 6.43 

Relative humidity (%) 61.47 ± 0.290 62.21 14.78 - 96.57 45.06 - 78.33 

Wind speed (Mph) 8.568 ± 0.060 8.04 0.08 - 26.22 5.67 - 11.3 

Outdoor temperature (oF) 69.35 ± 0.266 73.71 17.12 - 108.57 55.63 - 83.79 

D
al

la
s 

H
in

to
n 

Ozone (ppb) 30.318 ± 0.176 29.835 -0.473 - 95.759 18.665 - 40.622 

Alkane (ppb-C) 38.98 ± 0.441 28.15 5.63 - 945.35 18.46 - 44.78 

Alkene (ppb-C) 2.531 ± 0.0263 1.919 0.376 - 56.099 1.397 - 2.826 

Alkyne (ppb-C) 0.622 ± 0.005 0.517 0.036 - 12.123 0.335 - 0.744 

Aromatics (ppb-C) 7.379 ± 0.091 4.893 0.394 - 189.625 2.818 - 8.678 

Diene (ppb-C) 0.899 ± 0.015 0.277 0 - 13.808 0.107 - 1.003 

NOx (ppb) 9.364 ± 0.133 5.734 -2.069 - 201.336 3.559 - 10.31 

Relative humidity (%) 58.86 ± 0.202 58.77 11.92 - 95.94 44.75 - 73.75 

Wind speed (Mph) 5.408 ± 0.027 5.193 0.035 - 17.482 3.536 - 6.979 

Outdoor temperature (oF) 75.63 ± 0.149 77.78 16.95 - 103.35 67.31 - 85.67 

F
W

N
W

 -
 C

an
is

te
r 

Ozone (ppb) 37.34 ± 1.267 37.82 16.87 - 53.01 30.8 - 44.32 

Alkane (ppb-C) 65.9 ± 6.657 50.59 18.73 - 259.95 33.91 - 80.32 

Alkene (ppb-C) 2.72 ± 0.296 2.2 0.1 - 9.3 1.27 - 3.37 

Alkyne (ppb-C) 1.323 ± 0.116 1.2 0 - 3.12 1.04 - 1.76 

Aromatics (ppb-C) 4.22 ± 0.36 3.54 1.29 - 13.66 2.29 - 5.07 

Diene (ppb-C) 0.415 ± 0.046 0.31 0 – 1.5 0.15 – 0.55 

NOx (ppb) 11.43 ± 1.451 7.66 1.02 - 51.26 4.6 - 14.54 

Relative humidity (%) 55.71 ± 0.381 54.89 24.53 - 80.84 47.72 - 64.74 

Wind speed (Mph) 7.44 ± 1.734 6.75 3.03 - 14.7 5.51 - 9.37 

Outdoor temperature (oF) 68.77 ± 2.059 69.54 25.61 - 90.03 60.58 - 80.41 

 

Ozone (ppb) 39.11 ± 1.91 40.83 18.41 - 86.65 29.29 - 49.37 

Alkane (ppb-C) 55.84 ± 21.42 117.88 12.16 - 889.23 33.04 - 113.67 

Alkene (ppb-C) 1.08 ± 0.124 0.9409 0 - 3.28 0.02 - 1.61 

Alkyne (ppb-C) 1.16 ± 0.078 1.04 0 - 2.02 1.02 - 1.32 

(table continues) 
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 Variables Mean Median Min-Max IQR 
D

en
to

n 
A

ir
po

rt
 S

ou
th

 Aromatics (ppb-C) 2.15 ± 0.238 2.462 0.08 - 9.89 1.29 - 2.87 

Diene (ppb-C) 0.39 ± .036 0.35 0 - 1.1 0.195 - 0.45 

NOx (ppb) 6.4 ± 0.516 7.125 1.01 - 17.81 4.511 - 8.854 

Relative humidity (%) 61.95 ± 1.837 61.85 33.81 - 94.28 50.4 - 71.12 

Wind speed (Mph) 6.71 ± 0.486 7.602 2.966 - 17.923 4.86 - 9.819 

Outdoor temperature (oF) 62.19 ± 2.303 64.32 21.45 - 95.64 51.87 - 80.01 

 
Table 9.7 shows the performance statistic of the four ML models on the EML, DAL, 

FWNW-CAN, and DEN testing dataset. The ML models retained significant performance 

predicting ozone concentrations using the EML and FWNW-CAN dataset. The RF was the 

best performing model on the EML and DEN dataset, whereas kNN had the highest accuracy 

on the DAL and FWNW-CAN dataset. The SVM was consistently one of the worst-performing 

models. The support vector and hyperplane constructed by the SVM may have only fit 

FWNW’s characteristics and are inflexible. Compared to the average performance of the four 

ML models on validating data, the RMSE and R2-value of the RF model on the EML dataset 

was only weaker by 1.36% and 5.05%, respectively. The MAE of the RF model using the EML 

dataset was 0.12% smaller than the average MAE of the four ML models on the validating 

data. The RMSE and MAE of the RF model on FWNW-CAN data was 18.52% and 13.54% 

smaller than the validating dataset’s average. However, the R2-value between predicted and 

measured FWNW-CAN ozone concentrations was 12.39% weaker than the validating dataset. 

The smaller sample size of the FWNW-CAN dataset likely contributed to smaller RMSE and 

MAE. When used on the DAL dataset, there was at least a 20.48% increase in RMSE, a 21.05% 

increase in MAE, and a 10.98% decrease in R2-value. TNMOC concentrations at DAL was 

about half of that at FWNW, despite only a 7-ppb difference in ozone concentration; the slight 

difference in ozone generation regime at both sites, as discussed in Chapter 6.4, had likely 

caused the errors. The performance of the ML models was significantly weaker when tested on 

the DEN dataset, where RMSE, MAE, and R2-values were 98.34%, 109.54%, and 27.45%, 
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respectively. There was also a heavy negative bias when predicting ozone concentrations at 

DEN, which indicates significant under-prediction. 

Table 9.7: Performance of the ANN, kNN, RF, and SVM models on the EML, DAL, FWNW-
CAN, and DEN testing datasets. 

   RMSE MAE R2 FB FE MNB MNE 

EML 

ANN 8.164 6.245 0.698 7.948% 27.394% 31.668% 51.872% 

kNN 8.501 6.462 0.674 5.252% 28.012% 24.642% 45.724% 

RF 7.706 5.804 0.734 8.056% 25.363% 27.351% 45.324% 

SVM 8.733 6.544 0.676 -2.202% 28.04% 13.284% 41.159% 

DAL 

ANN 11.484 8.658 0.512 6.45% 36.298% 37.468% 91.029% 

kNN 9.160 7.035 0.688 14.209% 30.874% 44.29% 82.073% 

RF 9.451 7.295 0.668 14.515% 31.294% 44.641% 76.146% 

SVM 11.599 8.563 0.502 7.357% 34.255% 26.611% 73.279% 

FWNW-
CAN 

ANN 6.647 5.143 0.658 -2.572% 19.046% 0.742% 17.892% 

kNN 6.195 5.024 0.677 -3.411% 19.051% -0.486% 18.152% 

RF 6.701 5.283 0.624 -2.171% 19.495% 1.086% 18.602% 

SVM 6.822 5.438 0.571 -0.086% 19.388% 2.861% 18.993% 

DEN 

ANN 15.856 12.821 0.538 -37.13% 37.685% -29.36% 29.935% 

kNN 20.178 15.848 0.239 -49.42% 50.332% -35.36% 36.348% 

RF 15.079 12.178 0.561 -33.30% 34.506% -26.59% 27.837% 

SVM 18.235 15.038 0.445 -44.77% 45.115% -34.21% 34.571% 

 
Figure 9.10 shows the error residual of each ML model for each of the four testing 

datasets. The EML, DAL, and FWNW-CAN error residuals have the highest frequency at zero. 

However, there were higher frequencies of negative error residuals compared to positive ones, 

which indicate all four ML models have a higher tendency to under-predict ozone 

concentrations. NOx is one of the most critical variables (Table 9.3); the lower NOx 

concentration in 2018 may have caused the models to underpredict ozone concentrations. All 

four ML models appeared to have significantly underpredicted ozone concentration at DEN as 

the error residuals produced were almost entirely negative. All four ML models severely under-

predicted the measured ozone concentration at DEN. This was likely due to FWNW and DEN 

not being in a similar ozone production regime. At FWNW, ozone production is highly 
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dependent on the photochemical reactions between NOx and fast-reactive TNMOC species. 

However, the slow-reactive TNMOC species plays a significant role in the ozone productions 

at DEN (Chapter 6.4.1). Since the production of ozone is dependent upon different variables 

under different ozone production regimes, the FWNW training dataset was unable to produce 

an accurate model for predicting ozone concentrations at DEN. 

 

Figure 9.10: Error residual of the ozone concentration prediction using the ANN, kNN, RF, and 
SVM models using EML, DAL, FWNW-CAN, and DEN testing dataset.  
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9.6 Summary Findings 

Ozone formation in the atmosphere is a heavily non-linear process and is influenced by 

multiple factors including physical and chemical conditions of the atmosphere. In this chapter, 

we attempt to develop predictive tools for ozone using statistical and heuristic techniques.  

Compared to an MLR approach, the ANN, kNN, RF, and SVM algorithms were able to produce 

better models that could make predictions with an R2-value of up to 79.6% when compared to 

the measured values. The CaRT was not a suitable algorithm for ozone concentration prediction 

due to a lack of data smoothness and high variance. The SVM was the best performing model 

when used to predict future ozone concentration. The SVM is significantly more robust 

compared to the ANN when the training dataset is large and has many variables, which makes 

the SVM much more suitable for air pollution concentration prediction than ANN. However, 

the performance of the SVM significantly drops when used to predict ozone concentration at 

different locations, whereas the RF was the best performing location-dependent model. The RF 

aggregates the prediction made by numerous individual decision trees, which makes it less 

sensitive to outliers and the size of the dataset. The error and bias of the ML models were lower 

than that of the discrete gridded photochemical model (CAMx) using TCEQ’s base case of 

high ozone season simulation. However, the ML models were not able to simulate the effects 

of long-range transport in contrast to the CAMx model simulations. When tested using datasets 

collected from the EML monitoring station, the decreased in performance was insignificant. In 

the case of the FWNW-CAN dataset, the ML models were also able to retain most of its 

predictive accuracies even when the testing data were significantly aggregated. The difference 

in the ozone generation regime had a significant impact on the ML model’s predictive 

accuracies. Training a separate ML model with data from each of the ozone production regime 

may be a potential fix to this weakness. In the future, more variables with domain knowledge, 



 

 128 

such as mixing-level height, terrain data, and land cover, should be included in the dataset, as 

these factors should significantly improve the predictive accuracies of the ML model. 
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CHAPTER 10 

CONCLUSION AND RECOMMENDATIONS 

10.1 Conclusion 

The unconventional shale gas emissions from the Barnett Shale in North Texas has 

directly affected the measured ambient air quality in the Dallas-Fort Worth (DFW) metroplex 

region. Despite a significant decrease in conventional urban emissions, as observed in the 

decline in oxides of nitrogen (NOx) and carbon monoxide (CO) concentrations, the region still 

consistently failed to attain the National Ambient Air Quality Standards (NAAQS) for ozone. 

Denton Airport South (DEN) is an exurban monitoring site in Denton county located in North 

Texas. The ozone and total non-methane organic carbon (TNMOC) concentrations measured 

at DEN were higher than at the Dallas Hinton (DAL) and Fort Worth Northwest (FWNW) 

sites, located within highly urbanized regions of Dallas and Tarrant counties, respectively. 

TNMOC concentrations at DEN (220.69 ± 10.36 ppb-C) was at least twice as large as those 

measured at DAL (67.4 ± 1.51 ppb-C) and FWNW (89.31 ± 2.12 ppb-C). The large pool of 

TNMOC concentration found in the ambient was a major contributor to local and regional 

ozone levels. The disproportionately larger concentration of TNMOC measured in DEN in 

comparison to the urban sites, as well as the continued decline in NOx and CO concentrations 

across all sites, leads to the conclusion that unconventional emission sources were mainly 

responsible for the region’s inability to comply with the ozone NAAQS.     

Using positive matrix factorization (PMF), a factor-based source apportionment 

analysis tool, natural gas was identified as the dominant contributor to the measured TNMOC 

concentration across all three sites. The TNMOC concentration at DAL was made up of natural 

gas (32%), solvent (27%), fuel evaporative (18%), vehicle exhaust (15%), and refrigerant (8%). 

At FWNW, the source factors included natural gas (40%), solvent (18%), fuel evaporative 

(13%), vehicle exhaust (13%), diesel (9%), and refrigerant (8%). Emissions from natural gas 
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(69%) were significantly more at DEN than compared to the other emission sources, including 

refrigerant (10%), vehicle exhaust (9%), solvent (7%), and fuel evaporative (6%). Furthermore, 

the sources of natural gas emissions were from highly localized shale gas wells in close 

proximity to the monitoring sites. The current emissions inventory (EI) showed a consistent 

decline in countywide emissions of volatile organic compounds (VOC) across the study region, 

however, this was not reflected in the measured TNMOC concentrations. We suggest that the 

current EI severely underestimates the impact of localized unconventional emission sources, 

such as shale gas emissions. The unconventional TNMOC emissions from the Barnett Shale 

also affected the measured ozone concentration across the DFW region. While the majority of 

measured TNMOC at DEN were slow-reacting n-alkane species, the ozone formation potential 

(OFP) of TNMOC at DEN was estimated to be higher than DAL and FWNW. Unlike DEN, 

the OFP of the measured TNMOC at DAL and FWNW were from reactive species such as 

alkenes and aromatics typically associated with traffic and other combustion-related sources. 

While the alkane species observed in the study region were predominantly from 

unconventional shale gas sources.  These typically have lower reactivity in the formation of 

ozone than the hydrocarbon species from conventional sources, however their abundance in 

the ambient has led to higher ozone formation across the region. 

While the air pollutant trends and characteristics of an urban airshed can be determined 

using long-term ambient air quality measurements, however this was difficult in regions with 

sparse air quality monitoring.  An air pollutant predicting model was built using machine 

learning (ML) algorithms and historic air quality data to overcome the lack of air quality data 

in remote regions. Using long-term air quality data collected from the FWNW monitoring 

station, various ML regression algorithms were used to train a computer cluster to predict ozone 

concentration. Based on the results, the Classification and Regression Tree (CaRT) algorithm 

was not good at predicting air pollution concentrations due to its binary nature and higher 
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variance. The Random Forest (RF) algorithm produced the best performing model whereas the 

models implementing the Artificial Neural Network (ANN), k-th Nearest Neighbor (kNN), and 

Support Vector Machine (SVM) algorithms have comparable performance that were able to 

generate predictions with an average R2-value of 0.771 to the measured values. These four ML 

models were also able to generate a prediction with smaller margins of error when compared 

with the model-predicted results from a discrete photochemical modeling system (CAMx) 

running TCEQ’s 4-km 2012 base case ozone scenario. The models were tested against 

measurements from several monitoring stations and their performance were satisfactory when 

the emissions characteristics of the tested sites were similar to FWNW. However, when tested 

against severely aggregated datasets or sites with massively different emission characteristics, 

the accuracy of the model dropped significantly. In its current iteration, the ozone production 

regime of the tested dataset plays an important role in the model’s prediction performance. 

Further analysis is required to develop a robust ozone prediction tool for the region. 

10.2 Recommendations 

Based on the findings of this dissertation, we recommend additional analysis and 

studies needed for the study region.  Some initial recommendations include the following – 

• Increase the number of air quality monitoring stations with hourly updated Auto-

GC monitors throughout the region to improve the spatial and temporal texture of ambient air 

quality data.  The deployment of a system of robust low-cost sensors across the DFW region 

can also aid in mitigating the spatial disparity in air quality data.   

• A comprehensive local and regional scale EI should be developed to account for 

unconventional sources of air emission including those from shale gas activities. These 

unconventional emission sources had a severe impact on local and regional air pollutant 

concentrations.  By not accounting for these unconventional sources may have harmed the 

region’s ability to achieve ozone attainment designation.  
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• Since ozone production regimes were a significant factor in the ML model’s 

prediction, building separate models for each regime may overcome this weakness. Future 

studies should incorporate more variables with domain-specific knowledge, such as mixing-

level heights, terrain data, and land cover, to improve the accuracy of the ML model. 

• Exploring new artificial intelligence or deep learning approach may be an 

improvement over the application of ML algorithms. ML algorithms that incorporate physics, 

instead of just a black box, are considered state-of-the-art. The implications of these ML 

models incorporating physical and chemical governing equations should also be studied in the 

future.  
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APPENDIX A 

SUPPLEMENTAL FIGURES



Figure A1 - The wind rose diagrams for Dallas Hinton, Fort Worth Northwest, and Denton Airport South. 
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Figure A2 - Annual trend of ozone formation potential (OFP) by hydrocarbon groups.

135



Figure A3 - Correlation between TNMOC and NOx concentration at Dallas Hinton. 

*Red slope line: High ozone days (daily max 8-hour O3 > 70 ppb.); Blue slope line: Daily max 8-hour O3 < 70 ppb.
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Figure A4 - Correlation between TNMOC and NOx concentration at Fort Worth Northwest. 

*Red slope line: High ozone days (daily max 8-hour O3 > 70 ppb.); Blue slope line: Daily max 8-hour O3 < 70 ppb.
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Figure A5 - Correlation between TNMOC and NOx concentration at Denton Airport South. 

*Red slope line: High ozone days (daily max 8-hour O3 > 70 ppb.); Blue slope line: Daily max 8-hour O3 < 70 ppb.
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Figure A6 - Annual location of natural gas wells overlaid with total production volume contour at Denton Airport South. 
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Figure A7 - Annual location of liquid condensate facilities overlaid with total production volume contour at Denton Airport South. 
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Figure A8 - Annual bivariate polar plot for measured ethane concentration [ppb-C] at Denton Airport South. 

141



Figure A9 - Production volume of natural gas (MMBtu) within 15 km of the monitoring station. 
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APPENDIX B 

SUPPLEMENTAL TABLES



Table B1 - Mean, median (Med), standard error (SE), and total available data points (N) for canister TNMOC species (ppb-C) at Dallas Hinton, 

Fort Worth Northwest, and Denton Airport South. 

Dallas Hinton Fort Worth Northwest Denton Airport South 

TNMOC Species Mean Med SE N Mean Med SE N Mean Med SE N 

1-Butene 1.024 0.720 0.033 886 (83%) 1.093 0.960 0.025 778 (87%) 0.519 0.400 0.015 700 (65%) 

1-Hexene & 2-Methyl-1-Pentene 0.150 0.120 0.012 83 (8%) 0.173 0.120 0.011 126 (14%) 0.109 0.060 0.016 51 (5%) 

1-Pentene 0.287 0.200 0.021 160 (15%) 0.255 0.200 0.018 120 (13%) 0.198 0.100 0.027 94 (9%) 

1,1-Dichloroethane 0.022 0.020 0.002 11 (1%) 0.020 0.020 0.000 9 (1%) 0.026 0.020 0.006 7 (1%) 

1,1-Dichloroethylene 0.045 0.020 0.004 113 (11%) 0.043 0.020 0.003 120 (13%) 0.046 0.020 0.003 105 (10%) 

1,1,2-Trichloroethane 0.040 0.020 0.020 8 (1%) 0.025 0.020 0.005 4 (0%) 0.024 0.020 0.004 10 (1%) 

1,1,2,2-Tetrachloroethane 0.023 0.020 0.003 23 (2%) 0.022 0.020 0.001 19 (2%) 0.025 0.020 0.003 30 (3%) 

1,2-Dichloropropane 0.184 0.120 0.033 41 (4%) 0.238 0.150 0.042 42 (5%) 0.376 0.150 0.096 46 (4%) 

1,2,3-Trimethylbenzene 0.301 0.180 0.022 267 (25%) 0.204 0.180 0.010 277 (31%) 0.172 0.090 0.036 113 (10%) 

1,2,4-Trimethylbenzene 0.574 0.360 0.025 640 (60%) 0.492 0.360 0.019 571 (64%) 0.278 0.180 0.029 382 (35%) 

1,3-Butadiene 0.273 0.200 0.015 250 (23%) 0.244 0.200 0.012 208 (23%) 0.160 0.080 0.043 53 (5%) 

1,3,5-Trimethylbenzene 0.254 0.180 0.013 329 (31%) 0.172 0.090 0.007 327 (36%) 0.163 0.090 0.026 162 (15%) 

2-Chloropentane 0.083 0.050 0.021 12 (1%) 0.080 0.100 0.012 5 (1%) 0.080 0.075 0.011 10 (1%) 

2-Methyl-2-Butene 0.323 0.150 0.021 371 (35%) 0.337 0.250 0.017 438 (49%) 0.093 0.050 0.006 147 (14%) 

2-Methylheptane 0.174 0.160 0.006 457 (43%) 0.208 0.160 0.006 513 (57%) 0.939 0.400 0.131 576 (53%) 

2-Methylhexane 0.739 0.560 0.047 565 (53%) 0.724 0.630 0.021 532 (59%) 2.245 1.120 0.182 657 (61%) 

2-Methylpentane 1.041 0.780 0.029 932 (87%) 1.254 1.020 0.031 825 (92%) 3.631 1.530 0.239 926 (85%) 

2,2-Dimethylbutane 0.179 0.120 0.007 372 (35%) 0.217 0.180 0.007 411 (46%) 0.593 0.360 0.033 514 (47%) 

2,2,4-Trimethylpentane 0.823 0.640 0.023 945 (88%) 1.085 0.880 0.026 833 (93%) 1.573 0.720 0.074 889 (82%) 

2,3-Dimethylbutane 0.285 0.240 0.011 450 (42%) 0.370 0.300 0.011 497 (55%) 0.748 0.420 0.043 556 (51%) 

2,3-Dimethylpentane 0.332 0.210 0.025 378 (35%) 0.331 0.280 0.010 423 (47%) 0.975 0.630 0.057 474 (44%) 

2,3,4-Trimethylpentane 0.325 0.240 0.012 682 (64%) 0.410 0.320 0.011 693 (77%) 0.653 0.320 0.032 707 (65%) 

2,4-Dimethylpentane 0.169 0.140 0.007 446 (42%) 0.206 0.140 0.006 492 (55%) 0.500 0.280 0.031 590 (54%) 

3-Methyl-1-Butene 0.088 0.050 0.005 155 (14%) 0.100 0.050 0.006 200 (22%) 0.069 0.050 0.005 51 (5%) 

3-Methylheptane 0.184 0.160 0.008 415 (39%) 0.213 0.160 0.008 475 (53%) 0.690 0.320 0.080 541 (50%) 
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Table B1 - Continued. 

Dallas Hinton Fort Worth Northwest Denton Airport South 

TNMOC Species Mean Med SE N Mean Med SE N Mean Med SE N 

3-Methylhexane 0.717 0.490 0.040 787 (73%) 0.663 0.560 0.016 731 (82%) 1.656 0.770 0.128 785 (72%) 

3-Methylpentane 0.706 0.540 0.018 981 (92%) 0.862 0.660 0.021 853 (95%) 2.019 0.840 0.132 958 (88%) 

4-Methyl-1-Pentene 0.083 0.060 0.016 8 (1%) 0.073 0.060 0.009 9 (1%) 0.100 0.090 0.020 6 (1%) 

Acetylene 2.223 1.580 0.070 946 (88%) 1.762 1.440 0.043 803 (90%) 1.173 1.060 0.027 852 (79%) 

Benzene 1.534 1.320 0.028 1004 (94%) 1.475 1.320 0.025 842 (94%) 1.389 1.140 0.041 1014 (93%) 

Bromomethane 0.017 0.010 0.001 286 (27%) 0.021 0.010 0.003 305 (34%) 0.017 0.010 0.001 313 (29%) 

Carbon Tetrachloride 0.094 0.100 0.001 1016 (95%) 0.097 0.100 0.001 863 (96%) 0.095 0.100 0.001 1010 (93%) 

Chlorobenzene 0.078 0.060 0.006 48 (4%) 0.074 0.060 0.004 55 (6%) 0.085 0.060 0.007 68 (6%) 

Chloroform 0.024 0.020 0.000 693 (65%) 0.018 0.020 0.000 605 (68%) 0.020 0.020 0.001 512 (47%) 

Chloromethane 0.596 0.580 0.004 900 (84%) 0.598 0.590 0.003 896 (100%) 0.595 0.580 0.004 901 (83%) 

cis-1,3-Dichloropropene 0.083 0.030 0.023 16 (1%) 0.077 0.030 0.018 20 (2%) 0.252 0.030 0.119 15 (1%) 

cis-2-Butene 0.148 0.080 0.011 247 (23%) 0.164 0.120 0.009 308 (34%) 0.076 0.040 0.011 66 (6%) 

cis-2-Hexene 0.074 0.060 0.005 29 (3%) 0.075 0.060 0.007 40 (4%) 0.080 0.060 0.009 12 (1%) 

cis-2-Pentene 0.160 0.100 0.013 186 (17%) 0.167 0.100 0.010 268 (30%) 0.069 0.050 0.006 52 (5%) 

Cyclohexane 0.430 0.360 0.017 350 (33%) 0.557 0.480 0.018 412 (46%) 2.011 1.080 0.143 590 (54%) 

Cyclopentane 0.179 0.150 0.006 405 (38%) 0.224 0.200 0.006 457 (51%) 0.349 0.250 0.019 460 (42%) 

Cyclopentene 0.085 0.050 0.010 44 (4%) 0.078 0.050 0.007 72 (8%) 0.056 0.050 0.004 18 (2%) 

Dichlorodifluoromethane 0.512 0.510 0.002 900 (84%) 0.518 0.520 0.002 896 (100%) 0.514 0.520 0.002 901 (83%) 

Dichloromethane 0.124 0.100 0.005 874 (82%) 0.083 0.070 0.003 725 (81%) 0.094 0.060 0.008 755 (70%) 

Ethane 15.35 12.01 0.391 1072 (100%) 28.145 20.610 0.881 896 (100%) 79.767 31.230 3.896 1084 (100%) 

Ethylbenzene 0.699 0.560 0.018 867 (81%) 0.516 0.400 0.014 676 (75%) 0.305 0.240 0.010 669 (62%) 

Ethylene 2.541 1.900 0.063 1041 (97%) 2.297 1.910 0.050 862 (96%) 1.376 1.210 0.031 942 (87%) 

Ethylene Dibromide 0.050 0.020 0.015 21 (2%) 0.037 0.020 0.008 19 (2%) 0.040 0.020 0.009 34 (3%) 

Ethylene Dichloride 0.031 0.020 0.001 294 (27%) 0.034 0.040 0.001 277 (31%) 0.034 0.040 0.001 271 (25%) 

Isobutane 3.305 2.480 0.087 1067 (100%) 4.357 3.240 0.201 895 (100%) 14.787 6.280 0.738 1079 (99%) 

Isopentane 4.302 3.200 0.112 1055 (98%) 5.328 4.250 0.129 895 (100%) 11.798 5.200 0.580 1057 (97%) 
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Table B1 - Continued. 

Dallas Hinton Fort Worth Northwest Denton Airport South 

TNMOC Species Mean Med SE N Mean Med SE N Mean Med SE N 

Isoprene 1.013 0.750 0.036 629 (59%) 0.476 0.350 0.019 472 (53%) 0.523 0.400 0.026 351 (32%) 

Isopropylbenzene 0.140 0.090 0.005 270 (25%) 0.121 0.090 0.004 224 (25%) 0.119 0.090 0.007 142 (13%) 

m-Diethylbenzene 0.290 0.100 0.062 51 (5%) 0.275 0.100 0.055 32 (4%) 0.232 0.150 0.035 22 (2%) 

m-Ethyltoluene 0.464 0.270 0.020 654 (61%) 0.354 0.270 0.014 534 (60%) 0.221 0.090 0.032 271 (25%) 

m/p Xylene 1.738 1.360 0.047 1027 (96%) 1.112 0.880 0.030 857 (96%) 0.891 0.560 0.047 897 (83%) 

Methyl Chloroform 0.028 0.020 0.001 313 (29%) 0.027 0.020 0.001 307 (34%) 0.029 0.020 0.001 307 (28%) 

Methylcyclohexane 0.370 0.280 0.016 562 (52%) 0.440 0.350 0.014 571 (64%) 2.035 0.910 0.182 728 (67%) 

Methylcyclopentane 0.443 0.360 0.013 725 (68%) 0.539 0.420 0.014 708 (79%) 1.115 0.480 0.174 748 (69%) 

n-Butane 7.110 4.680 0.204 1069 (100%) 9.107 6.460 0.256 896 (100%) 24.117 10.520 1.185 1082 (100%) 

n-Decane 0.529 0.300 0.037 423 (39%) 0.301 0.200 0.015 340 (38%) 0.410 0.200 0.052 307 (28%) 

n-Heptane 0.513 0.420 0.020 756 (71%) 0.597 0.490 0.015 741 (83%) 2.324 0.910 0.236 812 (75%) 

n-Hexane 0.985 0.780 0.025 909 (85%) 1.251 1.020 0.031 808 (90%) 5.068 1.680 0.651 915 (84%) 

n-Nonane 0.555 0.360 0.046 318 (30%) 0.490 0.360 0.027 241 (27%) 0.739 0.360 0.081 332 (31%) 

n-Octane 0.281 0.240 0.010 536 (50%) 0.304 0.240 0.010 566 (63%) 1.175 0.480 0.159 633 (58%) 

n-Pentane 2.294 1.750 0.059 871 (81%) 3.053 2.450 0.076 838 (94%) 10.455 3.800 0.654 931 (86%) 

n-Propylbenzene 0.222 0.180 0.010 511 (48%) 0.164 0.090 0.006 402 (45%) 0.159 0.090 0.018 211 (19%) 

n-Undecane 0.381 0.220 0.026 302 (28%) 0.338 0.220 0.026 322 (36%) 0.312 0.220 0.026 279 (26%) 

o-Ethyltoluene 0.254 0.180 0.013 355 (33%) 0.181 0.180 0.007 299 (33%) 0.161 0.090 0.030 119 (11%) 

o-Xylene 0.618 0.480 0.017 889 (83%) 0.411 0.320 0.012 735 (82%) 0.274 0.160 0.013 703 (65%) 

p-Diethylbenzene 0.237 0.100 0.026 163 (15%) 0.229 0.100 0.026 103 (11%) 0.236 0.100 0.030 67 (6%) 

p-Ethyltoluene 0.269 0.180 0.012 498 (46%) 0.186 0.180 0.006 441 (49%) 0.171 0.090 0.019 205 (19%) 

Propane 12.05 9.090 0.286 1071 (100%) 16.437 12.420 0.452 896 (100%) 50.366 21.780 2.342 1085 (100%) 

Propylene 1.590 1.200 0.047 765 (71%) 1.366 1.080 0.036 610 (68%) 0.926 0.720 0.048 599 (55%) 

Styrene 0.187 0.080 0.011 305 (28%) 0.158 0.080 0.008 347 (39%) 0.125 0.080 0.012 139 (13%) 

Tetrachloroethylene 0.052 0.040 0.002 635 (59%) 0.035 0.020 0.001 491 (55%) 0.035 0.020 0.005 449 (41%) 

Toluene 2.782 1.960 0.081 1067 (100%) 2.443 1.820 0.108 891 (99%) 2.452 1.400 0.343 1070 (99%) 
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Table B1 - Continued. 

Dallas Hinton Fort Worth Northwest Denton Airport South 

TNMOC Species Mean Med SE N Mean Med SE N Mean Med SE N 

trans-1,3-Dichloropropene 0.057 0.030 0.021 10 (1%) 0.041 0.030 0.007 17 (2%) 0.049 0.030 0.013 14 (1%) 

trans-2-Butene 0.243 0.120 0.021 171 (16%) 0.230 0.160 0.015 224 (25%) 0.131 0.080 0.018 63 (6%) 

trans-2-Hexene 0.100 0.060 0.009 43 (4%) 0.095 0.060 0.007 67 (7%) 0.083 0.060 0.008 21 (2%) 

trans-2-Pentene 0.267 0.150 0.016 356 (33%) 0.284 0.200 0.015 381 (43%) 0.092 0.050 0.007 97 (9%) 

Trichloroethylene 0.041 0.020 0.003 238 (22%) 0.024 0.020 0.001 105 (12%) 0.073 0.020 0.046 67 (6%) 

Trichlorofluoromethane 0.259 0.250 0.001 1071 (100%) 0.260 0.260 0.001 896 (100%) 0.252 0.250 0.001 1083 (100%) 

Vinyl Chloride 0.024 0.020 0.003 14 (1%) 0.024 0.020 0.002 20 (2%) 0.025 0.020 0.003 19 (2%) 
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Table B2 - Denton Airport South TNMOC concentrations (ppb-C) mean, standard deviation 

(SD), minimum, maximum, the number of non-zero data (N), and percentage of non-zero 

data (%). 

Species Mean SD Min Max N % 
Ethane 79.77 128.26 0.50 1292.30 1084 99.91% 
Propane 50.37 77.15 0.96 714.27 1085 100% 
n-Butane 24.12 38.99 0.40 508.32 1082 99.72% 
Isobutane 14.79 24.24 0.16 285.24 1079 99.45% 
Isopentane 11.80 18.87 0.25 275.20 1057 97.42% 
n-Pentane 10.45 19.96 0.15 316.80 931 85.81% 
n-Hexane 5.07 19.70 0.06 514.56 915 84.33% 
2-Methylpentane 3.63 7.27 0.06 145.98 926 85.35% 
Toluene 2.45 11.22 0.21 353.92 1070 98.62% 
n-Heptane 2.32 6.73 0.07 162.96 812 74.84% 
2-Methylhexane 2.25 4.68 0.07 97.16 657 60.55% 
Methylcyclohexane 2.03 4.90 0.07 108.15 728 67.10% 
3-Methylpentane 2.02 4.09 0.06 85.02 958 88.29% 
Cyclohexane 2.01 3.46 0.06 66.00 590 54.38% 
3-Methylhexane 1.66 3.59 0.07 80.29 785 72.35% 
2,2,4-Trimethylpentane 1.57 2.20 0.08 20.96 889 81.94% 
Benzene 1.39 1.30 0.12 19.86 1014 93.46% 
Ethylene 1.38 0.94 0.06 18.54 942 86.82% 
n-Octane 1.17 4.00 0.08 89.20 633 58.34% 
Acetylene 1.17 0.80 0.24 12.90 852 78.53% 
Methylcyclopentane 1.11 4.76 0.06 122.34 748 68.94% 
2,3-Dimethylpentane 0.97 1.24 0.07 19.04 474 43.69% 
2-Methylheptane 0.94 3.14 0.08 68.00 576 53.09% 
Propylene 0.93 1.17 0.18 25.08 599 55.21% 
m/p Xylene 0.89 1.41 0.08 29.36 897 82.67% 
2,3-Dimethylbutane 0.75 1.03 0.06 15.42 556 51.24% 
n-Nonane 0.74 1.47 0.09 16.47 332 30.60% 
3-Methylheptane 0.69 1.87 0.08 37.36 541 49.86% 
2,3,4-Trimethylpentane 0.65 0.86 0.08 6.40 707 65.16% 
Chloromethane 0.59 0.11 0.29 1.20 901 83.04% 
2,2-Dimethylbutane 0.59 0.76 0.06 10.50 514 47.37% 
Isoprene 0.52 0.48 0.05 5.10 351 32.35% 
1-Butene 0.52 0.39 0.04 2.96 700 64.52% 
Dichlorodifluoromethane 0.51 0.06 0.20 0.77 901 83.04% 
2,4-Dimethylpentane 0.50 0.76 0.07 13.16 590 54.38% 
n-Decane 0.41 0.91 0.10 11.90 307 28.29% 
1,2-Dichloropropane 0.38 0.65 0.03 3.66 46 4.24% 
Cyclopentane 0.35 0.42 0.05 4.80 460 42.40% 
n-Undecane 0.31 0.44 0.11 3.96 279 25.71% 
Ethylbenzene 0.30 0.26 0.08 3.44 669 61.66% 
1,2,4-Trimethylbenzene 0.28 0.57 0.09 9.81 382 35.21% 
o-Xylene 0.27 0.34 0.08 4.00 703 64.79% 
cis-1,3-Dichloropropene 0.25 0.46 0.03 1.71 15 1.38% 
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Species Mean SD Min Max N % 
Trichlorofluoromethane 0.25 0.03 0.14 0.48 1083 99.82% 
p-Diethylbenzene 0.24 0.24 0.10 1.40 67 6.18% 
m-Diethylbenzene 0.23 0.16 0.10 0.70 22 2.03% 
m-Ethyltoluene 0.22 0.52 0.09 8.19 271 24.98% 
1-Pentene 0.20 0.26 0.05 1.65 94 8.66% 
1,2,3-Trimethylbenzene 0.17 0.38 0.09 4.05 113 10.41% 
p-Ethyltoluene 0.17 0.27 0.09 3.78 205 18.89% 
1,3,5-Trimethylbenzene 0.16 0.34 0.09 3.96 162 14.93% 
o-Ethyltoluene 0.16 0.33 0.09 3.60 119 10.97% 
1,3-Butadiene 0.16 0.31 0.04 2.28 53 4.88% 
n-Propylbenzene 0.16 0.26 0.09 3.51 211 19.45% 
trans-2-Butene 0.13 0.14 0.04 0.56 63 5.81% 
Styrene 0.13 0.14 0.08 1.36 139 12.81% 
Isopropylbenzene 0.12 0.09 0.09 0.99 142 13.09% 
1-Hexene & 2-Methyl-1-Pentene 0.11 0.11 0.06 0.66 51 4.70% 
4-Methyl-1-Pentene 0.10 0.05 0.06 0.18 6 0.55% 
Carbon Tetrachloride 0.09 0.02 0.01 0.42 1010 93.09% 
Dichloromethane 0.09 0.22 0.01 4.87 755 69.59% 
2-Methyl-2-Butene 0.09 0.08 0.05 0.55 147 13.55% 
trans-2-Pentene 0.09 0.07 0.05 0.40 97 8.94% 
Chlorobenzene 0.08 0.06 0.06 0.36 68 6.27% 
trans-2-Hexene 0.08 0.04 0.06 0.18 21 1.94% 
2-Chloropentane 0.08 0.03 0.05 0.15 10 0.92% 
cis-2-Hexene 0.08 0.03 0.06 0.12 12 1.11% 
cis-2-Butene 0.08 0.09 0.04 0.72 66 6.08% 
Trichloroethylene 0.07 0.38 0.02 3.12 67 6.18% 
cis-2-Pentene 0.07 0.04 0.05 0.25 52 4.79% 
3-Methyl-1-Butene 0.07 0.04 0.05 0.25 51 4.70% 
Cyclopentene 0.06 0.02 0.05 0.10 18 1.66% 
trans-1,3-Dichloropropene 0.05 0.05 0.03 0.21 14 1.29% 
1,1-Dichloroethylene 0.05 0.04 0.02 0.12 105 9.68% 
Ethylene Dibromide 0.04 0.05 0.02 0.24 34 3.13% 
Tetrachloroethylene 0.04 0.10 0.02 1.84 449 41.38% 
Ethylene Dichloride 0.03 0.02 0.02 0.34 271 24.98% 
Methyl Chloroform 0.03 0.02 0.02 0.12 307 28.29% 
1,1-Dichloroethane 0.03 0.02 0.02 0.06 7 0.65% 
1,1,2,2-Tetrachloroethane 0.03 0.02 0.02 0.10 30 2.76% 
Vinyl Chloride 0.03 0.01 0.02 0.08 19 1.75% 
1,1,2-Trichloroethane 0.02 0.01 0.02 0.06 10 0.92% 
Chloroform 0.02 0.02 0.01 0.41 512 47.19% 
Bromomethane 0.02 0.01 0.01 0.11 313 28.85% 

149



Table B3 - The mean (± standard deviation), minimum to maximum, and signal-to-noise (S/N) ratio of TNMOC [ppb-C]. 

Dallas Hinton Fort Worth Northwest Denton Airport South 

Species Mean (± SD) Min - Max S/N Mean (± SD) Min - Max S/N Mean (± SD) Min - Max S/N 

(1.) 1-Butene 1.024 (± 0.985) 0.08 - 8.56 1.546 1.093 (± 0.695) 0.08 - 5.2 2.361 0.519 (± 0.389) 0.04 - 2.96 0.933 

(2.) 1-Hexene & 2-Methyl-1-Pentene 0.15 (± 0.109) 0.06 - 0.48 0.003 0.173 (± 0.123) 0.06 - 0.96 0.018 0.109 (± 0.112) 0.06 - 0.66 0.000 

(3.) 1-Pentene 0.287 (± 0.264) 0.05 - 1.4 0.001 0.255 (± 0.202) 0.05 - 1.35 0.001 0.198 (± 0.264) 0.05 - 1.65 0.000 

(4.) 1,1-Dichloroethane 0.022 (± 0.006) 0.02 - 0.04 0.000 0.02 (± 0) 0.02 - 0.02 0.000 0.026 (± 0.015) 0.02 - 0.06 0.000 

(5.) 1,1-Dichloroethylene 0.045 (± 0.037) 0.02 - 0.16 0.000 0.043 (± 0.037) 0.02 - 0.16 0.000 0.046 (± 0.035) 0.02 - 0.12 0.000 

(6.) 1,1,2-Trichloroethane 0.04 (± 0.057) 0.02 - 0.18 0.000 0.025 (± 0.01) 0.02 - 0.04 0.000 0.024 (± 0.013) 0.02 - 0.06 0.000 

(7.) 1,1,2,2-Tetrachloroethane 0.023 (± 0.013) 0.02 - 0.08 0.000 0.022 (± 0.006) 0.02 - 0.04 0.000 0.025 (± 0.018) 0.02 - 0.1 0.000 

(8.) 1,2-Dichloropropane 0.184 (± 0.208) 0.03 - 0.87 0.009 0.238 (± 0.271) 0.03 - 1.29 0.015 0.376 (± 0.649) 0.03 - 3.66 0.022 

(9.) 1,2,3-Trimethylbenzene 0.301 (± 0.364) 0.09 - 4.23 0.226 0.204 (± 0.161) 0.09 - 1.08 0.207 0.172 (± 0.382) 0.09 - 4.05 0.028 

(10.) 1,2,4-Trimethylbenzene 0.574 (± 0.624) 0.09 - 5.67 0.383 0.492 (± 0.45) 0.09 - 4.32 0.388 0.278 (± 0.566) 0.09 - 9.81 0.032 

(11.) 1,3-Butadiene 0.273 (± 0.24) 0.04 - 1.32 0.045 0.244 (± 0.168) 0.04 - 1.04 0.046 0.16 (± 0.315) 0.04 - 2.28 0.000 

(12.) 1,3,5-Trimethylbenzene 0.254 (± 0.236) 0.09 - 1.44 0.064 0.172 (± 0.12) 0.09 - 0.9 0.018 0.163 (± 0.336) 0.09 - 3.96 0.000 

(13.) 2-Chloropentane 0.083 (± 0.072) 0.05 - 0.3 0.000 0.08 (± 0.027) 0.05 - 0.1 0.000 0.08 (± 0.035) 0.05 - 0.15 0.000 

(14.) 2-Methyl-2-Butene 0.323 (± 0.399) 0.05 - 2.15 0.090 0.337 (± 0.351) 0.05 - 3.75 0.259 0.093 (± 0.078) 0.05 - 0.55 0.000 

(15.) 2-Methylheptane 0.174 (± 0.134) 0.08 - 0.88 0.053 0.208 (± 0.144) 0.08 - 1.04 0.175 0.939 (± 3.143) 0.08 - 68 0.559 

(16.) 2-Methylhexane 0.739 (± 1.118) 0.07 - 22.96 0.666 0.724 (± 0.484) 0.07 - 3.64 0.848 2.245 (± 4.677) 0.07 - 97.16 0.868 

(17.) 2-Methylpentane 1.041 (± 0.893) 0.06 - 6.96 1.216 1.254 (± 0.894) 0.06 - 8.34 1.587 3.631 (± 7.275) 0.06 - 145.98 1.025 

(18.) 2,2-Dimethylbutane 0.179 (± 0.131) 0.06 - 0.84 0.035 0.217 (± 0.138) 0.06 - 1.02 0.134 0.593 (± 0.758) 0.06 - 10.5 0.448 

(19.) 2,2,4-Trimethylpentane 0.823 (± 0.708) 0.08 - 6.08 1.407 1.085 (± 0.75) 0.08 - 6.24 1.894 1.573 (± 2.196) 0.08 - 20.96 1.020 

(20.) 2,3-Dimethylbutane 0.285 (± 0.229) 0.06 - 1.86 0.106 0.37 (± 0.248) 0.06 - 2.22 0.322 0.748 (± 1.025) 0.06 - 15.42 0.482 

(21.) 2,3-Dimethylpentane 0.332 (± 0.477) 0.07 - 7.98 0.138 0.331 (± 0.204) 0.07 - 1.33 0.270 0.975 (± 1.239) 0.07 - 19.04 0.544 

(22.) 2,3,4-Trimethylpentane 0.325 (± 0.302) 0.08 - 2.24 0.266 0.41 (± 0.297) 0.08 - 2.16 0.614 0.653 (± 0.855) 0.08 - 6.4 0.499 

(23.) 2,4-Dimethylpentane 0.169 (± 0.155) 0.07 - 1.82 0.000 0.206 (± 0.132) 0.07 - 0.91 0.002 0.5 (± 0.756) 0.07 - 13.16 0.149 

(24.) 3-Methyl-1-Butene 0.088 (± 0.064) 0.05 - 0.4 0.000 0.1 (± 0.081) 0.05 - 0.6 0.001 0.069 (± 0.039) 0.05 - 0.25 0.000 

(25.) 3-Methylheptane 0.184 (± 0.172) 0.08 - 1.52 0.037 0.213 (± 0.175) 0.08 - 1.28 0.112 0.69 (± 1.866) 0.08 - 37.36 0.448 

(26.) 3-Methylhexane 0.717 (± 1.109) 0.07 - 26.67 1.125 0.663 (± 0.442) 0.07 - 3.85 1.373 1.656 (± 3.589) 0.07 - 80.29 0.929 
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(27.) 3-Methylpentane 0.706 (± 0.575) 0.06 - 4.62 1.427 0.862 (± 0.611) 0.06 - 5.4 1.739 2.019 (± 4.087) 0.06 - 85.02 1.083 

(28.) 4-Methyl-1-Pentene 0.083 (± 0.045) 0.06 - 0.18 0.000 0.073 (± 0.026) 0.06 - 0.12 0.000 0.1 (± 0.049) 0.06 - 0.18 0.000 

(29.) Acetylene 2.223 (± 2.148) 0.26 - 20.52 1.989 1.762 (± 1.223) 0.12 - 10.64 2.393 1.173 (± 0.8) 0.24 - 12.9 2.024 

(30.) Benzene 1.534 (± 0.886) 0.3 - 7.44 2.637 1.475 (± 0.721) 0.42 - 4.92 2.649 1.389 (± 1.305) 0.12 - 19.86 2.237 

(31.) Bromomethane 0.017 (± 0.015) 0.01 - 0.09 0.000 0.021 (± 0.052) 0.01 - 0.72 0.000 0.017 (± 0.015) 0.01 - 0.11 0.000 

(32.) Carbon Tetrachloride 0.094 (± 0.018) 0.01 - 0.16 0.000 0.097 (± 0.015) 0.03 - 0.16 0.000 0.095 (± 0.022) 0.01 - 0.42 0.000 

(33.) Chlorobenzene 0.078 (± 0.041) 0.06 - 0.24 0.000 0.074 (± 0.028) 0.06 - 0.18 0.000 0.085 (± 0.058) 0.06 - 0.36 0.000 

(34.) Chloroform 0.024 (± 0.011) 0.01 - 0.08 0.000 0.018 (± 0.006) 0.01 - 0.04 0.000 0.02 (± 0.02) 0.01 - 0.41 0.000 

(35.) Chloromethane 0.596 (± 0.106) 0.31 - 1.36 3.074 0.598 (± 0.102) 0.3 - 1.12 3.706 0.595 (± 0.106) 0.29 - 1.2 3.031 

(36.) cis-1,3-Dichloropropene 0.083 (± 0.093) 0.03 - 0.3 0.000 0.077 (± 0.079) 0.03 - 0.33 0.000 0.252 (± 0.461) 0.03 - 1.71 0.001 

(37.) cis-2-Butene 0.148 (± 0.165) 0.04 - 1.24 0.001 0.164 (± 0.156) 0.04 - 1.04 0.001 0.076 (± 0.09) 0.04 - 0.72 0.000 

(38.) cis-2-Hexene 0.074 (± 0.026) 0.06 - 0.12 0.000 0.075 (± 0.042) 0.06 - 0.3 0.000 0.08 (± 0.03) 0.06 - 0.12 0.000 

(39.) cis-2-Pentene 0.16 (± 0.171) 0.05 - 1.1 0.002 0.167 (± 0.169) 0.05 - 1.45 0.005 0.069 (± 0.041) 0.05 - 0.25 0.000 

(40.) Cyclohexane 0.43 (± 0.324) 0.06 - 2.4 0.296 0.557 (± 0.374) 0.06 - 2.64 0.587 2.011 (± 3.465) 0.06 - 66 0.780 

(41.) Cyclopentane 0.179 (± 0.128) 0.05 - 0.95 0.001 0.224 (± 0.136) 0.05 - 1.05 0.002 0.349 (± 0.415) 0.05 - 4.8 0.048 

(42.) Cyclopentene 0.085 (± 0.064) 0.05 - 0.3 0.000 0.078 (± 0.057) 0.05 - 0.4 0.001 0.056 (± 0.016) 0.05 - 0.1 0.000 

(43.) Dichlorodifluoromethane 0.512 (± 0.065) 0.2 - 0.87 2.971 0.518 (± 0.064) 0.23 - 1.09 3.611 0.514 (± 0.06) 0.2 - 0.77 3.003 

(44.) Dichloromethane 0.124 (± 0.142) 0.02 - 3.44 0.099 0.083 (± 0.071) 0.01 - 1.19 0.005 0.094 (± 0.221) 0.01 - 4.87 0.002 

(45.) Ethane 15.349 (± 12.796) 2.34 - 121.4 2.760 28.14 (± 26.36) 2.9 - 256.02 2.304 79.767 (± 128.26) 0.5 - 1292.3 1.224 

(46.) Ethylbenzene 0.699 (± 0.523) 0.08 - 5.76 0.887 0.516 (± 0.367) 0.08 - 3.36 0.568 0.305 (± 0.26) 0.08 - 3.44 0.110 

(47.) Ethylene 2.541 (± 2.028) 0.3 - 16.92 2.157 2.297 (± 1.467) 0.1 - 10.1 2.211 1.376 (± 0.943) 0.06 - 18.54 1.641 

(48.) Ethylene Dibromide 0.05 (± 0.067) 0.02 - 0.24 0.000 0.037 (± 0.034) 0.02 - 0.14 0.000 0.04 (± 0.05) 0.02 - 0.24 0.000 

(49.) Ethylene Dichloride 0.031 (± 0.021) 0.02 - 0.32 0.000 0.034 (± 0.014) 0.02 - 0.1 0.000 0.034 (± 0.023) 0.02 - 0.34 0.000 

(50.) Isobutane 3.305 (± 2.856) 0.2 - 31.88 2.407 4.357 (± 6.02) 0.12 - 156.16 2.459 14.787 (± 24.24) 0.16 - 285.24 1.230 

(51.) Isopentane 4.302 (± 3.653) 0.35 - 40.35 2.584 5.328 (± 3.857) 0.25 - 33.65 2.752 11.798 (± 18.871) 0.25 - 275.2 1.244 

(52.) Isoprene 1.013 (± 0.899) 0.05 - 5.2 0.452 0.476 (± 0.41) 0.05 - 2.55 0.102 0.523 (± 0.482) 0.05 - 5.1 0.095 

(53.) Isopropylbenzene 0.14 (± 0.084) 0.09 - 0.54 0.000 0.121 (± 0.059) 0.09 - 0.45 0.000 0.119 (± 0.089) 0.09 - 0.99 0.000 
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(54.) m-Diethylbenzene 0.29 (± 0.442) 0.1 - 3 0.030 0.275 (± 0.312) 0.1 - 1.3 0.007 0.232 (± 0.164) 0.1 - 0.7 0.009 

(55.) m-Ethyltoluene 0.464 (± 0.513) 0.09 - 5.49 0.876 0.354 (± 0.325) 0.09 - 2.97 0.777 0.221 (± 0.52) 0.09 - 8.19 0.175 

(56.) m/p Xylene 1.738 (± 1.499) 0.16 - 15.84 1.081 1.112 (± 0.881) 0.08 - 7.2 0.694 0.891 (± 1.412) 0.08 - 29.36 0.371 

(57.) Methyl Chloroform 0.028 (± 0.015) 0.02 - 0.1 0.000 0.027 (± 0.014) 0.02 - 0.16 0.000 0.029 (± 0.015) 0.02 - 0.12 0.000 

(58.) Methylcyclohexane 0.37 (± 0.368) 0.07 - 5.6 0.297 0.44 (± 0.344) 0.07 - 2.52 0.506 2.035 (± 4.904) 0.07 - 108.15 0.871 

(59.) Methylcyclopentane 0.443 (± 0.353) 0.06 - 3 0.002 0.539 (± 0.372) 0.06 - 3.3 0.012 1.115 (± 4.764) 0.06 - 122.34 0.183 

(60.) n-Butane 7.11 (± 6.662) 0.68 - 45.72 2.007 9.107 (± 7.662) 0.84 - 54 2.003 24.117 (± 38.986) 0.4 - 508.32 1.298 

(61.) n-Decane 0.529 (± 0.752) 0.1 - 9.7 0.273 0.301 (± 0.284) 0.1 - 2.9 0.136 0.41 (± 0.909) 0.1 - 11.9 0.133 

(62.) n-Heptane 0.513 (± 0.545) 0.07 - 11.34 0.778 0.597 (± 0.407) 0.07 - 3.5 1.142 2.324 (± 6.726) 0.07 - 162.96 0.942 

(63.) n-Hexane 0.985 (± 0.742) 0.06 - 6.24 1.872 1.251 (± 0.869) 0.06 - 6.78 2.274 5.068 (± 19.7) 0.06 - 514.56 0.936 

(64.) n-Nonane 0.555 (± 0.822) 0.09 - 12.24 0.292 0.49 (± 0.423) 0.09 - 2.88 0.234 0.739 (± 1.467) 0.09 - 16.47 0.346 

(65.) n-Octane 0.281 (± 0.24) 0.08 - 1.92 0.294 0.304 (± 0.23) 0.08 - 1.84 0.471 1.175 (± 3.995) 0.08 - 89.2 0.670 

(66.) n-Pentane 2.294 (± 1.742) 0.2 - 12 2.140 3.053 (± 2.201) 0.1 - 16.6 2.579 10.455 (± 19.956) 0.15 - 316.8 0.995 

(67.) n-Propylbenzene 0.222 (± 0.227) 0.09 - 3.24 0.001 0.164 (± 0.117) 0.09 - 1.08 0.001 0.159 (± 0.261) 0.09 - 3.51 0.000 

(68.) n-Undecane 0.381 (± 0.453) 0.11 - 3.96 0.250 0.338 (± 0.475) 0.11 - 5.83 0.249 0.312 (± 0.436) 0.11 - 3.96 0.153 

(69.) o-Ethyltoluene 0.254 (± 0.249) 0.09 - 2.34 0.235 0.181 (± 0.127) 0.09 - 1.08 0.199 0.161 (± 0.328) 0.09 - 3.6 0.021 

(70.) o-Xylene 0.618 (± 0.503) 0.08 - 4 0.660 0.411 (± 0.316) 0.08 - 2.4 0.298 0.274 (± 0.342) 0.08 - 4 0.053 

(71.) p-Diethylbenzene 0.237 (± 0.329) 0.1 - 3.4 0.090 0.229 (± 0.259) 0.1 - 1.6 0.062 0.236 (± 0.242) 0.1 - 1.4 0.023 

(72.) p-Ethyltoluene 0.269 (± 0.27) 0.09 - 2.25 0.318 0.186 (± 0.132) 0.09 - 0.99 0.224 0.171 (± 0.271) 0.09 - 3.78 0.034 

(73.) Propane 12.05 (± 9.348) 1.77 - 64.89 2.362 16.437 (± 13.52) 1.86 - 91.74 2.142 50.366 (± 77.145) 0.96 - 714.27 1.320 

(74.) Propylene 1.59 (± 1.307) 0.15 - 10.14 0.720 1.366 (± 0.898) 0.09 - 6.24 0.683 0.926 (± 1.173) 0.18 - 25.08 0.273 

(75.) Styrene 0.187 (± 0.196) 0.08 - 1.28 0.000 0.158 (± 0.14) 0.08 - 1.44 0.000 0.125 (± 0.144) 0.08 - 1.36 0.000 

(76.) Tetrachloroethylene 0.052 (± 0.058) 0.02 - 0.8 0.001 0.035 (± 0.03) 0.02 - 0.3 0.000 0.035 (± 0.096) 0.02 - 1.84 0.000 

(77.) Toluene 2.782 (± 2.644) 0.35 - 25.62 2.162 2.443 (± 3.224) 0.21 - 76.44 2.563 2.452 (± 11.222) 0.21 - 353.92 1.693 

(78.) trans-1,3-Dichloropropene 0.057 (± 0.067) 0.03 - 0.24 0.000 0.041 (± 0.03) 0.03 - 0.15 0.000 0.049 (± 0.048) 0.03 - 0.21 0.000 

(79.) trans-2-Butene 0.243 (± 0.271) 0.04 - 1.56 0.040 0.23 (± 0.222) 0.04 - 1.32 0.093 0.131 (± 0.143) 0.04 - 0.56 0.001 

(80.) trans-2-Hexene 0.1 (± 0.057) 0.06 - 0.24 0.000 0.095 (± 0.061) 0.06 - 0.36 0.000 0.083 (± 0.035) 0.06 - 0.18 0.000 
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(81.) trans-2-Pentene 0.267 (± 0.307) 0.05 - 1.75 0.001 0.284 (± 0.285) 0.05 - 2.6 0.001 0.092 (± 0.069) 0.05 - 0.4 0.000 

(82.) Trichloroethylene 0.041 (± 0.051) 0.02 - 0.48 0.000 0.024 (± 0.01) 0.02 - 0.08 0.000 0.073 (± 0.378) 0.02 - 3.12 0.000 

(83.) Trichlorofluoromethane 0.259 (± 0.035) 0.16 - 0.48 0.168 0.26 (± 0.034) 0.19 - 0.49 0.167 0.252 (± 0.03) 0.14 - 0.48 0.113 

(84.) Vinyl Chloride 0.024 (± 0.012) 0.02 - 0.06 0.000 0.024 (± 0.008) 0.02 - 0.04 0.000 0.025 (± 0.015) 0.02 - 0.08 0.000 
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