
An Evaluation of Network Access Protocols 

for Distributed Real-Time Database Systems* 

ijzgiir Ulusoy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Department of Computer Engineering and Information Science, Bilkent University, Bilkent, Ankara 06533, Turkey 

The results of a considerable number of works ad- 

dressing various features of real-time database sys- 

tems (RTDBSS) have recently appeared in the litera- 
ture. An issue that has not received much attention 

yet is the performance of the communication network 

configuration in a distributed RTDBS. In this article, 

we examine the impact of underlying network archi- 

tecture on the performance of a distributed RTDBS. In 

particular, we evaluate the real-time performance of 

distributed transactions in terms of the fraction of 

satisfied deadlines under various network access 

strategies. We also critically examine the common 

assumption of constant network delay for each com- 

munication message exchanged in a distributed RT- 

DBS. 0 1997 by Elsevier Science Inc. 

1. INTRODUCTION 

A real-time database system (RTDBS) is designed to 

provide timely response to the transactions of data- 

intensive applications. Each transaction processed in 

a RTDBS is associated with a timing constraint 

typically in the form of a deadline. The research in 

distributed RTDBSs has focused on development and 

evaluation of new time-cognizant scheduling tech- 

niques that can provide good performance in terms 

of the fraction of satisfied timing constraints. Sha et 

al. (1991) presented two new real-time concurrency 

control protocol techniques, called priority inheri- 

tance and prior@ ceiling, and studied their perfor- 

mance through simulations. Son and Chang (1990) 

investigated methods to apply the priority-ceiling as 

a basis for real-time locking protocol in a distributed 
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environment. Some techniques to increase the avail- 

ability in a partitioned distributed RTDBS were 

introduced in Lin and Lin (1988). In Ulusoy and 

Belford (19921, we described several distributed 

real-time concurrency control protocols and re- 

ported the relative performances of the protocols in 

a nonreplicated database environment. Soparkar et 

al. (1992) presented an adaptive commit protocol for 

distributed RTDBS transactions. 

In Ulusoy (1994), we investigated the impact of 

storing multiple copies of data on satisfying the 

timing constraints of transactions. Various experi- 

ments were conducted to observe the performance 

characteristics of different applications as a function 

of level of replication. Each application was distin- 

guished by the type and data access distribution of 

the processed transactions. A detailed performance 

model of a distributed database system was em- 

ployed in evaluating the effects of various workload 

parameters and design alternatives on the system 

performance. The effects of site failures were also 

studied to estimate how much replication is needed 

to provide a reliable processing environment for 

real-time transactions of different applications. 

One interesting question that arises in designing a 

distributed RTDBS is, “How is the system perfor- 

mance dependent on various characteristics of the 

communication network connecting data sites?” 

None of the performance works mentioned above 

examined the effects of network architectures and 

protocols on distributed RTDBS performance. The 

common approach in all those studies was modeling 

the network as a FIFO server with a fixed service 

rate independent of the current load and other 

characteristics of the network. 

The effects of networking parameters and com- 

munication protocols on “traditional” distributed 

database systems were investigated by a couple of 
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researchers. Sheth et al. (1985) studied the effect of 

various network parameters on the performance of 

distributed database systems. They used an analyti- 

cal model to estimate the delays in communication 

channels of a long haul network supporting the 

distributed database system. They showed that the 

constant transmission time assumption cannot be 

justified in many cases and that the response time is 

sensitive to the parameters such as network traffic, 

network topology, and capacity of communication 

channels. Ozsu and Niu evaluated the effects of 

network protocols on the performance of some dis- 

tributed concurrency control algorithms (6zsu and 

Niu, 1992). Two network protocols, CSMA/CD and 

token ring, were involved in the evaluations. 

In this article, we describe a simulation study of 

several network access protocols in a distributed 

RTDBS and address various performance issues. To 

our knowledge, our work is the first attempt to 

investigate performance characteristics of the com- 

munication network configuration in a distributed 

RTDBS. Among the questions studied in this work 

are 

How the performance results obtained with con- 

stant network delay assumption are affected when 

the overhead of message transmission is simulated 

in detail? 

Which network protocol is the most suited to be 

used by distributed RTDBSs? What are the basic 

factors that determine the performance of net- 

work protocols in a distributed RTDBS environ- 

ment? 

Under what conditions is it worthwhile to use 

real-time network protocols (i.e., protocols that 

involve timing constraints of communication mes- 

sages in scheduling their channel access requests)? 

The remaining sections are structured as follows. 

In Section 2, the distributed RTDBS model used in 

our simulations is presented. Section 3 describes a 

set of experiments together with our initial findings. 

It is evaluated in those experiments how the under- 

lying communication network configuration affects 

the real-time performance of distributed transac- 

tions. In Section 4, we conclude our results. 

2. MODELING A DISTRIBUTED RTDBS 

The performance model is an extension of the model 

of a distributed RTDBS used in an earlier work of 

ours (Ulusoy, 1994). The goal of that work was to 

examine the impact of data replication on the per- 
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formance of a RTDBS and to analyze the perfor- 

mance trade-offs involved. In that work, we used a 

data distribution model which provided a partial 

replication of the distributed database. The model 

enabled us to execute the system at precisely speci- 

fied levels of data replication. Each data item was 

assumed to have N copies in the distributed system, 

where N can take a value between one and the 

number of data sites. 

Neglecting to model the communication network 

in detail, in the performance experiments of Ulusoy 

(19941, it was assumed that the network has enough 

capacity to carry any number of messages at a given 

time, and the delay of a communication message 

between any two data sites is constant. To investi- 

gate the issues related to the underlying communica- 

tion network of a distributed RTDBS, we have ex- 

tended the system model with a network manager 

module which accurately simulates the behavior of 

communication messages exchanged among data 

sites. The physical structure of the RTDBS model is 

shown in Figure 1. It is composed of a number of 

data sites interconnected by a local communication 

network. Each data site contains a transaction gen- 

erator, a transaction manager, a resource manager, 

a scheduler, a buffer manager, and a recovery man- 

ager. 

The transaction generator is responsible for gen- 

erating the workload for each data site. The arrivals 

at a data site are assumed to be independent of the 

arrivals at the other sites. Each transaction is char- 

acterized by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcriticalness and a deadline. The criti- 

calness of a transaction is an indication of its level of 

importance (Biyabani et al., 1988). It is assumed that 

each transaction is associated with one of m possi- 

ble levels of criticalness. The most critical transac- 

tions are assigned the highest level. Assignment of 

criticalness to a new transaction follows a uniform 

distribution; i.e., the criticalness of the transaction is 

chosen randomly from the set {l, 2,. . . , ml. The 

deadline of a transaction specifies a certain time in 

the future the transaction has to be completed be- 

fore. The transaction deadlines are firm; i.e., trans- 

actions that miss their deadlines are aborted and 

disappear from the system. Criticalness and deadline 

are two independent characteristics of RTDB trans- 

actions (Huang et al., 1989; Haritsa et al., 1991). A 

close deadline does not necessarily imply more criti- 

calness. The transaction manager at the originating 

site of a transaction T assigns a real-time priority to 

transaction T based on its criticalness CC,), dead- 

line (Dr ), and arrival time (AT). The priority 

of transaction T is determined by the following 
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Figure 1. Distributed RTDBS structure. 
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The priority formula gives equal weight to critical- 

ness and relative deadline. If any two transactions 

originating from the same site carry the same prior- 

ity, any scheduling decision between those transac- 

tions favors the more critical one; if the transactions 

are of the same criticalness as well, the transaction 

with closer deadline is scheduled first. To guarantee 

the global uniqueness of the priorities, the id of the 

originating site is appended to the priority of each 

transaction. 

Each distributed transaction exists in the system 

in the form of a master process that executes at the 

originating site of the transaction and a number of 

cohorts that execute at various sites where the copies 

of required data items reside. A cohort can be 

defined as a process that performs operations of its 

transaction on data items stored at a remote site. 

The transaction can have at most one cohort at each 

data site. The transaction manager is responsible for 

creating a master process for each new transaction 

and specifying the appropriate sites for the execu- 

tion of the cohort processes of the transaction. The 

operations of a transaction are executed in a se- 

quential manner, one at a time. For each operation 

executed, a global data dictionary is referred to find 

out the locations of the data item referenced by the 

operation. Each data site is assumed to have a copy 

of the global data dictionary. After determining 

which data sites should be accessed for the opera- 

tion, a cohort process at each of those sites is 

initiated (if it does not exist already) by the master 

process to perform the operation in the name of the 

transaction. Previously created cohorts at those sites 

are just activated to perform the operation. After 

the successful completion of an operation, the next 

operation in sequence is executed by the appropri- 

ate cohort(s). When the last operation is completed, 

the transaction can be committed. The priority of a 

transaction is carried by all of the cohorts of the 

transaction. 

The effects of a distributed transaction on the 

data must be made visible at all sites in an all or 

nothing fashion. The so called atomic commitment 

property can be provided by a commit protocol 

which coordinates the cohorts such that either all of 

them or none of them commit. It is also necessary in 

a distributed database system to ensure that mutual 

consistency of the replicated data is provided; in 

other words, replicated copies must behave like a 

single copy. This is possible by preventing conflicting 

accesses on the different copies of the same data 

item and by making sure that all data sites eventu- 

ally receive all updates (Garcia-Molina and Abbott, 

19871. In our model, the atomic commitment .of 

distributed transactions is provided by the central- 

ized two-phase commit protocol (Bernstein et al., 

19871, while the mutual consistency of replicated 

data is achieved by using the read-one, write-all-auail- 

able scheme (Bernstein and Goodman, 1984). 

Access requests for data items are ordered by the 

scheduler on the basis of the concurrency control 

protocol executed. An access request of a cohort 
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may result in blocking or abort of the cohort due to 

a data conflict with other cohorts executed’concur- 

rently. The scheduler at each site is responsible for 

effecting aborts, when necessary, of the cohorts exe- 

cuting at its site. When a cohort completes its data 

access and processing requirements, it waits for the 

master process to initiate two-phase commit. The 

master process commits a transaction only if all the 

cohort processes of the transaction run to comple- 

tion successfully, otherwise it aborts and later restarts 

the transaction. A restarted transaction accesses the 

same data items as before and is executed with its 

original priority. 

IO and CPU services at each site are provided by 

the resource manager. IO service is required for 

reading or updating data items, while CPU service is 

necessary for processing data items and communica- 

tion messages. Both CPU and IO queues are orga- 

nized on the basis of real-time priorities, and pre- 

emptive-resume priority scheduling is used by the 

CPU at each site. The CPU can be released by a 

cohort process either due to a preemption, when the 

process commits or it is blocked/aborted due to a 

data conflict, or when it needs an IO or communica- 

tion service. Communication messages are given 

higher priority at the CPU than data processing 

requests. 

Local deadlocks are detected by maintaining a 

local Wait-For Graph (WFG) at each site. Local 

deadlock detection is performed by the scheduler 

each time an edge is added to the graph (i.e., when a 

cohort is blocked). For the detection of global dead- 

locks a global WFG is used which is constructed by 

merging local WFGs. One of the sites is employed 

for periodic detection of global deadlocks. A dead- 

lock is recovered from by selecting the lowest prior- 

ity cohort in the deadlock cycle as a victim to be 

aborted. The master process of the victim cohort is 

notified to abort and later restart the whole transac- 

tion. 

Table 1 provides the set of parameters used in 

specifying the configuration and workload of the 

distributed RTDBS. The communication network 

parameters, not listed in this table, will be discussed 

in the next section. Each data item has exactly N 

copies in the distributed system, where 1 I N I 

nr_of_sites. Each data site can have at most one 

copy of a data item. The remote copies of a data 

item are uniformly distributed over the remote data 

sites; in other words, the remotesites for the copies 

of a data item are chosen randomly. 

Slackfactor is the parameter used in assigning 

deadlines to new transactions. The slack time of a 

transaction is chosen randomly from an exponential 

6. Ulusoy 

Table 1. Distributed RTDBS Model Parameters 

Configuration Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w-of-sites 

local-db-size 
N 

mem_size 

cpu-rate 

instr-process-item 

disk-access-time 

pti-assign-cost 

lookup-cost 

number of data sites 

database size originated at each site 
number of copies of each data item 
size of the memory buffers used to hold 

data items at each site 

instruction rate of CPU at each site (MIPS) 
number of instructions to process each 

data item 
average disk seek + transfer time of a 

data item (msec) 
CPU cost of priority assignment 

(instructions) 
CPU cost of locating a data item 

(instructions) 

Transaction Parameters 

iat mean transaction interarrival time at a site 
tr-type-prob fraction of update type transactions 
tr-length mean number of data items accessed by a 

transaction 
data-update-prob fraction of updated data items by an update 

transaction 
slack-factor average slack-time/processing-time for a 

transaction 

distribution with a mean of sluck_factor times the 

estimated processing time of the transaction. While 

the transaction generator uses the estimation of 

transaction processing times in assigning deadlines, 

we assume that the system itself lacks the knowledge 

of processing time information. The deadline of a 

transaction T is determined by the following for- 

mula 

D,=A,+PE,+S, 

where 

S, = e.xpon(slack-factor * PE,). 

A,, PE,, and S, denote the arrival time, processing 

time estimate, and slack time of transaction T, re- 

spectively. The formula used to determine the pro- 

cessing time estimate of a transaction in an un- 

loaded system is provided in Ulusoy (1994). 

2.1. The Communication System 

There is no globally shared memory in the system, 

and all sites communicate via message exchanges 

over the communication network. The network man- 

ager is responsible for the transmission of messages 

among data sites. The message switching component 

of a data site is called a node. 

The assumptions of our communication system 

model are 
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Table 2. Communication Network Parameters. 

Communication Parameters 

nw_bandwidth network bandwidth (Mbps) 
mes-size message size (bytes) 
instr-init-mes CPU cost to initialize sending/receiving a 

message (instructions) 
ins@_per-mes-byte CPU cost of sending/receiving each byte 

of a message (instructions) 

The size of the buffers used to hold messages at 

nodes are infinite; thus, no message loss is experi- 

enced due to buffer overflows. 

The communication network is error-free. There- 

fore, there is no loss of messages and no retrans- 

mission is required. Issues such as reliability and 

fault recovery in communication systems are be- 

yond the scope of this article. 

Table 2 lists the communication parameters of 

the distributed RTDBS model. The parameter 

nw_bandwidth specifies the speed of the network, 

i.e., the number of bits that can be transmitted per 

second. Mes_size is the length of each message 

exchanged between the nodes. Each message is pro- 

cessed at its source site prior to its transmission and 

at its destination site after being received. The mes- 

sage processing overhead, in terms of the number of 

CPU instructions is simulated using the parameters 

instr_init_mes and instr_per_mes_byte. The first of 

these two parameters corresponds to the initializa- 

tion cost of transmitting or receiving each message. 

The second parameter specifies the processing cost 

of each byte of a message at the source or destina- 

tion site. 

The average CPU delay and network delay experi- 

enced by each message can be estimated by using 

the communication parameters 

CPU-delay 

= 2* & (in&r-init-mes + mes_size 

* instr_per_mes_byte) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1 
networkdelay = 

nw-bandwidth 
* 8 * mes-size . (2) 

CPU_deluy corresponds to the total processing cost 

of a message (i.e., sum of the processing costs at 

both its source site and destination site). 

There exist different types of communication mes- 

sages exchanged to control the execution of a trans- 

action. The message types generated for a particular 

transaction T are described in Table 3. In the table, 

the source and destination of each message type are 

specified using the following notation 

TM(S): The transaction manager at site S. 

MP(T): Master process of transaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 

ES(C): Execution site of cohort C. 

The discussion of the message types specific to 

various concurrency control protocols employed in 

performance experiments is deferred to Section 3.1 

which provides the performance results obtained 

with different concurrency control protocols. 

Two different network architecture types are con- 

sidered in our work: carrier-sense multiple access 

networks and token ring networks. The Carrier-Sense 

Multiple Access with Collision Detection 

(CSMA/CD) is the first network access protocol we 

explored. In a multiple access network, messages are 

transmitted on a shared communication channel. 

Only one message can be successfully transmitted 

over the channel at any time. In carrier-sense net- 

works, each node that wants to transmit a message 

should first listen to the communication channel. If 

any transmission is in progress, the node defers its 

transmission until the end of the current transmis- 

sion. Collisions can occur due to the nonzero pro- 

pagation delay of the communication channel. 

CSMA/CD protocol provides detection of message 

collisions. Upon detection of a collision, transmis- 

sion is aborted and the node schedules its message 

for the retransmission. The time period over which 

the node schedules retransmission is doubled each 

time the message experiences a collision (Bux, 1981). 

Table 3. Message Types Generated for Transaction T 

Message type Source 

initiate-cohort ME’(T) 

activafe-opera&m MHT) 
operation_complete TM(ES(C)) 

vote-request MP(T) 

partkipantdecision TME2xCN 

finaLdecision MP(T) 

Destination 

TI@3XCN 

TM(ES(C)) 
MP(T) 

-I’MES(CN 

ME’(T) 

TMES(CN 

Function 

To initiate the execution of 
cohort C of transaction T. 

To activate an operation of cohort C. 
To indicate that the current operation 

of cohort C has been completed. 
To initiate the two-phase commit 

protocol for T. 

To reply the uore-request message. The message 
carries the commit/abort decision of a cohort site. 

To indicate the final (commit/abort) decision for 
the commitment of T. 
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Table 4. Parameters Specific to the Carrier-Sense 
Multiple Access Network Model 

Table 5. Parameters Specific to the Token Ring 
Network Model 

CSMA / CD Parameters Token Ring Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

csma-prop-delay 

csma-channel-length 

end-to-end propagation delay ring-prop-delay 

length of the communication node-latency 

channel (bits) ring-length 

The parameters specific to our CSMA/CD net- 

work model are provided in Table 4. The model 

assumes that time is slotted and nodes can only start 

transmitting messages at the beginning of each slot. 

Coma _prop_delay denotes end-to-end propagation 

delay of the communication channel. The parameter 

csma_channel_length specifies the length of the 

channel in bits (i.e., the maximum number of bits 

being transmitted on the channel at any instant). 

The length of a slot is considered to be equal to 

csma_prop_deluy; thus, a transmission at the begin- 

ning of a slot is recognized by all nodes prior to the 

next slot. A collision can occur only between the 

messages that are transmitted at the same slot. 

Token ring is the other network access protocol 

adapted to our communication system. In a token 

ring, access to the communication channel is con- 

trolled by passing a special frame, called token, 

around the ring. When no message is in transmis- 

sion, a free token circulates around the ring. When a 

node becomes ready to transmit a message, it 

changes the token to busy and puts its message onto 

the ring. The sending node is responsible for remov- 

ing its own message from the ring. At the end of its 

transmission, the node passes the access permission 

to the node down stream by generating a new free 

token. Because there is only one token on the ring 

at any time, there is no contention among the nodes 

to access the ring (Bux, 1981). 

Table 5 describes the additional communication 

parameters for the token ring model. Ring_prop_de- 

lay specifies the propagation delay of messages from 

one node to another. It is assumed that all nodes are 

equally distanced on the ring. Each message is passed 

from one node to another on its path from source 

site to destination site. Each node passes the mes- 

sage on after a short delay, which is specified by 

parameter node-latency. The token circulates 

around the ring in a time equal to the sum of 

propagation delays between nodes plus the sum of 

node latencies. 

3. SIMULATION EXPERIMENTS 

The simulation program, capturing the details of the 

distributed RTDBS model, was written in CSIM 

node-to-node propagation delay 
delay at each node 

total length of the ring (bits) 

(Schwetman, 19861, which is a process-oriented sim- 

ulation language based on the C programming lan- 

guage. 

Table 6 presents the default parameter values 

used in each of the experiments. All sites of the 

system were assumed identical and operating under 

the same parameter values. It was assumed that one 

CPU and one disk unit exist at each data site. The 

settings used for configuration and transaction pa- 

rameters were basicly taken from our earlier experi- 

ments (Ulusoy, 1994). It was intended by those set- 

tings to execute the transactions under high levels of 

data contention. The default values used for the 

communication parameters can be accepted as rea- 

sonable approximations of what can be expected 

from today’s local communication networks. The 

value of csmu_prop_deluy is determined as follows 

csma-prop-delay = 
csma-channel-length 

nw- bandwidth 

= 5 * 10e3msec. 

Table 6. Performance Model Parameter Values 

Configuration Parameters 

nr-of-sites 

local-db-size 

N 

mem-size 

cpu-rate 

in.W _process_item 

diskaccess_time 

prLassign_cost 

lookup_cost 

Transaction Parameters 

10 
200 data items 
5 
500 
2Ci MIPS 

160004 instructions 
18 msec 
20000 instructions 
20000 instructions 

iat 

tr-type-prob 

tr-length 

data-update-prob 

slack-factor 

Communication Parameters 

400 msex (exponential) 
.5 

6 

.5 

5 (exponential) 

w-bandwidth 

mes-size 
instr-init-mes 

instr_per-me-byte 

csma-channel-length 

node-latency 

ring-length 

10 Mbps 
512 bytes 
20000 instructions 
3 instructions 
50 bits 
0.5 * 10e3 msec 

50 bits 
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Similarly, the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAring_prop_deZuy can also be 

found using the other network parameter values. 

ring-prop-delay = 
ring-length 

m-of-sites * nw-bandwidth 

= 0.5 * 10P3msec. 

The performance metric we used, i.e., 

success_rutio, combines the performance measure- 

ments of all criticalness levels, in terms of the frac- 

tion of satisfied deadlines, using a specific weight for 

each level. This metric is defined as follows 

success_ratio = X 1w, ;r-ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 

I lW, 

where 

i: Criticalness level. 

m: Total number of criticalness levels (m = 3 in our 

simulations). 

wi: Weight of criticalness level i. 

success_rutiq: Fraction of satisfied deadlines for the 

transactions of criticalness level i. 

The determination of the weights of criticalness 

levels is highly dependent on the particular applica- 

tion environment (Biyabani et al., 1988). We used 

linearly increasing weights; i.e., 

w, = i, (i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2 ,..., m). 

For each experiment, the final results were evalu- 

ated as averages over 25 independent runs. Each run 

continued until 1000 transactions were executed at 

each data site. Ninety percent confidence intervals 

were obtained for the performance results. The width 

of the confidence interval of each data point is 

within 4% of the point estimate. In displayed graphs, 

only the mean values of the performance results are 

plotted. 

3.1. Evaluation of Concurrency Control Protocols 

In Ulusoy (19941, we evaluated the performance of a 

number of RTDBS concurrency control protocols 

under different levels of transaction load. The proto- 

cols were different in the way real-time priorities of 

transactions are involved in scheduling data access 

requests. Concurrency control protocols that employ 

restarts in resolving conflicts (e.g., optimistic proto- 

cols), exhibited better performance than the proto- 

cols that use blocking (e.g., locking protocols) when 

the system was lightly loaded (i.e., for large iut 

values). With optimistic protocols, there is no over- 

head of transaction blocking due to data conflicts 

until commit time. Because the number of conflicts 

is small under low load levels, only a few transac- 

tions fail to be validated at commit time. On the 

other hand, when the transaction load was high, the 

performance of restart-based protocols was worse 

compared to blocking-based ones. The overhead of 

executing a concurrency control protocol that uses 

restarts in resolving conflicts was observed to be 

higher than that of a blocking-based protocol due to 

the large number of restarts experienced under high 

levels of system load. 

The same experiment is repeated here to see how 

the results obtained are affected when the transmis- 

sion of communication messages are implemented in 

full detail. We categorize the concurrency control 

protocols into two classes as locking protocols that 

use blocking in resolving congicts and optimistic 

protocols that are based on restarting. This section 

provides the results for one protocol from each class 

chosen as representative. We first provide a brief 

description of each protocol together with the sum- 

mary of the performance results obtained with the 

constant message transmission and service times as- 

sumption. 

Priority Inheritance protocol (PI). The priority 

inheritance method, proposed in Sha et al. (19911, 

ensures that when a transaction blocks higher prior- 

ity transactions, it is executed at the highest priority 

of the blocked transactions; in other words, it inher- 

its the highest priority. The aim is to reduce the 

blocking times of high priority transactions. 

Optimistic Wait-50 protocol (OPT). OPT is an 

optimistic concurrency control protocol incorporat- 

ing real-time priorities of transactions (Haritsa et 

al., 1990). The validation check for a committing 

transaction is performed against the executing trans- 

actions and if the write-set of the validating transac- 

tion intersects with the read-set of one of the execut- 

ing transactions, these two transactions are said to 

be in conflict. The proposed protocol uses a 50% 

rule as follows. If half or more of the transactions 

conflicting with a committing transaction are of 

higher priority, the transaction is made to wait for 

the high priority transactions to complete; otherwise, 

it is allowed to commit while the conflicting transac- 

tions are aborted. While the transaction is waiting, it 

is possible that it will be restarted due to the commit 

of one of the conflicting transactions with higher 

priority. The validation check for a transaction is 

performed at each data site where a cohort of the 

transaction has been executed. 

The concurrency control protocols were found to 

be somewhat different in their sensitivity to the 

constant message overhead assumption. Table 7 pro- 
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Table 7. Improvement in success-ratio by PI over OPT. 

~protocol,iat+ 300 340 380 420 460 

No access protocol 17% 11% 5% -1% -2% 

CSMA / CD 12% 7% 3% -2% -3% 
Token Ring 16% 10% 7% -1% -3% 

Improvement is shown under varying average transaction interar- 
rival time iar (in msec) with the constant message overhead assump- 
tion, the nehvork access protocol CSMA/CD, and the token ring. 

vides the improvement in success_ratio obtained 

with concurrency control protocol PI over protocol 

OPT under various network access strategies.’ The 

line indexed by “No access protocol” provides the 

evaluation results obtained without employing a spe- 

cific network access protocol in transmitting mes- 

sages.’ When the token ring protocol was employed, 

the comparative performance results of PI and OPT 

under different system loads were not much differ- 

ent from those obtained without implementing the 

details of a network protocol. On the other hand, 

when CSMA/CD was employed, the performance 

improvement provided by PI over OPT under high 

transaction loads was at a lower level. This result 

might be due to larger number of communication 

messages involved in implementing the concurrency 

control protocol PI. The protocol requires that 

whenever a cohort of a transaction inherits a prior- 

ity, the scheduler at the cohort’s site notifies the 

transaction’s master process by sending a priority 

inheritance message which contains the inherited 

priority. The master process then propagates this 

message to the sites of other cohorts that belong to 

the same transaction, so that the priority of the 

cohorts can be adjusted.3 With protocol OPT, on the 

other hand, no extra messages are involved for con- 

currency control because the information necessary 

for the validation of a transaction is piggybacked on 

the messages of the two-phase commit protocol. The 

larger number of messages issued with PI affects the 

comparative performance of protocols when 

CSMA/CD is employed. The degradation in the 

performance of protocol PI can be explained by the 

‘The range (300 msec, 460 msec) of iut values used in the 
experiments corresponds to an expected CPU utilization of about 
90 to .59 at each data site Wlusoy, 1992). 

21n those evaluations, the constant values used to simulate the 
delay of a communication message between any two sites and the 
CPU time to process a communication message were determined 
using Equations (1) and (2). 

3The other locking protocols also require exchange of various 
kinds of control messages between sites during the execution of a 

transaction. . 

waste of time experienced due to message collisions 

with CSMA/CD. The number of collisions increases 

as more messages contend for channel access. 

Figure 2 displays the real-time performance re- 

sults of concurrency control protocols PI and OPT 

with network access protocols CSMA/CD and to- 

ken ring. For low levels of transaction load (i.e., 

large iat values), CSMA/CD leads to slightly better 

performance for both PI and OPT. The worse per- 

formance of token ring can be due to the delay 

experienced by ready messages while waiting for a 

free token. Comparing the concurrency control pro- 

tocols under high loads, it can be seen that 

OPT cannot reach the real-time performance level 

achieved by PI under any network access protocol. 

The reason for this result, as we explained before, is 

the waste of resources experienced with OPT due to 

restarting failed transactions at the end of their 

executions. 

3.2. Evaluation of Real-Time, Network 

Access Protocols 

In this section, we provide an investigation of the 

performance impact of employing priority-based net- 

work access protocols in a distributed RTDBS. Each 

message transmitted carries the priority which is 

associated with its transaction. The real-time net- 

work access protocols selected for evaluation 

are: the virtual time CSMA/CD protocol 

(VTCSMA/CD) (Zhao and Ramamritham, 19871, 

and the IEEE 802.5 Token Ring protocol (Token 

Ring Access Method, IEEE 802.5 Local Area Net- 

work Standard, 1985). 

1.n . . 

300 340 380 420 460 

IAT (msec) 

Figure 2. Success-ratio results for concurrency control 
protocols PI and OPT with network access protocols 

CSMA/CD and token ring. 
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Virtual Time CSMA / CD Protocol. The virtual 

time CSMA/CD protocol (VTCSMA/CD) was pro- 

posed by Zhao and Ramamritham (1987) for real- 

time communication systems. In this protocol, each 

node maintains two clocks: a real time clock and a 

virtual time clock. Whenever a node finds the chan- 

nel to be idle, it resets its virtual clock. The message 

with the minimum virtual time to start transmission 

(I?$) is transmitted first. Transmission begins when 

the virtual clock equals the lJS of the message. The 

virtual clock stops running when transmission begins 

and starts running (after resetting its value to the 

time on the real clock) when the channel is idle 

following completion of transmission or a collision. 

It runs faster than the real clock.4 In our experi- 

ments, we set the KS of a message to the deadline of 

its transaction. 

IEEE 802.5 Token Ring Protocol. In this protocol, 

the token contains a priority field and a reservation 

field. A node that has a ready message has to wait 

until it captures the free token with a priority less 

than or equal to its priority. The node can try to 

reserve the next token by writing its message priority 

into the token’s reservation field. However, if a 

higher priority has already been claimed in the 

reservation field, the node is not allowed to update 

it. Following a message transmission, the sender 

node generates a free token with the priority that 

has been reserved, if any; otherwise, the priority 

field of the free token is set at the present priority 

level. 

The VTCSMA/CD protocol has the implementa- 

tion overhead of delaying the transmission of a 

ready message until the VS of the message becomes 

equal to the virtual clock. Implementing the IEEE 

802.5 token ring protocol, on the other hand, in- 

volves an extra processing cost due to comparing the 

priority of a ready message against the priority field 

or the reservation field of the token, and setting 

those fields whenever the conditions hold.5 

The first experiment investigated the performance 

of the real-time network access protocols for varying 

transaction loads (and thus varying message loads). 

The iat parameter was varied from 300 to 460 msec- 

onds in steps of 40. PI was the concurrency control 

4Zhao and Ramamritham (1987) provides experimentally the 
best values for the rate at which the virtual clock runs under 
different loading conditions. 

51n our experiments, this extra cost is simulated explicitly by 
doubling the value of node_Zatenq each time a node needs to 
check or set the priority/reservation fields of the token. 

protocol used in the 

mance characteristics 

OPT). 

In Figures 3 and 
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experiments (similar perfor- 

were observed for protocol 

4, the performance results 

are compared to those obtained with protocols 

CSMA/CD and token ring which do not involve 

real-time priorities in scheduling the transmission of 

messages. Although both real-time network access 

protocols were observed to provide an improvement 

over the performance of their nonreal-time counter- 

parts under high levels of transaction load, the im- 

provement provided by VTCSMA/CD over 

CSMA/CD was not significant. The channel access 

delay experienced due to the implementation of a 

virtual clock prevents protocol VTCSMA/CD to 

become more effective in terms of the real-time 

performance. Under low levels of transaction load, 

the real-time network access protocols perform 

worse than their nonreal-time counterparts. This 

result shows that when the number of messages 

contending for channel access is small (as a result of 

low transaction load), the performance advantage 

gained by the real-time protocols is outweighed by 

their implementation overhead. In conclusion, if the 

system is characterized by low transaction load, it is 

not worthwhile to use a network access protocol that 

exploits the real-time priorities. 

In another experiment, it was evaluated how suc- 

cessful the transactions are in satisfying their dead- 

lines under different levels of data replication. In 

conducting data replication experiments, we consid- 

ered two different application environments, each 

characterized by the fraction of update transactions 

processed. The majority of the transactions in the 

first application are read-only (update transaction 

percentage: 25%), while the second application is 

dominated by update transactions (update transac- 

1.0 
1 

0.5 I I I 1 I 

300 340 360 420 460 

IAT (-) 

Figure 3. Success_rufio results for network access proto- 
cols token ring and IEEE 802.5. 



58 J.SYSTEMSSOFIWARE 

1997; 37:49-60 
6. Ulusoy 

300 340 380 420 480 

IAT 

Figure 4. Success_ratio results for network access proto- 
cols CSMA/CD and VTCS~/CD. 

tion percentage: 75%). In evaluating the effects of 

level of data replication on system performance, the 

number of replicas of each data item (N) was varied 

from 1 to nr_of_sites (nr_of_sites = 10). Remem- 

ber that the consistency of replicated data is pro- 

vided through the read-one, write-all-available 

scheme. A read operation requires a remote access 

if a copy of the required data item does not reside 

locally. In this experiment, the mean interarrival 

time value (iat) was fixed at 400 msec. 

The comparative performance results of network 

access protocols token ring and IEEE 802.5 are 

displayed in Figures 5 and 6 for two different appli- 

cation environments. With the first application envi- 

ronment, where read-only transactions predominate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O.,M 

123456789. 

NUMBEROF REPLICAS 

Figure 5. Success_rutio vs N (number of data replicas) 
for network access protmls token ring and IEEE 802.5 in 
an execution environment where read-only transactions 
predominate. 

- Token ring 

* -*IEEE 802.5 

12 3 4 5 e 7 8 9 10 

NUMBEROFREPLICAS 

Figure 6. Success_ruzio vs N (number of data replicas) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for network access protocols token ring and IEEE 802.5 in 
an execution environment where update transactions pre- 
dominate. 

the fraction of satisfied deadlines is at a higher level 

(Figure 5) compared to the other application envi- 

ronment where the majority of transactions are of 

update type (Figure 6). The number of conflicts 

among the transactions increases when the fraction 

of update operations becomes higher, which results 

in a degradation in the performance of the RTDBS. 

In Figure 5, with both protocols token ring and 

IEEE 802.5, an improvement in the performance is 

observed up to a certain point by increasing the data 

replication level. This improvement is due to the 

increasing number of local read operations that leads 

to a decrease in network traffic. After a certain 

number of replicas, further improvement is not pos- 

sible because the overhead of multiple copy updates 

(although they are infrequent) outweighs the perfor- 

mance benefits of the local read operations. With 

the query-oriented application environment, IEEE 

802.5 protocol provides better performance than the 

conventional token ring protocol when the level of 

data replication is low. This shows that, in an execu- 

tion environment where most of the transaction 

operations require remote accesses, it is advanta- 

geous to make use of real-time priorities of commu- 

nication messages in scheduling their accesses to the 

communication channel. 

Figure 6 provides the real-time performance re- 

sults for the application environment where most of 

the transactions are of update type. A considerable 

degradation in performance is observed if the level 

of data replication is increased beyond 3. The over- 

head of update synchronization among the multiple 

copies of updated data increases with each addi- 

tional data copy. More communication messages 
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need to be exchanged among sites to provide update 

synchronization. It is evident from the comparative 

performance results displayed for protocols token 

ring and IEEE 802.5 that involving real-time priori- 

ties in scheduling network accesses reduces the steep 

degradation in real-time performance which is expe- 

rienced as the number of data copies (and thus the 

number of communication messages) increases. 

When the experiment was repeated with the car- 

rier-sense network access protocols, the results ob- 

tained for the comparative performance of protocols 

CSMA/CD and VTCSMA/CD were qualitatively in 

agreement with the results of token ring and IEEE 

802.5. However, it was observed that, under an up- 

date-dominant execution environment, data replica- 

tion has more crucial effects on the real-time perfor- 

mance with the carrier-sense protocols CSMA/CD 

and VTCSMA/CD. The drop in success_rutio as a 

result of increasing the level of replication beyond a 

few is more steep (see Figure 7) compared to the 

results of ring protocols and the results obtained 

with the constant message overhead assumption 

(Ulusoy, 1994). For high levels of replication, large 

number of messages need to be exchanged for up- 

date synchronization which, as we discussed before, 

leads to poor performance for carrier-sense proto- 

cols. 

4. CONCLUSIONS 

In this article, we have studied the effects of under- 

lying network architecture on the performance of 

distributed RTDBSs. In particular, we have exam- 

ined the relative performance of various network 

- CSMA/CD 

(f - 4 VTCSMA/C 

0.41 , 1 , , , , , ,y 

12 3 4 5 6 7 8 9 10 

NUMBER OF REPLICAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Success_ruti vs N (number of data replicas) 
for network access protocols CSMA/CD and 
VTCSMA/CD in an execution environment where update 
transactions predominate. 

access protocols and analyzed the performance 

tradeoffs involved. We have also addressed the ques- 

tion of how realistic the assumption of constant 

network delay is for distributed RTDBSs. 

A detailed simulation model of a distributed RT- 

DBS used in an earlier work (Ulusoy, 1994) has been 

extended to capture the important features of a 

communication network. Real-time performance of 

distributed transactions has been evaluated in terms 

of the fraction of satisfied deadlines under two dif- 

ferent network architecture types: carrier-sense mul- 

tiple access networks and token ring networks. In 

addition to two conventional network access proto- 

cols (i.e., CSMA/CD and token ring), two real-time 

network access protocols (i.e., virtual time carrier- 

sense multiple access (VTCSMA/CD) and IEEE 

802.5 token ring) have also been considered in our 

evaluations. The experiment results have shown that 

the real-time network access protocols, that involve 

timing constraints of communication messages in 

scheduling their channel access requests, do not 

necessarily yield better performance under all possi- 

ble conditions. Performance of the protocols is highly 

dependent on current load and other characteristics 

of the distributed RTDBS. The real-time network 

access protocols help transactions meet their dead- 

lines under high levels of transaction load. When the 

transaction load in the system increases, the differ- 

ence between the performances obtained with real- 

time protocols and their nonreal-time counterparts 

becomes much more pronounced. The performance 

improvement provided by IEEE 802.5 over tradi- 

tional token ring protocol has been observed to be 

at a higher level compared to the improvement of 

VTCSMA/CD over CSMA/CD. If the underlying 

execution environment is update-dominant, real-time 

protocols yield better performance when multiple 

copies of data items are being stored in the system. 

On the other hand, for query-dominant execution 

environments, the performance of the protocols is 

better than their nonreal-time counterparts only if 

at most a few copies of each data item is being 

stored. For all other conditions, which typically cor- 

respond to low loads of communication messages, it 

is not worthwhile to use a real-time network access 

protocol. Under such conditions, the performance 

benefit gained by exploiting real-time priorities is 

outweighed by the implementation overhead of those 

protocols. 

Another interesting observation made in our ex- 

periments is that neglecting to model the underlying 

network in detail can lead to different conclusions. 

For various conditions tested, the carrier-sense and 
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token ring network architectures have led to differ- 

ent performance results than those obtained with 

the constant message overhead assumption. 
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