
An Evaluation of Network Access Protocols

for Distributed Real-Time Database Systems*

ijzgiir Ulusoy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Department of Computer Engineering and Information Science, Bilkent University, Bilkent, Ankara 06533, Turkey

The results of a considerable number of works ad-

dressing various features of real-time database sys-

tems (RTDBSS) have recently appeared in the litera-
ture. An issue that has not received much attention

yet is the performance of the communication network

configuration in a distributed RTDBS. In this article,

we examine the impact of underlying network archi-

tecture on the performance of a distributed RTDBS. In

particular, we evaluate the real-time performance of

distributed transactions in terms of the fraction of

satisfied deadlines under various network access

strategies. We also critically examine the common

assumption of constant network delay for each com-

munication message exchanged in a distributed RT-

DBS. 0 1997 by Elsevier Science Inc.

1. INTRODUCTION

A real-time database system (RTDBS) is designed to

provide timely response to the transactions of data-

intensive applications. Each transaction processed in

a RTDBS is associated with a timing constraint

typically in the form of a deadline. The research in

distributed RTDBSs has focused on development and

evaluation of new time-cognizant scheduling tech-

niques that can provide good performance in terms

of the fraction of satisfied timing constraints. Sha et

al. (1991) presented two new real-time concurrency

control protocol techniques, called priority inheri-

tance and prior@ ceiling, and studied their perfor-

mance through simulations. Son and Chang (1990)

investigated methods to apply the priority-ceiling as

a basis for real-time locking protocol in a distributed

-

*An earlier version of this paper was presented at the First
International Workshop on Active and Real-Time Database Sys-
tems, Sk&de, Sweden, 1995.

Address correspondence to Dr. &giir Ulusoy, Depattment of Com-
puter Engineering and Information Science, Bilkent Universi&
Bilkent, Adam 06533, Turkey.

environment. Some techniques to increase the avail-

ability in a partitioned distributed RTDBS were

introduced in Lin and Lin (1988). In Ulusoy and

Belford (19921, we described several distributed

real-time concurrency control protocols and re-

ported the relative performances of the protocols in

a nonreplicated database environment. Soparkar et

al. (1992) presented an adaptive commit protocol for

distributed RTDBS transactions.

In Ulusoy (1994), we investigated the impact of

storing multiple copies of data on satisfying the

timing constraints of transactions. Various experi-

ments were conducted to observe the performance

characteristics of different applications as a function

of level of replication. Each application was distin-

guished by the type and data access distribution of

the processed transactions. A detailed performance

model of a distributed database system was em-

ployed in evaluating the effects of various workload

parameters and design alternatives on the system

performance. The effects of site failures were also

studied to estimate how much replication is needed

to provide a reliable processing environment for

real-time transactions of different applications.

One interesting question that arises in designing a

distributed RTDBS is, “How is the system perfor-

mance dependent on various characteristics of the

communication network connecting data sites?”

None of the performance works mentioned above

examined the effects of network architectures and

protocols on distributed RTDBS performance. The

common approach in all those studies was modeling

the network as a FIFO server with a fixed service

rate independent of the current load and other

characteristics of the network.

The effects of networking parameters and com-

munication protocols on “traditional” distributed

database systems were investigated by a couple of

J. SYSTEMS SOFTWARE 1997; 37:49-60
0 1997 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

01&l-1212/97/$17.00
PI1 SO164-1212(96xKx143-X

50 J. SYSTEMS SOFIWARE
1997; 3749-60

researchers. Sheth et al. (1985) studied the effect of

various network parameters on the performance of

distributed database systems. They used an analyti-

cal model to estimate the delays in communication

channels of a long haul network supporting the

distributed database system. They showed that the

constant transmission time assumption cannot be

justified in many cases and that the response time is

sensitive to the parameters such as network traffic,

network topology, and capacity of communication

channels. Ozsu and Niu evaluated the effects of

network protocols on the performance of some dis-

tributed concurrency control algorithms (6zsu and

Niu, 1992). Two network protocols, CSMA/CD and

token ring, were involved in the evaluations.

In this article, we describe a simulation study of

several network access protocols in a distributed

RTDBS and address various performance issues. To

our knowledge, our work is the first attempt to

investigate performance characteristics of the com-

munication network configuration in a distributed

RTDBS. Among the questions studied in this work

are

How the performance results obtained with con-

stant network delay assumption are affected when

the overhead of message transmission is simulated

in detail?

Which network protocol is the most suited to be

used by distributed RTDBSs? What are the basic

factors that determine the performance of net-

work protocols in a distributed RTDBS environ-

ment?

Under what conditions is it worthwhile to use

real-time network protocols (i.e., protocols that

involve timing constraints of communication mes-

sages in scheduling their channel access requests)?

The remaining sections are structured as follows.

In Section 2, the distributed RTDBS model used in

our simulations is presented. Section 3 describes a

set of experiments together with our initial findings.

It is evaluated in those experiments how the under-

lying communication network configuration affects

the real-time performance of distributed transac-

tions. In Section 4, we conclude our results.

2. MODELING A DISTRIBUTED RTDBS

The performance model is an extension of the model

of a distributed RTDBS used in an earlier work of

ours (Ulusoy, 1994). The goal of that work was to

examine the impact of data replication on the per-

6. Ulusoy

formance of a RTDBS and to analyze the perfor-

mance trade-offs involved. In that work, we used a

data distribution model which provided a partial

replication of the distributed database. The model

enabled us to execute the system at precisely speci-

fied levels of data replication. Each data item was

assumed to have N copies in the distributed system,

where N can take a value between one and the

number of data sites.

Neglecting to model the communication network

in detail, in the performance experiments of Ulusoy

(19941, it was assumed that the network has enough

capacity to carry any number of messages at a given

time, and the delay of a communication message

between any two data sites is constant. To investi-

gate the issues related to the underlying communica-

tion network of a distributed RTDBS, we have ex-

tended the system model with a network manager

module which accurately simulates the behavior of

communication messages exchanged among data

sites. The physical structure of the RTDBS model is

shown in Figure 1. It is composed of a number of

data sites interconnected by a local communication

network. Each data site contains a transaction gen-

erator, a transaction manager, a resource manager,

a scheduler, a buffer manager, and a recovery man-

ager.

The transaction generator is responsible for gen-

erating the workload for each data site. The arrivals

at a data site are assumed to be independent of the

arrivals at the other sites. Each transaction is char-

acterized by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcriticalness and a deadline. The criti-

calness of a transaction is an indication of its level of

importance (Biyabani et al., 1988). It is assumed that

each transaction is associated with one of m possi-

ble levels of criticalness. The most critical transac-

tions are assigned the highest level. Assignment of

criticalness to a new transaction follows a uniform

distribution; i.e., the criticalness of the transaction is

chosen randomly from the set {l, 2,. . . , ml. The

deadline of a transaction specifies a certain time in

the future the transaction has to be completed be-

fore. The transaction deadlines are firm; i.e., trans-

actions that miss their deadlines are aborted and

disappear from the system. Criticalness and deadline

are two independent characteristics of RTDB trans-

actions (Huang et al., 1989; Haritsa et al., 1991). A

close deadline does not necessarily imply more criti-

calness. The transaction manager at the originating

site of a transaction T assigns a real-time priority to

transaction T based on its criticalness CC,), dead-

line (Dr), and arrival time (AT). The priority

of transaction T is determined by the following

An Evaluation of Network Access Protocols J. SYSTEMS SOFl’WARE 51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1997; 37:49-60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1. Distributed RTDBS structure.

SITE #l

network manager

SITE #nT_Of _SiteS

formula

P, =
CT

D,-A;

The priority formula gives equal weight to critical-

ness and relative deadline. If any two transactions

originating from the same site carry the same prior-

ity, any scheduling decision between those transac-

tions favors the more critical one; if the transactions

are of the same criticalness as well, the transaction

with closer deadline is scheduled first. To guarantee

the global uniqueness of the priorities, the id of the

originating site is appended to the priority of each

transaction.

Each distributed transaction exists in the system

in the form of a master process that executes at the

originating site of the transaction and a number of

cohorts that execute at various sites where the copies

of required data items reside. A cohort can be

defined as a process that performs operations of its

transaction on data items stored at a remote site.

The transaction can have at most one cohort at each

data site. The transaction manager is responsible for

creating a master process for each new transaction

and specifying the appropriate sites for the execu-

tion of the cohort processes of the transaction. The

operations of a transaction are executed in a se-

quential manner, one at a time. For each operation

executed, a global data dictionary is referred to find

out the locations of the data item referenced by the

operation. Each data site is assumed to have a copy

of the global data dictionary. After determining

which data sites should be accessed for the opera-

tion, a cohort process at each of those sites is

initiated (if it does not exist already) by the master

process to perform the operation in the name of the

transaction. Previously created cohorts at those sites

are just activated to perform the operation. After

the successful completion of an operation, the next

operation in sequence is executed by the appropri-

ate cohort(s). When the last operation is completed,

the transaction can be committed. The priority of a

transaction is carried by all of the cohorts of the

transaction.

The effects of a distributed transaction on the

data must be made visible at all sites in an all or

nothing fashion. The so called atomic commitment

property can be provided by a commit protocol

which coordinates the cohorts such that either all of

them or none of them commit. It is also necessary in

a distributed database system to ensure that mutual

consistency of the replicated data is provided; in

other words, replicated copies must behave like a

single copy. This is possible by preventing conflicting

accesses on the different copies of the same data

item and by making sure that all data sites eventu-

ally receive all updates (Garcia-Molina and Abbott,

19871. In our model, the atomic commitment .of

distributed transactions is provided by the central-

ized two-phase commit protocol (Bernstein et al.,

19871, while the mutual consistency of replicated

data is achieved by using the read-one, write-all-auail-

able scheme (Bernstein and Goodman, 1984).

Access requests for data items are ordered by the

scheduler on the basis of the concurrency control

protocol executed. An access request of a cohort

52 J. SYSTEMS SOFTWARE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1997;37:49-60

may result in blocking or abort of the cohort due to

a data conflict with other cohorts executed’concur-

rently. The scheduler at each site is responsible for

effecting aborts, when necessary, of the cohorts exe-

cuting at its site. When a cohort completes its data

access and processing requirements, it waits for the

master process to initiate two-phase commit. The

master process commits a transaction only if all the

cohort processes of the transaction run to comple-

tion successfully, otherwise it aborts and later restarts

the transaction. A restarted transaction accesses the

same data items as before and is executed with its

original priority.

IO and CPU services at each site are provided by

the resource manager. IO service is required for

reading or updating data items, while CPU service is

necessary for processing data items and communica-

tion messages. Both CPU and IO queues are orga-

nized on the basis of real-time priorities, and pre-

emptive-resume priority scheduling is used by the

CPU at each site. The CPU can be released by a

cohort process either due to a preemption, when the

process commits or it is blocked/aborted due to a

data conflict, or when it needs an IO or communica-

tion service. Communication messages are given

higher priority at the CPU than data processing

requests.

Local deadlocks are detected by maintaining a

local Wait-For Graph (WFG) at each site. Local

deadlock detection is performed by the scheduler

each time an edge is added to the graph (i.e., when a

cohort is blocked). For the detection of global dead-

locks a global WFG is used which is constructed by

merging local WFGs. One of the sites is employed

for periodic detection of global deadlocks. A dead-

lock is recovered from by selecting the lowest prior-

ity cohort in the deadlock cycle as a victim to be

aborted. The master process of the victim cohort is

notified to abort and later restart the whole transac-

tion.

Table 1 provides the set of parameters used in

specifying the configuration and workload of the

distributed RTDBS. The communication network

parameters, not listed in this table, will be discussed

in the next section. Each data item has exactly N

copies in the distributed system, where 1 I N I

nr_of_sites. Each data site can have at most one

copy of a data item. The remote copies of a data

item are uniformly distributed over the remote data

sites; in other words, the remotesites for the copies

of a data item are chosen randomly.

Slackfactor is the parameter used in assigning

deadlines to new transactions. The slack time of a

transaction is chosen randomly from an exponential

6. Ulusoy

Table 1. Distributed RTDBS Model Parameters

Configuration Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w-of-sites

local-db-size
N

mem_size

cpu-rate

instr-process-item

disk-access-time

pti-assign-cost

lookup-cost

number of data sites

database size originated at each site
number of copies of each data item
size of the memory buffers used to hold

data items at each site

instruction rate of CPU at each site (MIPS)
number of instructions to process each

data item
average disk seek + transfer time of a

data item (msec)
CPU cost of priority assignment

(instructions)
CPU cost of locating a data item

(instructions)

Transaction Parameters

iat mean transaction interarrival time at a site
tr-type-prob fraction of update type transactions
tr-length mean number of data items accessed by a

transaction
data-update-prob fraction of updated data items by an update

transaction
slack-factor average slack-time/processing-time for a

transaction

distribution with a mean of sluck_factor times the

estimated processing time of the transaction. While

the transaction generator uses the estimation of

transaction processing times in assigning deadlines,

we assume that the system itself lacks the knowledge

of processing time information. The deadline of a

transaction T is determined by the following for-

mula

D,=A,+PE,+S,

where

S, = e.xpon(slack-factor * PE,).

A,, PE,, and S, denote the arrival time, processing

time estimate, and slack time of transaction T, re-

spectively. The formula used to determine the pro-

cessing time estimate of a transaction in an un-

loaded system is provided in Ulusoy (1994).

2.1. The Communication System

There is no globally shared memory in the system,

and all sites communicate via message exchanges

over the communication network. The network man-

ager is responsible for the transmission of messages

among data sites. The message switching component

of a data site is called a node.

The assumptions of our communication system

model are

An Evaluation of Network Access Protocols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 2. Communication Network Parameters.

Communication Parameters

nw_bandwidth network bandwidth (Mbps)
mes-size message size (bytes)
instr-init-mes CPU cost to initialize sending/receiving a

message (instructions)
ins@_per-mes-byte CPU cost of sending/receiving each byte

of a message (instructions)

The size of the buffers used to hold messages at

nodes are infinite; thus, no message loss is experi-

enced due to buffer overflows.

The communication network is error-free. There-

fore, there is no loss of messages and no retrans-

mission is required. Issues such as reliability and

fault recovery in communication systems are be-

yond the scope of this article.

Table 2 lists the communication parameters of

the distributed RTDBS model. The parameter

nw_bandwidth specifies the speed of the network,

i.e., the number of bits that can be transmitted per

second. Mes_size is the length of each message

exchanged between the nodes. Each message is pro-

cessed at its source site prior to its transmission and

at its destination site after being received. The mes-

sage processing overhead, in terms of the number of

CPU instructions is simulated using the parameters

instr_init_mes and instr_per_mes_byte. The first of

these two parameters corresponds to the initializa-

tion cost of transmitting or receiving each message.

The second parameter specifies the processing cost

of each byte of a message at the source or destina-

tion site.

The average CPU delay and network delay experi-

enced by each message can be estimated by using

the communication parameters

CPU-delay

= 2* & (in&r-init-mes + mes_size

* instr_per_mes_byte) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. SYSTEMS SOFTWARE 53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1997; 37~49-60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1
networkdelay =

nw-bandwidth
* 8 * mes-size . (2)

CPU_deluy corresponds to the total processing cost

of a message (i.e., sum of the processing costs at

both its source site and destination site).

There exist different types of communication mes-

sages exchanged to control the execution of a trans-

action. The message types generated for a particular

transaction T are described in Table 3. In the table,

the source and destination of each message type are

specified using the following notation

TM(S): The transaction manager at site S.

MP(T): Master process of transaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT.

ES(C): Execution site of cohort C.

The discussion of the message types specific to

various concurrency control protocols employed in

performance experiments is deferred to Section 3.1

which provides the performance results obtained

with different concurrency control protocols.

Two different network architecture types are con-

sidered in our work: carrier-sense multiple access

networks and token ring networks. The Carrier-Sense

Multiple Access with Collision Detection

(CSMA/CD) is the first network access protocol we

explored. In a multiple access network, messages are

transmitted on a shared communication channel.

Only one message can be successfully transmitted

over the channel at any time. In carrier-sense net-

works, each node that wants to transmit a message

should first listen to the communication channel. If

any transmission is in progress, the node defers its

transmission until the end of the current transmis-

sion. Collisions can occur due to the nonzero pro-

pagation delay of the communication channel.

CSMA/CD protocol provides detection of message

collisions. Upon detection of a collision, transmis-

sion is aborted and the node schedules its message

for the retransmission. The time period over which

the node schedules retransmission is doubled each

time the message experiences a collision (Bux, 1981).

Table 3. Message Types Generated for Transaction T

Message type Source

initiate-cohort ME’(T)

activafe-opera&m MHT)
operation_complete TM(ES(C))

vote-request MP(T)

partkipantdecision TME2xCN

finaLdecision MP(T)

Destination

TI@3XCN

TM(ES(C))
MP(T)

-I’MES(CN

ME’(T)

TMES(CN

Function

To initiate the execution of
cohort C of transaction T.

To activate an operation of cohort C.
To indicate that the current operation

of cohort C has been completed.
To initiate the two-phase commit

protocol for T.

To reply the uore-request message. The message
carries the commit/abort decision of a cohort site.

To indicate the final (commit/abort) decision for
the commitment of T.

54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. SYSTEMS SOFTWARE

1997; 37:49-60

0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuhlsoy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4. Parameters Specific to the Carrier-Sense
Multiple Access Network Model

Table 5. Parameters Specific to the Token Ring
Network Model

CSMA / CD Parameters Token Ring Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

csma-prop-delay

csma-channel-length

end-to-end propagation delay ring-prop-delay

length of the communication node-latency

channel (bits) ring-length

The parameters specific to our CSMA/CD net-

work model are provided in Table 4. The model

assumes that time is slotted and nodes can only start

transmitting messages at the beginning of each slot.

Coma _prop_delay denotes end-to-end propagation

delay of the communication channel. The parameter

csma_channel_length specifies the length of the

channel in bits (i.e., the maximum number of bits

being transmitted on the channel at any instant).

The length of a slot is considered to be equal to

csma_prop_deluy; thus, a transmission at the begin-

ning of a slot is recognized by all nodes prior to the

next slot. A collision can occur only between the

messages that are transmitted at the same slot.

Token ring is the other network access protocol

adapted to our communication system. In a token

ring, access to the communication channel is con-

trolled by passing a special frame, called token,

around the ring. When no message is in transmis-

sion, a free token circulates around the ring. When a

node becomes ready to transmit a message, it

changes the token to busy and puts its message onto

the ring. The sending node is responsible for remov-

ing its own message from the ring. At the end of its

transmission, the node passes the access permission

to the node down stream by generating a new free

token. Because there is only one token on the ring

at any time, there is no contention among the nodes

to access the ring (Bux, 1981).

Table 5 describes the additional communication

parameters for the token ring model. Ring_prop_de-

lay specifies the propagation delay of messages from

one node to another. It is assumed that all nodes are

equally distanced on the ring. Each message is passed

from one node to another on its path from source

site to destination site. Each node passes the mes-

sage on after a short delay, which is specified by

parameter node-latency. The token circulates

around the ring in a time equal to the sum of

propagation delays between nodes plus the sum of

node latencies.

3. SIMULATION EXPERIMENTS

The simulation program, capturing the details of the

distributed RTDBS model, was written in CSIM

node-to-node propagation delay
delay at each node

total length of the ring (bits)

(Schwetman, 19861, which is a process-oriented sim-

ulation language based on the C programming lan-

guage.

Table 6 presents the default parameter values

used in each of the experiments. All sites of the

system were assumed identical and operating under

the same parameter values. It was assumed that one

CPU and one disk unit exist at each data site. The

settings used for configuration and transaction pa-

rameters were basicly taken from our earlier experi-

ments (Ulusoy, 1994). It was intended by those set-

tings to execute the transactions under high levels of

data contention. The default values used for the

communication parameters can be accepted as rea-

sonable approximations of what can be expected

from today’s local communication networks. The

value of csmu_prop_deluy is determined as follows

csma-prop-delay =
csma-channel-length

nw- bandwidth

= 5 * 10e3msec.

Table 6. Performance Model Parameter Values

Configuration Parameters

nr-of-sites

local-db-size

N

mem-size

cpu-rate

in.W _process_item

diskaccess_time

prLassign_cost

lookup_cost

Transaction Parameters

10
200 data items
5
500
2Ci MIPS

160004 instructions
18 msec
20000 instructions
20000 instructions

iat

tr-type-prob

tr-length

data-update-prob

slack-factor

Communication Parameters

400 msex (exponential)
.5

6

.5

5 (exponential)

w-bandwidth

mes-size
instr-init-mes

instr_per-me-byte

csma-channel-length

node-latency

ring-length

10 Mbps
512 bytes
20000 instructions
3 instructions
50 bits
0.5 * 10e3 msec

50 bits

An Evaluation of Network Access Protocols J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEMS SOFlWAFCE 55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1997; 3249-60

Similarly, the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAring_prop_deZuy can also be

found using the other network parameter values.

ring-prop-delay =
ring-length

m-of-sites * nw-bandwidth

= 0.5 * 10P3msec.

The performance metric we used, i.e.,

success_rutio, combines the performance measure-

ments of all criticalness levels, in terms of the frac-

tion of satisfied deadlines, using a specific weight for

each level. This metric is defined as follows

success_ratio = X 1w, ;r-ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,

I lW,

where

i: Criticalness level.

m: Total number of criticalness levels (m = 3 in our

simulations).

wi: Weight of criticalness level i.

success_rutiq: Fraction of satisfied deadlines for the

transactions of criticalness level i.

The determination of the weights of criticalness

levels is highly dependent on the particular applica-

tion environment (Biyabani et al., 1988). We used

linearly increasing weights; i.e.,

w, = i, (i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2 ,..., m).

For each experiment, the final results were evalu-

ated as averages over 25 independent runs. Each run

continued until 1000 transactions were executed at

each data site. Ninety percent confidence intervals

were obtained for the performance results. The width

of the confidence interval of each data point is

within 4% of the point estimate. In displayed graphs,

only the mean values of the performance results are

plotted.

3.1. Evaluation of Concurrency Control Protocols

In Ulusoy (19941, we evaluated the performance of a

number of RTDBS concurrency control protocols

under different levels of transaction load. The proto-

cols were different in the way real-time priorities of

transactions are involved in scheduling data access

requests. Concurrency control protocols that employ

restarts in resolving conflicts (e.g., optimistic proto-

cols), exhibited better performance than the proto-

cols that use blocking (e.g., locking protocols) when

the system was lightly loaded (i.e., for large iut

values). With optimistic protocols, there is no over-

head of transaction blocking due to data conflicts

until commit time. Because the number of conflicts

is small under low load levels, only a few transac-

tions fail to be validated at commit time. On the

other hand, when the transaction load was high, the

performance of restart-based protocols was worse

compared to blocking-based ones. The overhead of

executing a concurrency control protocol that uses

restarts in resolving conflicts was observed to be

higher than that of a blocking-based protocol due to

the large number of restarts experienced under high

levels of system load.

The same experiment is repeated here to see how

the results obtained are affected when the transmis-

sion of communication messages are implemented in

full detail. We categorize the concurrency control

protocols into two classes as locking protocols that

use blocking in resolving congicts and optimistic

protocols that are based on restarting. This section

provides the results for one protocol from each class

chosen as representative. We first provide a brief

description of each protocol together with the sum-

mary of the performance results obtained with the

constant message transmission and service times as-

sumption.

Priority Inheritance protocol (PI). The priority

inheritance method, proposed in Sha et al. (19911,

ensures that when a transaction blocks higher prior-

ity transactions, it is executed at the highest priority

of the blocked transactions; in other words, it inher-

its the highest priority. The aim is to reduce the

blocking times of high priority transactions.

Optimistic Wait-50 protocol (OPT). OPT is an

optimistic concurrency control protocol incorporat-

ing real-time priorities of transactions (Haritsa et

al., 1990). The validation check for a committing

transaction is performed against the executing trans-

actions and if the write-set of the validating transac-

tion intersects with the read-set of one of the execut-

ing transactions, these two transactions are said to

be in conflict. The proposed protocol uses a 50%

rule as follows. If half or more of the transactions

conflicting with a committing transaction are of

higher priority, the transaction is made to wait for

the high priority transactions to complete; otherwise,

it is allowed to commit while the conflicting transac-

tions are aborted. While the transaction is waiting, it

is possible that it will be restarted due to the commit

of one of the conflicting transactions with higher

priority. The validation check for a transaction is

performed at each data site where a cohort of the

transaction has been executed.

The concurrency control protocols were found to

be somewhat different in their sensitivity to the

constant message overhead assumption. Table 7 pro-

0. Ulusoy 56 J. SYSTEMJ SOFTWARJZ
1997; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA37~49-60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 7. Improvement in success-ratio by PI over OPT.

~protocol,iat+ 300 340 380 420 460

No access protocol 17% 11% 5% -1% -2%

CSMA / CD 12% 7% 3% -2% -3%
Token Ring 16% 10% 7% -1% -3%

Improvement is shown under varying average transaction interar-
rival time iar (in msec) with the constant message overhead assump-
tion, the nehvork access protocol CSMA/CD, and the token ring.

vides the improvement in success_ratio obtained

with concurrency control protocol PI over protocol

OPT under various network access strategies.’ The

line indexed by “No access protocol” provides the

evaluation results obtained without employing a spe-

cific network access protocol in transmitting mes-

sages.’ When the token ring protocol was employed,

the comparative performance results of PI and OPT

under different system loads were not much differ-

ent from those obtained without implementing the

details of a network protocol. On the other hand,

when CSMA/CD was employed, the performance

improvement provided by PI over OPT under high

transaction loads was at a lower level. This result

might be due to larger number of communication

messages involved in implementing the concurrency

control protocol PI. The protocol requires that

whenever a cohort of a transaction inherits a prior-

ity, the scheduler at the cohort’s site notifies the

transaction’s master process by sending a priority

inheritance message which contains the inherited

priority. The master process then propagates this

message to the sites of other cohorts that belong to

the same transaction, so that the priority of the

cohorts can be adjusted.3 With protocol OPT, on the

other hand, no extra messages are involved for con-

currency control because the information necessary

for the validation of a transaction is piggybacked on

the messages of the two-phase commit protocol. The

larger number of messages issued with PI affects the

comparative performance of protocols when

CSMA/CD is employed. The degradation in the

performance of protocol PI can be explained by the

‘The range (300 msec, 460 msec) of iut values used in the
experiments corresponds to an expected CPU utilization of about
90 to .59 at each data site Wlusoy, 1992).

21n those evaluations, the constant values used to simulate the
delay of a communication message between any two sites and the
CPU time to process a communication message were determined
using Equations (1) and (2).

3The other locking protocols also require exchange of various
kinds of control messages between sites during the execution of a

transaction. .

waste of time experienced due to message collisions

with CSMA/CD. The number of collisions increases

as more messages contend for channel access.

Figure 2 displays the real-time performance re-

sults of concurrency control protocols PI and OPT

with network access protocols CSMA/CD and to-

ken ring. For low levels of transaction load (i.e.,

large iat values), CSMA/CD leads to slightly better

performance for both PI and OPT. The worse per-

formance of token ring can be due to the delay

experienced by ready messages while waiting for a

free token. Comparing the concurrency control pro-

tocols under high loads, it can be seen that

OPT cannot reach the real-time performance level

achieved by PI under any network access protocol.

The reason for this result, as we explained before, is

the waste of resources experienced with OPT due to

restarting failed transactions at the end of their

executions.

3.2. Evaluation of Real-Time, Network

Access Protocols

In this section, we provide an investigation of the

performance impact of employing priority-based net-

work access protocols in a distributed RTDBS. Each

message transmitted carries the priority which is

associated with its transaction. The real-time net-

work access protocols selected for evaluation

are: the virtual time CSMA/CD protocol

(VTCSMA/CD) (Zhao and Ramamritham, 19871,

and the IEEE 802.5 Token Ring protocol (Token

Ring Access Method, IEEE 802.5 Local Area Net-

work Standard, 1985).

1.n . .

300 340 380 420 460

IAT (msec)

Figure 2. Success-ratio results for concurrency control
protocols PI and OPT with network access protocols

CSMA/CD and token ring.

An Evaluation of Network Access Protocols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Virtual Time CSMA / CD Protocol. The virtual

time CSMA/CD protocol (VTCSMA/CD) was pro-

posed by Zhao and Ramamritham (1987) for real-

time communication systems. In this protocol, each

node maintains two clocks: a real time clock and a

virtual time clock. Whenever a node finds the chan-

nel to be idle, it resets its virtual clock. The message

with the minimum virtual time to start transmission

(I?$) is transmitted first. Transmission begins when

the virtual clock equals the lJS of the message. The

virtual clock stops running when transmission begins

and starts running (after resetting its value to the

time on the real clock) when the channel is idle

following completion of transmission or a collision.

It runs faster than the real clock.4 In our experi-

ments, we set the KS of a message to the deadline of

its transaction.

IEEE 802.5 Token Ring Protocol. In this protocol,

the token contains a priority field and a reservation

field. A node that has a ready message has to wait

until it captures the free token with a priority less

than or equal to its priority. The node can try to

reserve the next token by writing its message priority

into the token’s reservation field. However, if a

higher priority has already been claimed in the

reservation field, the node is not allowed to update

it. Following a message transmission, the sender

node generates a free token with the priority that

has been reserved, if any; otherwise, the priority

field of the free token is set at the present priority

level.

The VTCSMA/CD protocol has the implementa-

tion overhead of delaying the transmission of a

ready message until the VS of the message becomes

equal to the virtual clock. Implementing the IEEE

802.5 token ring protocol, on the other hand, in-

volves an extra processing cost due to comparing the

priority of a ready message against the priority field

or the reservation field of the token, and setting

those fields whenever the conditions hold.5

The first experiment investigated the performance

of the real-time network access protocols for varying

transaction loads (and thus varying message loads).

The iat parameter was varied from 300 to 460 msec-

onds in steps of 40. PI was the concurrency control

4Zhao and Ramamritham (1987) provides experimentally the
best values for the rate at which the virtual clock runs under
different loading conditions.

51n our experiments, this extra cost is simulated explicitly by
doubling the value of node_Zatenq each time a node needs to
check or set the priority/reservation fields of the token.

protocol used in the

mance characteristics

OPT).

In Figures 3 and

J. SYSTEMS SOFIWARE 57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1997; 37:49-60

experiments (similar perfor-

were observed for protocol

4, the performance results

are compared to those obtained with protocols

CSMA/CD and token ring which do not involve

real-time priorities in scheduling the transmission of

messages. Although both real-time network access

protocols were observed to provide an improvement

over the performance of their nonreal-time counter-

parts under high levels of transaction load, the im-

provement provided by VTCSMA/CD over

CSMA/CD was not significant. The channel access

delay experienced due to the implementation of a

virtual clock prevents protocol VTCSMA/CD to

become more effective in terms of the real-time

performance. Under low levels of transaction load,

the real-time network access protocols perform

worse than their nonreal-time counterparts. This

result shows that when the number of messages

contending for channel access is small (as a result of

low transaction load), the performance advantage

gained by the real-time protocols is outweighed by

their implementation overhead. In conclusion, if the

system is characterized by low transaction load, it is

not worthwhile to use a network access protocol that

exploits the real-time priorities.

In another experiment, it was evaluated how suc-

cessful the transactions are in satisfying their dead-

lines under different levels of data replication. In

conducting data replication experiments, we consid-

ered two different application environments, each

characterized by the fraction of update transactions

processed. The majority of the transactions in the

first application are read-only (update transaction

percentage: 25%), while the second application is

dominated by update transactions (update transac-

1.0
1

0.5 I I I 1 I

300 340 360 420 460

IAT (-)

Figure 3. Success_rufio results for network access proto-
cols token ring and IEEE 802.5.

58 J.SYSTEMSSOFIWARE

1997; 37:49-60
6. Ulusoy

300 340 380 420 480

IAT

Figure 4. Success_ratio results for network access proto-
cols CSMA/CD and VTCS~/CD.

tion percentage: 75%). In evaluating the effects of

level of data replication on system performance, the

number of replicas of each data item (N) was varied

from 1 to nr_of_sites (nr_of_sites = 10). Remem-

ber that the consistency of replicated data is pro-

vided through the read-one, write-all-available

scheme. A read operation requires a remote access

if a copy of the required data item does not reside

locally. In this experiment, the mean interarrival

time value (iat) was fixed at 400 msec.

The comparative performance results of network

access protocols token ring and IEEE 802.5 are

displayed in Figures 5 and 6 for two different appli-

cation environments. With the first application envi-

ronment, where read-only transactions predominate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O.,M

123456789.

NUMBEROF REPLICAS

Figure 5. Success_rutio vs N (number of data replicas)
for network access protmls token ring and IEEE 802.5 in
an execution environment where read-only transactions
predominate.

- Token ring

* -*IEEE 802.5

12 3 4 5 e 7 8 9 10

NUMBEROFREPLICAS

Figure 6. Success_ruzio vs N (number of data replicas) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for network access protocols token ring and IEEE 802.5 in
an execution environment where update transactions pre-
dominate.

the fraction of satisfied deadlines is at a higher level

(Figure 5) compared to the other application envi-

ronment where the majority of transactions are of

update type (Figure 6). The number of conflicts

among the transactions increases when the fraction

of update operations becomes higher, which results

in a degradation in the performance of the RTDBS.

In Figure 5, with both protocols token ring and

IEEE 802.5, an improvement in the performance is

observed up to a certain point by increasing the data

replication level. This improvement is due to the

increasing number of local read operations that leads

to a decrease in network traffic. After a certain

number of replicas, further improvement is not pos-

sible because the overhead of multiple copy updates

(although they are infrequent) outweighs the perfor-

mance benefits of the local read operations. With

the query-oriented application environment, IEEE

802.5 protocol provides better performance than the

conventional token ring protocol when the level of

data replication is low. This shows that, in an execu-

tion environment where most of the transaction

operations require remote accesses, it is advanta-

geous to make use of real-time priorities of commu-

nication messages in scheduling their accesses to the

communication channel.

Figure 6 provides the real-time performance re-

sults for the application environment where most of

the transactions are of update type. A considerable

degradation in performance is observed if the level

of data replication is increased beyond 3. The over-

head of update synchronization among the multiple

copies of updated data increases with each addi-

tional data copy. More communication messages

An Evaluation of Network Access Protocols J. SYSTEMS SOFIWARE 59
1997; 37~49-60

need to be exchanged among sites to provide update

synchronization. It is evident from the comparative

performance results displayed for protocols token

ring and IEEE 802.5 that involving real-time priori-

ties in scheduling network accesses reduces the steep

degradation in real-time performance which is expe-

rienced as the number of data copies (and thus the

number of communication messages) increases.

When the experiment was repeated with the car-

rier-sense network access protocols, the results ob-

tained for the comparative performance of protocols

CSMA/CD and VTCSMA/CD were qualitatively in

agreement with the results of token ring and IEEE

802.5. However, it was observed that, under an up-

date-dominant execution environment, data replica-

tion has more crucial effects on the real-time perfor-

mance with the carrier-sense protocols CSMA/CD

and VTCSMA/CD. The drop in success_rutio as a

result of increasing the level of replication beyond a

few is more steep (see Figure 7) compared to the

results of ring protocols and the results obtained

with the constant message overhead assumption

(Ulusoy, 1994). For high levels of replication, large

number of messages need to be exchanged for up-

date synchronization which, as we discussed before,

leads to poor performance for carrier-sense proto-

cols.

4. CONCLUSIONS

In this article, we have studied the effects of under-

lying network architecture on the performance of

distributed RTDBSs. In particular, we have exam-

ined the relative performance of various network

- CSMA/CD

(f - 4 VTCSMA/C

0.41 , 1 , , , , , ,y

12 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Success_ruti vs N (number of data replicas)
for network access protocols CSMA/CD and
VTCSMA/CD in an execution environment where update
transactions predominate.

access protocols and analyzed the performance

tradeoffs involved. We have also addressed the ques-

tion of how realistic the assumption of constant

network delay is for distributed RTDBSs.

A detailed simulation model of a distributed RT-

DBS used in an earlier work (Ulusoy, 1994) has been

extended to capture the important features of a

communication network. Real-time performance of

distributed transactions has been evaluated in terms

of the fraction of satisfied deadlines under two dif-

ferent network architecture types: carrier-sense mul-

tiple access networks and token ring networks. In

addition to two conventional network access proto-

cols (i.e., CSMA/CD and token ring), two real-time

network access protocols (i.e., virtual time carrier-

sense multiple access (VTCSMA/CD) and IEEE

802.5 token ring) have also been considered in our

evaluations. The experiment results have shown that

the real-time network access protocols, that involve

timing constraints of communication messages in

scheduling their channel access requests, do not

necessarily yield better performance under all possi-

ble conditions. Performance of the protocols is highly

dependent on current load and other characteristics

of the distributed RTDBS. The real-time network

access protocols help transactions meet their dead-

lines under high levels of transaction load. When the

transaction load in the system increases, the differ-

ence between the performances obtained with real-

time protocols and their nonreal-time counterparts

becomes much more pronounced. The performance

improvement provided by IEEE 802.5 over tradi-

tional token ring protocol has been observed to be

at a higher level compared to the improvement of

VTCSMA/CD over CSMA/CD. If the underlying

execution environment is update-dominant, real-time

protocols yield better performance when multiple

copies of data items are being stored in the system.

On the other hand, for query-dominant execution

environments, the performance of the protocols is

better than their nonreal-time counterparts only if

at most a few copies of each data item is being

stored. For all other conditions, which typically cor-

respond to low loads of communication messages, it

is not worthwhile to use a real-time network access

protocol. Under such conditions, the performance

benefit gained by exploiting real-time priorities is

outweighed by the implementation overhead of those

protocols.

Another interesting observation made in our ex-

periments is that neglecting to model the underlying

network in detail can lead to different conclusions.

For various conditions tested, the carrier-sense and

60 J. SYSTEMS SOFTWARE

1997; 37:49-60
6. Ulusoy

token ring network architectures have led to differ-

ent performance results than those obtained with

the constant message overhead assumption.

REFERENCES

Bernstein, P. A., and Goodman, N., An Algorithm for

Concurrency Control and Recovery in Replicated Dis-

tributed Databases, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM Transactions on Database Sys-

tems 9, 596-615 (1984).

Bernstein, P. A., Hadzilacos, V., and Goodman, N., Con-

currency Control and Recovery in Database Systems, Ad-

dison-Wesley, 1987.

Biyabani, S. R., Stankovic, J. A., Ramamritham, K., The

Integration of Deadline and Criticalness in Hard Real-

Time Scheduling, 9th Real-Time Systems Symposium,

1988, pp. 152-160.

Bux, W., Local-Area Subnetworks: A Performance Com-

parison, IEEE Transactions on Communications 29,

1465-1473 (1981).

Garcia-Molina, H., Abbott, R. K., Reliable Distributed

Database Management, Proceedings of the IEEE 75,

601-620 (1987).

Haritsa, J. R., Carey, M. J., Livny, M., Dynamic Real-Time

Optimistic Concurrency Control, 11th Real-Time Sys-

tems Symposium, 1990, pp. 94-103.

Haritsa, J. R., Carey, M. J., and Livny, M., Value-Based

Scheduling in Real-Time Database Systems, Technical

Report No. 1024, Dept. of Computer Science, Univer-

sity of Wisconsin-Madison, 1991.

Huang, J., Stankovic, J. A., Towsley, D., Ramamritham, K,

Experimental Evaluation of Real-Time Transaction

Processing, 10th Real-Time Systems Symposium, 1989,

pp. 144-153.

Lin, K_ J., and Lin, M. $I., Enhancing Availability in

Distributed Real-Time Databases, ACM SZGMOD

Record 17, 34-43 (1988).

hzsu, M. T., and Niu, Y., Effects of Network Protocols on

Distributed Concurrency Control Algorithm Perfor-

mance, 4th International Conference on Computing and

Information, 1992, pp. 274-279.

Schwetman, H., CSIM: A C-Based, Process-Oriented Sim-

ulation Language, winter Simulation Conference, 1986,

pp. 387-396.

Sha, L., Rajkumar, R., Son, S. H., and Chang, C. H., A

Real-Time Locking Protocol, IEEE Transactions on

Computers 40,793-800 (1991).

Sheth, A. P., Singhal, A., Liu, M. T., An Analysis of the

Effect of Network Parameters on the Performance of

Distributed Database Systems, IEEE Transactions on

Software Engineering 11, 1174-1184 (1985).

Son, S. H., Chang, C. H., Performance Evaluation of

Real-Time Locking Protocols Using a Distributed Soft-

ware Prototyping Environment, 10th International Con-

ference on Distributed Computing Systems, 1990, pp.

124-131.

Soparkar, N., Levy, E., Korth, H. F., and Silberschatz, A.,

Adaptive Commitment for Real-Time Distributed

Transactions, Technical Report TR-92-15, Department

of Computer Science, University of Texas at Austin,

1992.

Token Ring Access Method, IEEE 802.5 Local Area Network

Standard, IEEE Computer Society, Silver Spring, Mary-

land, 1985.

Ulusoy, G., and Belford, G. G., Real-Time Lock Based

Concurrency Control in a Distributed Database System,

12th International Conference on Distributed Computing

Systems, 1992, pp. 136-143.

Ulusoy, 6., Concurrency Control in Real-Time Database

Systems, Technical Report UIUCDCS-R-92-1762, De-

partment of Computer Science, University of Illinois at

Urbana-Champaign, 1992.

Ulusoy, G., Processing Real-Time Transactions in a Repli-

cated Database Systems, Journal of Distributed and Par-

allel Databases 2, 405-436 (1994).

Zhao, W., Ramamritham, K., Virtual Time CSMA Proto-

cols for Hard Real-Time Communication, IEEE Trans-

actions on Software Engineering 13,938-952 (1987).

