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ABSTRACT

Aim Recently developed parametric methods in historical biogeography allow

researchers to integrate temporal and palaeogeographical information into the

reconstruction of biogeographical scenarios, thus overcoming a known bias of

parsimony-based approaches. Here, we compare a parametric method, dispersal–

extinction–cladogenesis (DEC), against a parsimony-based method, dispersal–

vicariance analysis (DIVA), which does not incorporate branch lengths but

accounts for phylogenetic uncertainty through a Bayesian empirical approach

(Bayes-DIVA). We analyse the benefits and limitations of each method using the

cosmopolitan plant family Sapindaceae as a case study.

Location World-wide.

Methods Phylogenetic relationships were estimated by Bayesian inference on a

large dataset representing generic diversity within Sapindaceae. Lineage divergence

times were estimated by penalized likelihood over a sample of trees from the

posterior distribution of the phylogeny to account for dating uncertainty in

biogeographical reconstructions. We compared biogeographical scenarios between

Bayes-DIVA and two different DEC models: one with no geological constraints

and another that employed a stratified palaeogeographical model in which

dispersal rates were scaled according to area connectivity across four time slices,

reflecting the changing continental configuration over the last 110 million years.

Results Despite differences in the underlying biogeographical model, Bayes-

DIVA and DEC inferred similar biogeographical scenarios. The main differences

were: (1) in the timing of dispersal events – which in Bayes-DIVA sometimes

conflicts with palaeogeographical information, and (2) in the lower frequency of

terminal dispersal events inferred by DEC. Uncertainty in divergence time

estimations influenced both the inference of ancestral ranges and the decisiveness

with which an area can be assigned to a node.

Main conclusions By considering lineage divergence times, the DEC method

gives more accurate reconstructions that are in agreement with palaeogeographical

evidence. In contrast, Bayes-DIVA showed the highest decisiveness in

unequivocally reconstructing ancestral ranges, probably reflecting its ability to

integrate phylogenetic uncertainty. Care should be taken in defining the

palaeogeographical model in DEC because of the possibility of overestimating

the frequency of extinction events, or of inferring ancestral ranges that are outside

the extant species ranges, owing to dispersal constraints enforced by the model.

The wide-spanning spatial and temporal model proposed here could prove useful

for testing large-scale biogeographical patterns in plants.

Journal of Biogeography (J. Biogeogr.) (2011) 38, 531–550

ª 2010 Blackwell Publishing Ltd http://wileyonlinelibrary.com/journal/jbi 531
doi:10.1111/j.1365-2699.2010.02432.x



INTRODUCTION

After a long period of ‘stagnation’ following the establishment

of the vicariance paradigm and the rise to prominence of the

cladistic biogeographical school in the mid to late 20th century

(Croizat, 1952; Nelson & Platnick, 1981), the field of historical

biogeography is going through an extraordinary revolution

concerning its methods, underlying assumptions and the

questions it aims to answer (Ree & Sanmartı́n, 2009). Cladistic

biogeographical methods (also termed ‘pattern-based’; Ron-

quist, 1997) were designed to find patterns without making

any assumptions about the underlying evolutionary processes

(Ebach et al., 2003; Parenti, 2006). The latter were inferred ‘a

posteriori’ from the interpretation of results, making it difficult

to compare alternative biogeographical scenarios statistically.

‘Event-based’ methods, such as dispersal–vicariance analysis

(DIVA; Ronquist, 1997), represented an important step

forwards in that they allowed the direct identification of

events of interest to the biologist, such as dispersal, vicariance

and extinction (Ronquist, 2003). However, as in cladistic

methods, their reliance on the ‘principle of parsimony’ implied

that sources of prior evidence other than the tree topology and

the distribution of species, such as information on the times of

divergence between lineages (Donoghue & Moore, 2003) or the

connectivity of biogeographical areas through time (Sanmartı́n

et al., 2001), could not be directly incorporated into the

biogeographical analysis (Sanmartı́n et al., 2008).

In recent years a new class of parametric methods has been

developed that is not constrained by the inherent biases of the

parsimony approach (Ree & Sanmartı́n, 2009). Parametric

methods model range evolution (i.e. the change in geograph-

ical range from ancestor to descendant) as a stochastic process

with discrete states (geographical ranges) that evolve along the

branches of the phylogeny according to a probabilistic Markov

chain model. Transitions between states are assumed to occur

stochastically according to an instantaneous rate matrix (Q

matrix), whose parameters are biogeographical processes (i.e.

extinction, range expansion, dispersal) determining the prob-

ability of range evolution – by contraction, range expansion or

jump dispersal – from ancestor to descendant as a function of

time. Relative to event-based and cladistic approaches, these

methods offer the advantage that they allow the integration

into biogeographical inference of estimates of the time of

divergence between lineages. In addition, they can account for

the uncertainty in ancestral range reconstruction because all

possible biogeographical scenarios are evaluated by estimating

the relative probabilities of ancestral areas. Finally, because the

underlying stochastic models are based on well-known prob-

ability distributions, parametric approaches provide a more

rigorous statistical framework for the testing of alternative

biogeographical hypotheses than event-based methods (Ree &

Sanmartı́n, 2009; Sanmartı́n, 2010).

Recently, two new methods have been proposed that are

based on explicit parametric models of biogeographical

processes: a dispersal–extinction–cladogenesis (DEC) likeli-

hood model (Ree et al., 2005; Ree & Smith, 2008) and a

Bayesian approach to island biogeography (Sanmartı́n et al.,

2008). The former is a parametric, extended version of

dispersal–vicariance analysis that estimates by maximum

likelihood ancestral ranges, transition rates between ranges

and biogeographical scenarios of range inheritance for a group

of taxa (Ree & Smith, 2008). One of the advantages of the DEC

model is its flexibility: parameters in the transition matrix can

be scaled or modified to reflect the changing palaeogeography,

the availability of area connections (e.g. land bridges) through

time or the dispersal capabilities of the study group of interest.

One way to do this is by constraining the geographical ranges

that are valid states in the model, thus reducing the size of the

Q transition matrix. For example, one could exclude those

ranges that span more unit areas than the current geographical

range of extant species (Ree & Sanmartı́n, 2009). The DEC

model has recently been used in several studies ranging from

island scenarios (Clark et al., 2008) to Holarctic biogeography

(Smith, 2009) and Neotropical diversification (Santos et al.,

2009), while Sanmartı́n et al. (2010) recently applied the

Bayesian island biogeographical method to reconstruct the

origin of African disjunct floristic patterns (see Ree &

Sanmartı́n, 2009, for more details on the latter method,

especially in comparison with the DEC model).

Despite their potential advantages, model-based approaches

are not without their own limitations. Primary among these is

computational feasibility and how to balance this with

inferential power and increasing realism of biogeographical

scenarios. For methods allowing widespread states such as the

DEC model, the size of the Q matrix increases exponentially

with the number of areas in the analysis. Therefore, careful

area definition becomes very important with regard to the type

of question and considering alternative sources of information

such as palaeogeographical scenarios or species ecological

tolerance (Ree & Sanmartı́n, 2009).

In comparison with parametric approaches, an event-based

method such as dispersal–vicariance analysis (DIVA) offers the

advantage that it does not require any prior knowledge of the

geological history of the areas studied (i.e. the timing of
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geographical barriers and connection routes) or lineage

divergence times (Nylander et al., 2008a), and can therefore

be applied to phylogenies where branch lengths are meaning-

less or difficult to interpret (e.g. morphology-based clado-

grams). Recent comparisons between DIVA and its parametric

counterpart, the DEC model, show that for some biogeo-

graphical scenarios the two methods provide similar solutions

(e.g. Ree et al., 2005; Xiang & Thomas, 2008). Probably the

biggest limitation of DIVA, more than the optimization

algorithm itself, is the fact that ancestral areas must be

reconstructed onto a fixed and fully resolved topology. This is

problematic, because polytomies and weak nodal support are

common features in many phylogenies due to low phylogenetic

signal. To address this problem, Nylander et al. (2008a)

proposed an empirical Bayesian approach to dispersal–vicar-

iance analysis (Bayes-DIVA) that integrates DIVA biogeo-

graphical reconstructions over the posterior distribution of the

tree topology from a Bayesian Markov chain Monte Carlo

(MCMC) analysis. This approach allows an estimation of

marginal probabilities of ancestral ranges for a given node

while integrating over the uncertainty in the rest of the tree

topology. Further, accounting for the uncertainty in phyloge-

netic relationships may sometimes reduce the uncertainty in

the biogeographical reconstruction itself (Nylander et al.,

2008a). To date, Bayes-DIVA has been used in several

empirical plant studies dealing with regional scenarios (e.g.

Antonelli et al., 2009; Roquet et al., 2009; Espı́ndola et al.,

2010).

In a recent comparative study in ancestral range recon-

struction methods, Clark et al. (2008) compared parametric

versus parsimony-based approaches with biogeographical

inference in the context of island biogeographical scenarios.

They found that methods that incorporate branch lengths

and/or timing of events, such as the DEC model, gave more

plausible area range histories. They encouraged the use of

other biogeographical systems, such as continental lineages,

to further illustrate the comparative performance of the

methods.

In this study, we compare the parsimony-based Bayes-DIVA

method against a fully parametric method, the DEC likelihood

model (Ree & Smith, 2008). Both methods model dispersal

(geographical movement) as the result of allopatric speciation

following range expansion and are thus appropriate for the

analysis of continental biogeographical scenarios in which

areas are spatially contiguous and there is no jumping over

oceanic barriers. The benefits and limitations of these methods

are compared using the cosmopolitan plant family Sapindaceae

as a case study. The distribution of this family spans all

continents and its fossil record indicates that its biogeograph-

ical history traces back to the Early Cretaceous (see below).

Previous implementations of the DEC model have been limited

to small studies in terms of spatial (Clark et al., 2008),

temporal (Santos et al., 2009) or taxonomic (Smith, 2009)

scales. Here, we propose a complex biogeographical model that

reflects changes in continental configurations during the last

110 million years and spans all continents.

MATERIALS AND METHODS

The study group

Several lines of evidence support the choice of Sapindaceae as

an ideal case study for investigating the performance of

biogeographical methods. Recent phylogenetic studies have

supported the monophyly of this mid-sized (c. 140 genera, c.

1900 species) cosmopolitan family (Buerki et al., 2009). Based

on molecular and morphological characters, Buerki et al.

(2009) subdivided Sapindaceae into four subfamilies: Xanth-

oceroideae, Hippocastanoideae, Dodonaeoideae and Sapindoi-

deae. The first two subfamilies occur in temperate regions,

whereas the two remaining are widely distributed in the

tropical regions. Sapindaceae genera range from narrow

endemics (e.g. the newly described genus Gereaua in Mada-

gascar; Buerki et al., 2010a), to those occurring on two

continents (e.g. Cupaniopsis, found in Australia and southern

Asia), to those widespread across the tropics (e.g. Allophylus).

In addition, several fossils associated with monophyletic genera

provide reliable calibration points for divergence time estima-

tions.

Dataset

The dataset used to estimate lineage divergence times and

ancestral ranges in Sapindaceae is based on that of Buerki et al.

(2009), with the addition of several taxa required to calibrate

the divergence time analyses (e.g. Allophylus, Paullinia; see

Buerki et al., 2010b). Ingroup sampling comprised 148 acces-

sions representing > 60% of the generic diversity and two

outgroup taxa: Sorindeia sp. (Anacardiaceae; used as the most

external outgroup) and Harrisonia abyssinica (Simaroubaceae).

Species names, voucher information and GenBank accession

numbers for all sequences are provided in Buerki et al.

(2010b). The DNA extraction, amplification and sequencing

protocols for one nuclear ribosomal region (internal tran-

scribed spacer region, ITS) and seven plastid regions (coding

matK and rpoB, non-coding trnL intron and the inter-genic

spacers trnD–trnT, trnK–matK, trnL–trnF and trnS–trnG) are

provided in Buerki et al. (2009).

Phylogenetic analyses

Bayesian MCMC was used to approximate the posterior

probability distribution of the phylogeny based on the

combined plastid–nuclear dataset, using MrBayes v.3.1.2

(Ronquist & Huelsenbeck, 2003). To decrease the complexity

and increase mixing in the MCMC, the dataset was divided

into two partitions, nuclear (including only the ITS region)

and plastid (including the seven plastid markers), and each

locus was allowed to have partition-specific model parameters

(Ronquist & Huelsenbeck, 2003; Nylander et al., 2004). Buerki

et al. (2009) had previously shown that there was no incon-

gruence between the nuclear and plastid datasets. Model

selection for the data partitions in the MCMC was carried out

Evaluating parametric versus parsimony-based methods in biogeography
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with MrModeltest2 v.2.3 (Nylander, 2004). For both parti-

tions, the best-fitting model was the general time reversible

(GTR) model with an alpha parameter for the shape of the

gamma distribution to account for rate heterogeneity among

sites. Three Metropolis-coupled Markov chains with an

incremental heating temperature of 0.2 were run for 50

million generations and sampled every 1000th generation. The

analysis was repeated twice, starting from random trees.

Convergence of the MCMC was verified using the effective

sample size criterion for each parameter as implemented in

Tracer v.1.4 (Rambaut & Drummond, 2007) and by mon-

itoring cumulative posterior split probabilities and among-run

variability of split frequencies using the online tool AWTY

(Nylander et al., 2008b). Because of the high number of trees

and to avoid misleading relationships caused by underesti-

mated burn-in, 80% and 85% of the trees, respectively, from

run one and two were discarded and the remaining samples

from the independent runs were combined to obtain a final

approximation of the posterior probability distribution of the

phylogeny (based on 15,362 trees in total).

The posterior distribution of trees was summarized using

the allcompat consensus from MrBayes (50% consensus

majority rule with compatible groups added) instead of the

commonly used 50% halfcompat consensus. The reason for

this was to obtain a completely resolved topology – a

requirement of the Lagrange analysis (see below) – and to

simplify detailed comparisons of all nodes between the Bayes-

DIVA and Lagrange analyses. Nonetheless, with the excep-

tion of two polytomies affecting terminal nodes, the allcompat

and halfcompat consensus were identical.

Estimation of lineage divergence times

A likelihood ratio test (Felsenstein, 1988) was used to

determine whether sequence data conformed to the expecta-

tion of a molecular clock following the same procedure as

Forest et al. (2007) and using a maximum likelihood total

evidence tree produced with RAxML v7.0.0 (Stamatakis, 2006)

as in Buerki et al. (2009). The likelihood ratio test strongly

rejected the molecular clock: D = 2 [69029.95–68302.98] =

726.97, 148 d.f., P < 0.001.

Given the lack of a molecular clock, relative branching times

were estimated on the allcompat consensus using penalized

likelihood (PL; Sanderson, 2002), as implemented in r8s v.1.71

(Sanderson, 2004), and the truncated Newton method algo-

rithm. The smoothing value (320) was established using the

cross-validation routines implemented in r8s. The most

external outgroup, Sorindeia sp. (Anacardiaceae), was pruned

for the estimation of the divergence time as required by the

program (see Sanderson, 2004).

To account for phylogenetic uncertainty in the estimation of

lineage divergence times and to investigate its effect on

biogeographical reconstructions (see below), we performed

PL analyses on a random sample of trees (n = 1000) from the

Bayesian MCMC stationary distribution, after discarding those

trees that did not conform with the calibration constraints, i.e.

trees that did not support the monophyly of clades to which a

fossil calibration point was attached (see below). In all, we

discarded 236 trees, < 2% of all trees. The same smoothing

parameter value was used on all sampled trees. TreeAnnota-

tor v.1.4.7 (Drummond & Rambaut, 2007) was used to

estimate mean values and 95% confidence intervals of age

estimates from the sample of 1000 PL-dated trees for each

node in the allcompat consensus tree. In addition, we used R

scripts (R Development Core Team, 2009; available from S.B.

on request) to extract minimum, median and maximum nodal

age estimates from the sample of PL-dated trees and to plot

these onto the allcompat consensus tree. Alternatively, we tried

to use a Bayesian relaxed clock approach (beast; Drummond

& Rambaut, 2007) to estimate the posterior probability

distribution of nodal heights but failed to reach convergence

after several attempts, probably due to the size and complexity

of the dataset, i.e. 150 taxa and eight different DNA markers.

Fossil calibration

To estimate absolute ages for lineage divergences we used six

fossil calibration points (see below) within Sapindaceae to set

minimum age constraints for several nodes in the phylogeny.

For each calibration point, the oldest fossil record was selected

and the upper (younger) bound of the geological interval

(Gradstein & Ogg, 2004) in which the fossil was found was

used to represent the minimum age constraint.

Calibration points were defined as follows: (1) the root

node, i.e. the most recent common ancestor of Sapindaceae

and Simaroubaceae, was constrained to a maximum age of

125 Ma; (2) the stem group of Acer, Aesculus and Dipteronia

was constrained to a minimum age of 55.8 Ma; (3) the stem

group of Dodonaea and Diplopeltis was constrained to a

minimum age of 37.2 Ma; (4) the stem group of Koelreuteria

was constrained to a minimum age of 37.2 Ma; (5) the stem

group of Pometia was constrained to a minimum age of

5.33 Ma; and (6) the stem group of Cardiospermum, Paullinia

and Serjania was constrained to a minimum age of 37.2 Ma.

Fossil evidence supporting each calibration point (and asso-

ciated references) is listed in Appendix S1 in Supporting

Information.

Biogeographical analyses

Areas

In plants, the definition of areas for biogeographical analysis,

especially at a world-wide scale, remains controversial (e.g.

Cox, 2001). Most researchers circumscribe areas according to

the ecological tolerance and current distribution patterns of

their group of interest (‘criterion of sympatry’). This has the

problem that different groups may exhibit different distribu-

tion patterns and therefore area definition may not be

comparable across groups. In this study we used a geological

criterion similar to that of Sanmartı́n & Ronquist (2004), and

defined areas of study according to palaeogeographical history
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(i.e. plate tectonics). This approach has the advantage of

decreasing the subjectivity in area definition and can be

applied to different plant groups when focusing on large-scale

biogeographical patterns.

To minimize the effect of taxon sampling bias in our

analysis, generic distributions were assigned to terminal

branches (following Buerki et al., 2009), except when the

genus was recognized as para- or polyphyletic (e.g. Cupani-

opsis; see Buerki et al., 2009, for more details), in which case

terminals were scored according to the distribution of the

species.

In all, seven geographical areas were defined (Fig. 1): A,

Eurasia, from western Europe to Indochina; B, Africa; C,

Madagascar, including the Comoro Islands and the Mascarene

Islands; D, Southeast Asia, including India, the Malaysian

Peninsula, the Philippines, Sumatra, Borneo and the Inner

Banda Arc, as well as the Pacific Islands (e.g. Hawaii); E,

Australia, including New Guinea, New Caledonia and New

Zealand; F, North America; G, South America, including

Central America and the West Indies.

Area D (Southeast Asia) has a complex palaeogeographical

(and biogeographical) history, involving numerous small

terranes that rifted away from Gondwana during the Palaeo-

zoic–Mesozoic and were progressively accreted to the southern

part of the Eurasian Plate (north China) at different times

during the Mesozoic and Cenozoic (Metcalfe, 1998). South

China and Indochina were the first to be accreted in the Late

Devonian–Early Carboniferous, followed by the Quiantang

and Sibumasu blocks (the eastern half of the Malaysian

Peninsula) in the Permian–Triassic, whereas south-western

Borneo and the Semitau terranes were derived from the

margin of Cathaysialand (south China and Indochina) by the

opening of a marginal basin in the Cretaceous–Tertiary

(Metcalfe, 1998). The remaining insular Southeast Asian

terranes (Sumatra, the rest of Borneo, Celebes, the Inner

Banda Arc, etc.) were formed as a result of the collision of the

Australian Plate with the Eurasian Plate during the Cenozoic.

This composite palaeogeographical history has two conse-

quences in our biogeographical model. Firstly, area A (Eurasia)

is here defined as including South China and the entire

Indochina Peninsula (Fig. 1), because these terranes were

already accreted to the Eurasian Plate by the time of the

estimated origin of Sapindaceae in the Early Cretaceous (see

Sanmartı́n et al., 2001). Secondly, area D did not exist as we

know it today until the Cenozoic (thus, it was not present at

the time of origin of Sapindaceae), so we need to distinguish

between a ‘proto-Southeast Asia’, the older parts of the

Malaysian Peninsula and south-western Borneo, which were

already in place by the Cretaceous–Tertiary boundary, and

insular Southeast Asia, which did not appear until the Middle–

Late Cenozoic. As seen below, this changing configuration of

area D plays a very important role in the definition of our

biogeographical model.

Biogeographical inference

Bayes-DIVA. Dispersal–vicariance analysis (DIVA) is a parsi-

mony-based method that optimizes ancestral areas onto the

nodes of phylogeny by minimizing the number of dispersal

and extinction events (Ronquist, 1997). Area relationships are

not constrained to follow a hierarchical pattern, so the

method can be used to reconstruct reticulate biogeographical

A

B

C

D

D
E

F

G

Figure 1 Biogeographical regions used in the study of Sapindaceae. Key: A, Eurasia: from western Europe to Indochina; B, Africa;

C, Madagascar, including the Comoro Islands and the Mascarene Islands; D, Southeast Asia, including India, the Malaysian Peninsula,

Philippines, Sumatra, Borneo and the Inner Banda Arc, as well as the Pacific Islands (e.g. Hawaii); E, Australia, including New Guinea,

New Caledonia and New Zealand; F, North America; G, South America including Central America and the West Indies.
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scenarios with changing continental configurations (Ronquist,

1997; Sanmartı́n, 2007). DIVA uses a three-dimensional cost

matrix to estimate the cost of moving from the ancestor to

each of the left and right descendants (see Fig. 2a). There are

two events that occur along internodes connecting two

speciation events. Dispersal is the addition of one or more

unit areas to the ancestral distribution and costs 1 per area

added. It is equivalent to range expansion and it is always

followed by vicariance (Ronquist, 1997). Extinction is the

deletion of one or more unit areas from the ancestral

distribution and costs 1 per area deleted, but extinction events

are actually never inferred by DIVA unless explicit geograph-

ical constraints are placed onto the model by changing the

original cost matrix (Ronquist, 1996; Nylander et al., 2008a).

DIVA allows two different range inheritance scenarios at

speciation nodes (Fig. 2b): (1) duplication or within-area

A A

A

B A

AB

AB A

AB

(a)

(b)

sympatric vicariance peripheral isolate

A B C AB AC BC ABC

A - 0 0 DAB DAC 0 DAB+DAC

B 0 - 0 DBA 0 DBC DBA+DBC

C 0 0 - 0 DCA DCB DCA+DCB

AB EB EA 0 - 0 0 DAC+DBC

AC EC 0 EA 0 - 0 DAB+DCB

BC 0 EC EB 0 0 - DBA+DCA

ABC 0 0 0 EC EB EA -

DIVA - cost matrix DEC - rate (Q) matrix

A B C AB AC BC ABC

A 0 NA NA DAB DAC NA DAB+DAC

B NA 0 NA DBA NA DBC DBA+DBC

C NA NA 0 NA DCA DCB DCA+DCB

AB NA NA NA NA NA NA DAB+C

AC NA NA NA NA NA NA DAC+B

BC NA NA NA NA NA NA DBC+A

ABC NA NA NA NA NA NA NA

ABA

DAB

Figure 2 Biogeographical models used by parsimony-based dispersal–vicariance analysis (DIVA) and its parametric counterpart, the

dispersal–extinction–cladogenesis (DEC) model. There are two components in the model. (a) Anagenetic (internode) evolution. Left: DIVA

uses a three-dimensional transition cost matrix to estimate the cost of change in geographical range between the ancestor and the left and

right descendants. There are two events that can change the geographical range of the ancestor: dispersal is the addition of one or more unit

areas to the ancestral range and with a cost = 1 per area added (e.g. AB to ABC = DAB+C = 1; A to ABC = DAB+DAC = 2). Extinction is the

deletion of one or more unit areas (cost = 1), but it is actually never inferred in the optimization unless explicit geographical constraints are

used in the model (see text). Notice that if there is no change in geographical range, the cost is zero (e.g. A to A = 0), but that inheritance of

widespread ancestral ranges is not allowed in DIVA (e.g. from AB to AB = NA). Right: In the DEC model, range evolution along a

phylogenetic branch is governed by a matrix of instantaneous transition rates (Q matrix) whose parameters are dispersal (range expansion,

e.g. DAB) and local extinction (range contraction, EA). Note that only rates separated by a single dispersal or extinction event are allowed in

the matrix; all other transitions have an instantaneous rate of zero (e.g. A to B = 0). For transitions involving dispersal, the rate is the sum of

rates from areas in the starting range d to the area of expansion d¢ (AB to ABC = DAC + DBC = 2d). (b) Cladogenetic range evolution:

inheritance of geographical ranges at nodes follows three different modes of speciation: sympatric speciation, for single-area ancestors, and

allopatric speciation (vicariance) and/or peripheral-isolate speciation for widespread ancestors. DIVA only allows the first two speciation

modes, while Lagrange implements all three of them. Notice that both methods model dispersal as range expansion leading to a widespread

ancestor, followed by range division (e.g. ‘vicariance-mediated speciation’). D, dispersal or range expansion between areas; E, local extinction

within an area; NA, not applicable. See text for more details on the methods.
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(‘sympatric’) speciation when the ancestor is distributed in a

single area and the two descendants each inherit the entire

ancestral range (A to A, Fig. 2b); and (2) vicariance when the

ancestor occurs in two or more areas and each descendant

inherits a non-overlapping subset of the ancestral range (AB

to A and B, Fig. 2b). The cost of these two events is zero.

Notice that inheritance of widespread ancestral ranges (e.g.

AB to AB in Fig. 2a) is not allowed in DIVA: ancestral

widespread distributions are always divided by vicariance at

speciation nodes (Sanmartı́n, 2007). Ancestral ranges at nodes

are optimized by minimizing the dispersal (extinction) cost

associated with moving from the ancestral range to the two

descendant (left and right) ranges.

Uncertainty in phylogenetic relationships was accounted for

in DIVA by using the Bayes-DIVA approach of Nylander et al.

(2008a). Specifically, we ran DIVA analyses over the post-

burn-in sample of the Bayesian MCMC analysis (15,362 in

total) and used Nylander et al. (2008a) scripts to summarize/

average ancestral area reconstructions over all sampled trees

for each node in a reference tree, in this case the allcompat tree.

Two Bayes-DIVA analyses were run: (1) with no constraint

in the maximum number of areas allowed at ancestral nodes,

and (2) with the maximum number of areas constrained to

two. Except for higher uncertainty in the assignment of

ancestral ranges (i.e. lower marginal probabilities), results from

the unconstrained Bayes-DIVA analysis were highly congruent

with the more restricted analysis, with the largest differences

found at the deeper nodes. As it is highly improbable that the

ancestor of Sapindaceae was widespread over all continents –

most species of Sapindaceae are restricted to one or two areas –

only results from the maximum range size of two-areas

analysis are shown here.

DEC. In the DEC model – implemented in the software

Lagrange v. 2.0.1 (Ree & Smith, 2008) – range evolution

along phylogenetic branches (internodes) is governed by a Q

matrix of instantaneous transition rates (Fig. 2a), whose

parameters are dispersal and local extinction describing the

rate of geographical change from ancestor to descendant by

range expansion and range contraction, respectively (Ree &

Smith, 2008). The DEC model assumes that only one event, a

single dispersal or local extinction event, can occur in an

instant of time (Ree & Sanmartı́n, 2009). Therefore, those

transitions that imply more than one event are given a rate of 0

in the Q matrix (Fig. 2a). For example, moving from A to B

would imply a range expansion event from A to B (DAB)

followed by an extinction event in A (EA), so this transition is

given an instantaneous rate of zero in the matrix (Fig. 2a).

Cladogenetic evolution at speciation nodes is modelled as

three alternative range inheritance scenarios (Ree et al., 2005).

For ancestors present in a single area, the two descendants

form within and inherit the entire ancestral area (sympatric

speciation as in DIVA; Fig. 2b). For widespread ancestors,

lineage divergence could arise either between a single area and

the rest of the range (vicariance or allopatric speciation as in

DIVA) or within a single area – ‘peripheral isolate speciation’

(Ree & Smith, 2008) – in which case one descendant inherits a

range of just the area where the divergence occurred, while the

other descendant inherits the entire ancestral range (Fig. 2b;

Ree et al., 2005). Such scenarios lead to non-identical range

inheritance. Thus, unlike DIVA, the DEC model allows

inheritance of widespread ancestral ranges at speciation nodes

but only for one of the descendants (AB to A and AB, Fig. 2a).

In other words, as in DIVA, a widespread ancestral range

cannot be inherited in its entirety by the two descendants: AB

to AB and AB (Ree et al., 2005). Using standard maximum

likelihood algorithms, the DEC method first estimates global

rates of dispersal and extinction by integrating over all possible

ancestral states at internal nodes in the phylogeny, and uses

these rates to estimate node-by-node relative probabilities for

ancestral areas and range inheritance scenarios without

conditioning on any other range inheritance scenario in the

rest of the tree (Ree & Smith, 2008).

Like Bayes-DIVA, Lagrange analyses were first run uncon-

strained (M0, all combinations of the seven areas allowed) and

then constrained to include only ancestral ranges that span a

maximum of two areas (M1). The Lagrange M0 analysis

provided very similar results to the LagrangeM1 analysis, but

with higher levels of biogeographical uncertainty (i.e. lower

probability values; data not shown). It also required at least

five times more computational power than the constrained M1

model. Therefore, in order to provide comparable results with

the Bayes-DIVA analysis, only results from the constrained

Lagrange M1 analyses are provided here. One drawback of

the DEC analysis is that, unlike DIVA, where the maximum

number of areas at ancestral nodes can be constrained

independently from the distribution of the terminals, the Q

transition matrix in Lagrange required the inclusion of a few

ancestral ranges covering three, four and five unit areas, which

were present in the most widespread terminals (e.g. Dodonaea

viscosa in ABCDEG). This is because maximum likelihood

inference of ancestral ranges at nodes is conditional on the

range distribution of the descendants (Ree et al., 2005), so all

widespread terminal ranges must be allowed in the Q matrix

for Lagrange analyses to converge.

Stratified biogeographical model (Fig. 3 and Appendix S1). In

order to account for the changing palaeogeography over which

Sapindaceae evolved, and to take advantage of the flexibility of

the DEC model, we performed a new Lagrange analysis (here

termed Lagrange Str) in which we stratified the phylogeny

into different time slices reflecting the changing continental

configuration over time, as tectonic plates broke up, moved

apart or collided with each other through time. When

constructing a stratified biogeographical model, care should

be taken not to divide it too finely so that there are enough

phylogenetic events in each time slice (Ree & Sanmartı́n,

2009). Here we chose to divide our model into four time slices

(TS) that reflect the main palaeogeographical changes during

the history of Sapindaceae: before 80 Ma, between 80 and

65 Ma, between 65 and 30 Ma, and between 30 Ma and the

present day (Fig. 3). For each time slice, we defined a Q matrix

in which transition rates were made dependent on the

geographical connectivity between areas (i.e. through land
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bridges, changing sea levels, wind currents, etc.). This was done

by scaling the rate of dispersal in the Q matrix according to the

availability of area connections through time. For example, the

dispersal rate between two areas that were not tectonically

connected at a given time slice was downweighted by a factor

of 0.01 to reflect the low probability of movement between

those two areas, e.g. dispersal between South America and

Africa was disallowed in the model after the final opening of

the South Atlantic Ocean c. Ma (Fig. 3b). Dispersal through

abiotic factors such as wind or ocean currents was scaled down

to 0.5 of the global dispersal rate, as it usually involves a more

restrictive, stochastic ‘sweepstakes’ dispersal, e.g. movement

among the southern continents was partially allowed from the

Early Oligocene onwards (Fig. 3d) after the establishment of

the Equatorial and West Wind Drift currents. In contrast,

dispersal between Eurasia and North America was allowed

across all four time slices, via either the North Atlantic or the

Beringian Strait (see Appendix S1 for a more detailed

description of our time-sliced palaeogeographical model and

its translation into dispersal-scaling matrices in the Lagrange

Str analysis).

A preliminary analysis showed considerable uncertainty in

the root node ancestral area and all subsequent basal nodes,

especially the most recent common ancestor of Dodonaeoideae

(results not shown). As mentioned above, maximum likeli-

hood inference of geographical ranges at ancestral nodes in

Lagrange is conditional on the range distribution of the

terminals (Ree et al., 2005). This had the effect in our analysis

of increasing the uncertainty at deeper nodes in the tree, as

widespread terminal ranges are dragged back towards the root

in the upward inference pass. This is the case for the

Dodonaeoideae clade, which includes numerous widespread

genera (e.g. Dodonaea, Filicium and Ganophyllum) and is also

subtended by a relatively long branch, increasing the uncer-

tainty in the inferred ancestral range. Because area A was

inferred as the ancestral area with the highest probability for

(b) Time slice 2: before 60 Ma

A
F

B

CG

E

A

F

B

C
G

E

D

D

A

F

B

CG

E

A

F

B

CG

E

D

WWD

A B C D E F G

A 1 0.01 0.01 1 0.01 1 0.01

B 0.01 1 1 0.01 1 0.01 0.01

C 0.01 1 1 0.01 0.01 0.01 0.01

D 1 0.01 0.01 1 0.01 0.01 0.01

E 0.01 1 0.01 0.01 1 0.01 1

F 1 0.01 0.01 0.01 0.01 1 1

G 0.01 0.01 0.01 0.01 1 1 1

A B C D E F G

A 1 1 0.01 1 0.01 1 0.01

B 1 1 1 1 0.01 0.01 0.01

C 0.01 1 1 1 0.01 0.01 0.01

D 1 1 1 1 0.5 0.01 0.01

E 0.01 0.01 0.01 0.5 1 0.01 1

F 1 0.01 0.01 0.01 0.01 1 0.01

G 0.01 0.01 0.01 0.01 1 0.01 1

A B C D E F G

A 1 1 0.01 1 0.01 1 0.01

B 1 1 1 1 0.5 0.01 0.5

C 0.01 1 1 1 0.5 0.01 0.01

D 1 1 1 1 1 0.01 0.01

E 0.01 0.5 0.5 1 1 0.01 0.5

F 1 0.01 0.01 0.01 0.01 1 1

G 0.01 0.5 0.01 0.01 0.5 1 1

A B C D E F G

A 1 0.01 0.01 0.01 0.01 1 0.01

B 0.01 1 1 0.01 1 0.01 1

C 0.01 1 1 0.01 1 0.01 1

D 0 0 0 0 0 0 0

E 0.01 1 1 0.01 1 0.01 1

F 1 0.01 0.01 0.01 0.01 1 0.01

G 0.01 1 1 0.01 1 0.01 1

(c) Time slice 3: before 30 Ma (d) Time slice 4: 0-30 Ma

(a) Time slice 1: before 80 Ma

Figure 3 Palaeogeographical model used in the Sapindaceae analysis, with four time slices reflecting the probability of area connectivity

through time. Key: bold and dashed arrows represent, respectively, dispersal probabilities of 1 and 0.5; dashed circles symbolize the

subequatorial current and the West Wind Drift (WWD) with a dispersal probability of 0.5. See Fig. 1 for details on coding and circum-

scription of areas.
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the root node in both Bayes-DIVA and Lagrange M1 (see

below), we constrained the ancestral range of the root node in

the Lagrange Str analysis to area A in order to decrease the

uncertainty in the rest of the basal nodes. Actually area A also

received the highest likelihood in the Lagrange Str analysis in

which the root nodal range was not constrained (albeit not

significantly). Nonetheless, to avoid any bias in comparing the

different methods, results from the root node reconstruction

are not discussed below.

Integrating biogeographical and dating uncertainty

To assess the impact of uncertainty in divergence time

estimations in biogeographical reconstructions, we ran Lag-

range analyses (M1 and Str) over three chronograms repre-

senting the ‘minimum’ (Min PL), ‘median’ (Med PL) and

‘maximum’ (Max PL) values of nodal ages as estimated over a

sample of 1000 PL-dated trees. We then recorded the ancestral

ranges inferred for each node on the allcompat consensus for

comparison. We were especially interested in those nodes for

which the interval between minimum and maximum node age

spread across two different time slices.

To assess the congruence between biogeographical scenarios

inferred by Bayes-DIVA and Lagrange, we first recorded the

ancestral range that received the highest relative probability for

each node in the allcompat consensus tree and compared these

ranges pairwise between the three methods: Bayes-DIVA,

Lagrange M1 and Lagrange Str. We considered two types of

incongruence: (1) ‘hard area incongruence’, different methods

inferred different ancestral range/s with the maximum relative

probability; and (2) ‘soft area incongruence’, different methods

inferred the same ancestral range/s but with different maxi-

mum relative probabilities. Second, for each method we

estimated the mean maximum probability assigned to ancestral

ranges across all nodes in the allcompat consensus, and

compared these means statistically by using a Wilcoxon rank

test. This provided a first evaluation of the level of biogeo-

graphical confidence or ‘decisiveness’ in area assignment for

each method: the higher the mean value of the maximum

probability assigned to ancestral ranges across the tree, the

higher the level of decisiveness of the method and the lower its

level of uncertainty in the inference of ancestral ranges. Third,

we plotted the ancestral ranges inferred by each of the three

methods onto the Median PL chronogram and compared these

figures pairwise to identify differences in biogeographical

scenarios. Using R scripts (available from S.B. on request), we

recorded for each node in the phylogeny the area with the

highest relative probability, the node age and – only for

Lagrange – the length of the branch separating this node

from its descendant. We used these data together with the

matrix describing the cost or rate of moving between

geographical states (Fig. 2) to build dispersal/extinction con-

tingency tables showing the type and frequency of transition

events (i.e. changes in geographical range) between ancestral

and descendant nodes in the phylogeny. These contingency

tables were then used to estimate the frequency and direction

of dispersal events in Bayes-DIVA and Lagrange, and the

frequency of extinction events in Lagrange. Notice that there

are two types of extinction events in Lagrange models:

‘observed’ extinction events in which an ancestral range is

reduced by range contraction (e.g. AB to A in Fig. 2a), and

‘predicted’ extinction events that are required by the model,

for example direct dispersal from A to G requires a range

expansion (DAG) followed by an extinction in A (EA) (see

Tables S1–S3 in Appendix S2). Finally, the number of

dispersal events optimized at internal and terminal branches

was compared across methods using a paired Wilcoxon rank

test.

RESULTS

Integrating biogeographical and divergence

uncertainty

Figure 4 shows the allcompat consensus of Sapindaceae from

MrBayes with mean values and 95% confidence intervals for

nodal ages as estimated by PL analyses over a sample of 1000

trees from the MCMC stationary distribution. Inter-relation-

ships among genera and supra-specific groups were in

agreement with Buerki et al. (2009), and nearly 95% of all

nodes were strongly supported [Bayesian posterior probability

(BPP) > 0.95].

Figure 5 depicts cases of soft and hard area incongruence

within and between methods (see Fig. 4 and Fig. S1 for the

position of nodes on the tree topology). Hard area incon-

gruence cases within Lagrange Str are represented in

Table 1. Soft area incongruence (i.e. different maximum

probabilities assigned to the same ancestral area) was mainly

restricted to basal nodes. For example, for nodes 152–153 and

172 corresponding to the first splits within Sapindaceae, all

three analyses (Bayes-DIVA, Lagrange M1 and Str) recov-

ered area A as the ancestral range but with different relative

probabilities (Fig. 6, Fig. S2). Hard area incongruence cases

(i.e. different inferred ancestral ranges) were common both at

terminal nodes connecting with widespread taxa, for example

node 167 (Fig. 6, Fig. S2) leading to Dodonaea viscosa, a

widespread species distributed in six of the seven defined

areas, and at nodes that are shared between two time slices,

for example node 294 (Fig. 6, Fig. S2) whose confidence

interval spreads across time slices I and II (Figs 4 & 5). The

first type of hard area incongruence was more frequent

between Bayes-DIVA and the Lagrange methods, whereas

the second type was more likely to occur between Lagrange

Str and the two other methods.

Figure 5 shows that biogeographical incongruence was to

some extent correlated with dating uncertainty, because the

number of soft and hard area incongruent nodes among the

three methods was found to increase around the point where

there is a transition between time slices. This is particularly

true for hard incongruence cases in Lagrange Str (Table 1).

For example, there is an increase in dating uncertainty at node

154 between TSI and TSII (Figs 4 & 5), which coincides with
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an increase in biogeographical uncertainty – both in the area

assigned (hard incongruence) and in its level of support (soft

incongruence) – among the three methods for this node and

neighbouring nodes 294, 160 and 174 (Fig. 5). The same

pattern can be found for node 155 and neighbouring nodes

289–178 between TSIII and IV and for node 175 and

neighbouring nodes 265 and 202 between TSII and III

(Fig. 5, Table 1). This pattern is also found within time slices:

for example, for nodes 161–164 within TSIII (Fig. 5). Inter-

estingly, the largest number of hard area incongruent nodes

associated to dating uncertainty in Lagrange Str was found

between TSII and III (Fig. 5), corresponding to a dramatic

change in continental configuration between the Laurasian and

Gondwanan landmasses (see Fig. 3b,c).

Figure 4 The median penalized likelihood (Med PL) tree: allcompat consensus tree from the Markov chain Monte Carlo (MCMC)

stationary distribution of the Bayesian phylogenetic analysis of Sapindaceae, with median values and 95% confidence intervals for nodal ages

as estimated by penalized likelihood over a sample of 1000 stationary trees (see Materials and Methods for an explanation). Numbers refer to

nodes that are discussed in the text. Circles ‘a’ to ‘f’ represent calibration points used in the dating analyses. Solid lines represent the

boundaries between the four time-slices used in the biogeographical analysis (see Fig. 3 for more details); grey lines indicate boundaries for

main geological periods.
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Figure 7 shows pairwise comparison of number of events

among the three methods. Bayes-DIVA showed significantly

higher maximum probabilities assigned to ancestral area(s) per

node than any of the two Lagrange methods (Wilcoxon rank

test: W = 18,189; P < 10)4; Fig. 7a). Maximum relative prob-

abilities assigned to ancestral ranges were also higher in

Lagrange Str than in Lagrange M1 but the difference was

not significant (W = 9639; P = 0.110; Fig. 7a). Also, Bayes-

DIVA showed a significantly higher number of inferred

dispersal events at terminal branches than at internal branches

(Wilcoxon rank test: W = 9078; P = 0.01; Fig. 7b), whereas

Lagrange M1 and Str showed no significant difference

between these two types of dispersal events (P values of

0.507 and 0.413, respectively; Fig. 7b). On the other hand,

global maximum likelihood estimates of dispersal and extinc-

tion rates in the Med PL chronogram were 30 times higher in

Lagrange Str (d = 0.025) than in Lagrange M1 (d = 0.009).

Extinction rates were also slightly higher in Lagrange Str

(e = 0.008) than in Lagrange M1 (e = 0.006).

Biogeographical scenarios

Figure 6 depicts pairwise comparisons between biogeograph-

ical scenarios – ancestral ranges and biogeographical events –

inferred by Bayes-DIVA and Lagrange Str. The Lagrange

M1 biogeographical scenario is presented in Fig. S2.

All three methods agree on inferring that Sapindaceae

originated in Eurasia (A) around the Early Cretaceous (TSI;

Fig. 6, Fig. S2), with subsequent dispersal to Southeast Asia

(D) in the Late Cretaceous or Early Palaeocene (TSI in Bayes-

DIVA, TSII in Lagrange; Fig. 6, Fig. S2). From there,

Sapindaceae ancestors dispersed to Australia–Antarctica (TSII

in Bayes-DIVA, TSIII in Lagrange), followed by a series of

world-wide dispersal events involving both Northern and

Southern Hemisphere landmasses (TSIV; Fig. 6, Fig. S2). All

three biogeographical scenarios suggest that the Southeast

Asian region has been a centre of diversification and dispersal

over the tropics for Sapindaceae (Fig. 6, Fig. S2). This is

particularly true during TSIV (from the Early Oligocene to the

present) with dispersals from Southeast Asia to Australia (E),

Africa (B) and Madagascar (C), among others. Reverse

migrations are also observed in our biogeographical recon-

struction, with several dispersal events from Africa (B) and

Australia (E) to Southeast Asia (D), and even from Eurasia (A;

most likely Indochina) to Southeast Asia, sometime in the

Late Oligocene (Fig. 6, Fig. S2). South American lineages of

Sapindaceae probably originated from Australian ancestors,

with at least three dispersal events inferred during the

Palaeogene (probably through Antarctica; Fig. 3c) and the

Miocene (probably mediated by the West Wind Drift current;

Fig. 3d). Lagrange inferred exchanges between South

America and Africa during the last time slice (TSIV; Fig. 6b,

Fig. S2) could have been triggered by the South Equatorial

Current, which started around this period (Fig. 3d).

Despite the aforementioned similarities between biogeo-

graphical scenarios, the three methods differed in the fre-

quency and timing of biogeographical events. Bayes-DIVA, for

example, inferred more dispersal events (70) than Lagrange

M1 (41) and Lagrange Str (57; see also Table S4 in

Appendix S2). The highest difference is observed within TSIII,

with 13 dispersal events in Bayes-DIVA and only three and

seven in Lagrange M1 and Lagrange Str, respectively (Table

S4 in Appendix S2). Another aspect, noticed above, is the

observed delay in the timing of dispersal events (biogeograph-

ical movements) between Bayes-DIVA and Lagrange Str. For

example, the dispersal event from Eurasia to proto-Southeast

Asia (A to D) early in the history of Sapindaceae is inferred

by Bayes-DIVA (Fig. 6a) to have already taken place in

TSI (Early Cretaceous, Fig. 3a) but it is pushed forward into

TSII (Palaeocene) in the Lagrange Str analysis (Fig. 6b).

Similarly, the dispersal event from proto-Southeast Asia

Table 1 Examples of hard area incongruence in nodes shared

between two time slices in the Lagrange Str reconstruction of

Sapindaceae. This is due to dating uncertainty, i.e. differences in

the maximum (Max), median (Med) and minimum (Min) nodal

ages estimated by penalized likelihood (PL) across a sample of

1000 stationary trees (see Fig. 5 for more details and Fig. 4 for the

location of nodes). The ancestral range with the maximum relative

probability is indicated for each analysis.

Node

Med age

(Ma)

DPL

(Ma)

Time

slices

Lagrange Str

Max Med Min

294 83 20.4 1–2 A (0.54) AF (0.49) AF (0.51)

154 80.48 12.74 1–2 A (0.72) A (0.72) AD (0.62)

160 73.59 15.34 1–2 A (0.54) A (0.42) AD (0.38)

175 60.02 8.75 2–3 AF (0.36) D (0.65) DE (0.56)

202 58.48 8.48 2–3 FG (0.25) DE (0.67) E (0.44)

265 57.45 8.4 2–3 G (0.44) EG (0.59) EG (0.68)

155 30.75 9.6 3–4 CD (0.22) D (0.20) D (0.33)

178 29.5 6.73 3–4 BCD (0.47) B (0.32) BD (0.27)

283 25.71 11.43 3–4 G (0.68) BG (0.57) BG (0.63)

DPL, difference between the maximum and minimum nodal ages

as inferred by PL.

Figure 6 Biogeographical scenarios for Sapindaceae inferred by (a) Bayes-DIVA and (b) Lagrange Str plotted onto the median

penalized likelihood (Med PL) tree (see Fig. 4). Pie charts represent marginal probabilities (Bayes-DIVA) and relative probabilities

(Lagrange Str) of ancestral ranges. Biogeographical scenarios are also depicted as frequencies of dispersal events between areas on

palaeogeographical maps according to time slices (see Table S4 in Appendix S2 for more details). Solid lines represent the boundaries

between the four time slices (see Fig. 3); grey lines indicate boundaries for the main geological periods. Key and abbreviations: junk

(black sections of pie charts): sum of ancestral area probabilities < 0.1; *hard area incongruent node between methods; @, hard area

incongruent node between the minimum and maximum nodal age estimates (see Fig. 5); TS, time slice. Numbers are provided for

those nodes discussed in the text.
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to Australia occurs within TSII (Palaeocene) in Bayes-

DIVA but it is delayed until TSIII (Mid Tertiary) in Lagrange

Str.

As expected from a method that does not take time into

account, Bayes-DIVA reconstructed ‘impossible’ dispersal

events that did not conform to palaeogeographical history.

Evaluating parametric versus parsimony-based methods in biogeography
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One example is the dispersal event from A to D in TSI (Fig. 6;

Table S4 in Appendix S2) – area D did not exist at this time

(Fig. 3a) – followed by a second dispersal event from D to E in

TSII (these two areas were separated by an ocean gulf during

this period; Fig. 3b). Other incongruent dispersal events were

the geographical movement from Eurasia (A) to South

Figure 6 Continued

S. Buerki et al.

544 Journal of Biogeography 38, 531–550

ª 2010 Blackwell Publishing Ltd



America (G) in TSIII (no direct connection between these two

areas in Fig. 3c), and the dispersal event from G to C in TSIV

(Fig. 6a), which is not supported by the palaeogeographical

scenario (i.e. there is no direct land connection in Fig. 3d).

Another aspect in the comparison between biogeographical

scenarios is the fact that sometimes Lagrange Str infers

ancestral ranges at a given internal node that are not part of

the geographical distribution of any of its descendants. For

example, for node 154 (Fig. 4), the most recent common

ancestor (MRCA) of the subfamily Dodonaeoideae, Lag-

range Str infers A (0.716) or AF (0.197) as the most likely

ancestral ranges (Fig. 6b). The next node (node 160) is

inferred as distributed in A or AF with almost equal

probability: 0.42/0.34, respectively (Fig. 6b). Yet, no extant

taxon in our analysis belonging to this subfamily is distrib-

uted in F (North America) and the taxon diverging most

basally in this group (Averrhoidium) is restricted to South

America (G) (Fig. 6b). A similar case is observed within the

Cupania group (sensu Buerki et al., 2009), whose MRCA

(node 232; Figs 4 & 6b) is reconstructed by Lagrange Str as

widespread in Australia and South America (EG), while all

extant taxa in our analysis occur in either Madagascar (C) or

South America (G).

Although Lagrange M1 (Fig. S2) does not incorporate

prior information on the changing palaeogeography into the

biogeographical model, it does integrate divergence time

information through the use of branch lengths. In general,

the Lagrange M1 biogeographical scenario was more similar

to Lagrange Str, and therefore more in agreement with the

palaeogeographical model, than were the Bayes-DIVA results.

The main dispersal events (from A to D and from D to E) are

placed within the same time slices as in Lagrange Str (see

Fig. S2). On the other hand, Lagrange M1 does not show

the strange behaviour observed in Lagrange Str mentioned

above. These nodes (nodes 160, 232) show more uncertainty in

ancestral state reconstruction than Bayes-DIVA or Lagrange

Str (Fig. S2).

Regarding extinction events (Table 2), Lagrange M1 and

Lagrange Str analyses inferred 33 and 37 events, respectively,

distributed over TSIII and IV. Among areas, B and D have the

highest number of inferred extinction events, whereas area F has

only one extinction event inferred by both analyses (Table 2).

DISCUSSION

Integrating geographical information in parametric

biogeography

Ree & Sanmartı́n (2009) point out that the definition of

operational areas in a biogeographical analysis constitutes a

critical step in parametric biogeography – especially for models

considering widespread states (Lagrange) – because, the size

of the Q transition matrix increases exponentially with the

number of areas. Actually, careful area definition is also

important for parsimony-based methods (Bayes-DIVA),

(a) (b)

Figure 7 Box-whisker plots showing pairwise comparisons between Bayes-DIVA, Lagrange M1 and Lagrange Str reconstructions of

Sapindaceae biogeography for: (a) mean value of maximum probabilities assigned to ancestral ranges and (b) frequency of internode (node-

to-node) and terminal (node-to-tip) dispersals estimated across all nodes in the median penalized likelihood (Med PL) tree (see Fig. 4). See

text for more details.

Table 2 Frequency of extinction events (E) per area sorted into

time slices as inferred by Lagrange M1 and Lagrange Str

reconstructions for Sapindaceae. Numbers between brackets

indicate, respectively, ‘observed’ and ‘predicted’ extinction events.

See Materials and Methods for more details on area and time slice

definitions.

Area

Lagrange M1 Lagrange Str

Time

slice 3

Time

slice 4
P

E

Time

slice 3

Time

slice 4
P

E

A 1 (1/0) 2 (2/0) 3 2 (1/2) 3 (2/1) 5

B 1 (1/0) 6 (5/1) 7 0 11 (9/2) 11

C 1 (1/0) 6 (6/0) 7 0 2 (2/0) 2

D 2 (2/0) 7 (6/1) 9 4 (4/1) 6 (6/0) 10

E 0 (0/0) 4 (2/2) 4 1 (1/0) 4 (3/1) 5

F 0 (0/0) 1 (1/0) 1 1 (1/0) 0 1

G 0 (0/0) 2 (1/1) 2 0 3 (2/1) 3

Total 5 28 33 8 29 37
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because the greater the number of areas the less often these

would be represented among taxa in the phylogeny (i.e. each

area could be represented only once), increasing the difficulty

of extracting general patterns (e.g. dispersal frequencies) from

the data. Using geological information to delimit the opera-

tional areas, as done in this study, can be helpful when

distribution patterns differ among the study groups and the

criterion of sympatry – congruent distribution patterns – is not

sufficient. In addition, the circumscription of an area may

change through time, as different terranes break up and

collide, so the geological history of an area must be considered

in its definition. For instance, area D (Southeast Asia) has a

complex geological history implying different configurations

through time, and this needs to be considered for both

defining area boundaries (Fig. 1) and establishing their

connection to other areas (Fig. 3), as done in this study.

Ree & Sanmartı́n (2009) also argued that when the number

of states increases relative to the number of data (especially in

the case of Lagrange), it becomes increasingly worthwhile to

impose geographical structure on model parameters governing

the transitions between those states. Here we have used this

approach in the Lagrange Str model, in which dispersal rates

were scaled based on the availability of area connections

through time (Fig. 3). Ree et al. (2005) proposed a similar

biogeographical–palaeographical model for the Northern

Hemisphere, which was later used (and extended) by other

authors (e.g. Moore & Donoghue, 2007; Smith, 2009), but to

our knowledge, this is the first time such a model has been

constructed at a world-wide scale. This approach might prove

useful for reconstructing biogeographical history in other

cosmopolitan plant families, such as Myrtaceae or Araceae.

Further, our model could be used to infer general patterns of

dispersal and vicariance across different plant families, or to

test large-scale biogeographical hypotheses concerning the

spatial evolution of angiosperm families.

Constructing such a broad spatial and temporal model

implies some potential risks, including the reducibility of the

Markov chain in the biogeographical model. A Markov chain

is said to be irreducible if it is possible to get to any state from

any state in the matrix. Direct transition between two states (A

to B) can be disallowed in the Markov chain Q matrix by

assigning it a rate of ‘0’. However, it should still be possible to

change between those two states in the model by using other

transition pathways, for example by moving through an

intermediate state in the Q matrix (e.g. A to B via AB). When

constructing a stratified biogeographical model in which some

dispersal pathways are disallowed within time slices, there is a

high risk of encountering problems with the reducibility of the

Markov chains. In the stratified model, range evolution along

internodes (branch lengths) within each time slice is deter-

mined by the corresponding Q matrix of that particular period

(Fig. 3). Where internal branches cross boundaries between

time slices, the likelihood for ancestral ranges is conditional on

those ranges being a valid outcome of the preceding period

(Ree & Smith, 2008). This may introduce problems with the

reducibility of the Markov chain Q matrices. For example, in

our stratified model we encountered the problem with

branches that crossed TSII and III because this point marks

an important change in continental configuration: in TSII

(Fig. 3b), Gondwanan landmasses (B, C, E, G) were still

connected, but they broke apart and moved northwards to

establish new connections with Laurasia in TSIII (e.g. Austra-

lia, Africa, Fig. 3c). One solution to this problem is to use a

low but positive scaling value of dispersal such as 0.01, as

applied here. This solution is also biologically sound because

dispersal events between disjunct landmasses, even though

rare, might still be possible. This is even more relevant for

several plants, which have seeds that can be easily dispersed.

Not allowing dispersal between certain areas, i.e. by assigning

them a rate of ‘0’, may be correct in the case of volcanic island

systems such as Hawaii, in which islands cannot be colonized

before their time of emergence (e.g. Ree & Smith, 2008), but it

makes less sense for continental scenarios in which the

landmasses were always present, albeit with different size and

area connectivity through time. The only exception to this rule

was area D, for which dispersal to/from any other area was

given a rate of ‘0’ in TSI (Fig. 3a), because this area had not yet

been accreted at that time.

Another problem encountered when incorporating palaeo-

geographical connectivity models into biogeographical analysis

(Lagrange Str) is the inference of ancestral ranges that are not

present in the distribution of the descendants but which are

supported by the geological connectivity model. This is the case

of the MRCA of the Dodonaeoideae (node 154), which is

reconstructed as present in area F when none of extant

descendants occurs in this area (see Results and Fig. 4). The

explanation lies in the matrix of dispersal rates as constrained by

the palaeogeographical model (Fig. 3). Node 154 falls within

TSI, a period when Eurasia (A) was only connected to North

America (F) through direct land links. In other words, moving

from A to any other area would have required going through F

(Fig. 3a), so Lagrange Str infers this area to be part of the

ancestral range of node 154 (Fig. 6b). Similarly, for the Cupania

group (nodes 231–232, Fig. 6b), the palaeogeographical model

(TSIV) disallows direct dispersal between South America and

Madagascar, whereas it allows dispersal between these two

regions and Australia (scaling factor = 0.5) via the West Wind

Drift and the subequatorial currents (Fig. 3). This behaviour is

not necessarily a pitfall of the method – the group might have

existed in these ‘predicted’ areas at that particular time but we do

not have any fossil evidence. We could test this by applying

ecological niche modelling methods. For example, using phylo-

climate modelling tools, one may reconstruct the ancestral

ecological niche and testwhether the inferred ancestral rangewas

potentially within the environmental envelope of the group at

that time (e.g. Smith & Donoghue, 2010).

Impact of divergence time uncertainty

on biogeography

Most biogeographical studies do not incorporate the

error (stochastic variance) associated with estimating lineage
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divergence times on phylogenies. At most, they represent

dating uncertainty as confidence intervals for divergence-time

estimates at nodes, and they interpret the results from the

biogeographical reconstruction in view of this uncertainty.

Smith (2009) extended the parametric DEC approach to

account for uncertainty in topology and divergence-time

estimations by running Lagrange analysis over a posterior

distribution of dated trees generated from a Bayesian diver-

gence-time analysis (beast). He showed that accounting for

the uncertainty in time estimates has an effect on the

likelihood of certain biogeographical scenarios such as the

probability of crossing across a land bridge (Smith, 2009). We

could not follow this approach here because of the complexity

of our geological model (seven areas and four time slices) and

the size and taxonomic scale of our dataset (150 taxa, family

level). However, our more heuristic approach using the

median and extreme values of PL-dated trees confirms that

uncertainty in divergence-time estimations indeed has an

impact on the biogeographical reconstruction itself, both in

the assignment of ancestral ranges to nodes (hard area

incongruence) and in the ‘decisiveness’ with which an area

can be assigned to a node (soft area incongruence) (Figs 5 & 7,

Table 1). Our study suggests that biogeographical uncertainty

increases at nodes where dating uncertainty is also high,

represented here by the difference between maximum and

minimum ages (DPL) (Figs 4 & 5). This uncertainty can be

observed in both Lagrange M1 and Lagrange Str (Fig. 5)

but the effect is even more severe in Lagrange Str because its

biogeographical model is made directly dependent on a

temporally stratified palaeogeographical model (Fig. 3). For

example, Lagrange Str exhibits the largest number of hard

area incongruent nodes (Fig. 5, Table 1) and these are located

mainly at nodes whose confidence intervals span two different

time slices (Fig. 5, Table 1).

Bayes-DIVA versus LAGRANGE: a multivariate problem

Clark et al. (2008) recently reviewed different methods

of ancestral range reconstruction using island systems as a

case-study biogeographical scenario. They showed that by

considering branch lengths and/or the timing of events,

parametric methods give more accurate, nuanced inferences

of ancestral ranges and biogeographical history than parsi-

mony-based approaches, but that the former methods could

benefit from adopting a Bayesian strategy to incorporate

phylogenetic uncertainty into biogeographical inference. They

concluded that future comparison of methods using different

biogeographical systems, such as continental scenarios, are

needed to further illustrate the comparative performance of

parsimony versus parametric methods (Clark et al., 2008).

Continental scenarios differ from island systems in that areas

are contiguous (i.e. they share an edge), so widespread

ancestral ranges – ancestral distributions formed by two or

more areas – are valid states in the biogeographical model and

dispersal is generally modelled as the equivalent to ‘range

expansion’ (the ancestor moves into a new area but also retains

its original distribution) followed by range division (San-

martı́n, 2010). Both DIVA and DEC likelihood models are

based on this assumption of ‘vicariance-mediated allopatry’, in

which dispersal is modelled as occurring along the branches

leading to the widespread node, followed by range division by

vicariance (DIVA) or by vicariance and/or peripheral isolate

speciation (Lagrange) (Fig. 2). In these models, dispersal

leads to vicariance but it is not directly associated with

cladogenesis (Sanmartı́n, 2007). This contrasts with character

evolutionary models, such as Fitch parsimony optimization or

the Bayesian approach to island biogeography developed by

Sanmartı́n et al. (2008), in which dispersal between single areas

is optimized onto the branches subtending from speciation

events (Sanmartı́n, 2007). In these methods, range evolution is

modelled as ‘dispersal-mediated allopatry’, that is, areas are

isolated by barriers and dispersal is immediately followed by

speciation. Therefore, these methods are more appropriate for

island systems in which species are not expected to retain their

widespread distribution for long after dispersal (Clark et al.,

2008; Sanmartı́n, 2010).

Despite these similarities, the models implemented by

Lagrange and DIVA differ in two aspects that have an effect

on biogeographical scenarios. In DIVA, widespread ancestral

ranges are always divided at speciation nodes by vicariance,

whereas Lagrange is more flexible than DIVA in that

peripheral isolate speciation is allowed for range inheritance

scenarios (Fig. 2). The effect of this distinction is twofold.

First, DIVA reconstructions tend to overestimate the frequency

of terminal dispersal events compared with Lagrange

(Fig. 7b). Enforcing vicariance on widespread ancestors means

that it is more parsimonious for DIVA to explain widespread

terminal ranges by assuming terminal dispersal events than

inheritance of a more reduced ancestral range with several

subsequent internal dispersals (Ree et al., 2005; Nylander et al.,

2008a). For example, DIVA would model range evolution from

A to ABC as sympatric speciation followed by two terminal

dispersals (+B, +C), whereas Lagrange would model it as a

widespread ancestor (AB or AC) followed by one dispersal

event (+B or +C). Therefore, allowing range inheritance by

peripheral isolate speciation has the effect in Lagrange of

increasing the uncertainty in ancestral geographical ranges (i.e.

there are more alternative scenarios; see Fig. 7a) but it also

diminishes the frequency of terminal dispersals (Fig. 7b).

Another unexpected consequence of the different treatment of

widespread ranges is that dispersal events in Lagrange are

delayed in time when compared with the same events in DIVA

(e.g. dispersal from D to E in Fig. 6, Fig. S2). As Lagrange

allows widespread ancestral ranges to be maintained through

speciation events (peripheral isolate speciation), there is no

need to postulate ‘intermediate’ dispersals to explain why two

consecutive ancestral nodes have the same widespread range

(AB to AB). For example, the widespread area DE is

maintained in Lagrange M1 and Str from node 264 to the

terminals, whereas DIVA inferred the ancestor in area E and

subsequent dispersal events to D in terminal branches (Fig. 6,

Fig. S2).
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The second difference between the DIVA and Lagrange

models is the inference of extinction events. As mentioned by

Ronquist (1996) and discussed by other authors (Ree et al.,

2005; Sanmartı́n, 2007; Nylander et al., 2008a), DIVA would

never infer extinction events unless explicit geographical

constraints are used to modify the original cost assignment

rules (‘constrained DIVA’; Ronquist, 1996). This contributes

to an increase in the number of terminal dispersal events,

because cases where one descendant is widespread and the

other has a more restricted distribution would be inferred by

secondary (post-speciation) dispersal in the most widespread

descendant (Nylander et al., 2008a). Lagrange instead could

explain this by peripheral isolate speciation (one descendant

inherits the whole ancestral range) or by extinction (one

descendant goes extinct in one of the areas). In fact,

Lagrange does explicitly incorporate extinction into the

model as a parameter in the Q matrix that produces range

contraction, and in this respect it is more realistic than

DIVA. However, by forcing dispersal events between single

areas to go through a widespread state, e.g. ‘jump dispersal’ A

to G requires range expansion (DAG) followed by extinction

(EA) (Fig. 2a), Lagrange may overestimate the frequency of

extinction events (see Table 2). This is especially the case for

those areas where there is a high frequency of interchange

with other areas, e.g. area D works as a sort of ‘dispersal

highway’ to other areas in TSIV and has the highest

frequency of extinction events (Fig. 6b, Table S4 in Appen-

dix S2). These constraints may be realistic in cases of

contiguous areas or areas that come together after the

disappearance of a barrier but they are less so in the case of

areas separated by ocean barriers (e.g. dispersal mediated by

the West Wind Drift, Fig. 3d), for which a model of

dispersal-mediated allopatry might be more appropriate.

Another difference between the three methods is their level

of ‘decisiveness, that is, the different degree of biogeographical

uncertainty in assigning ancestral ranges to nodes, ‘soft area

incongruence’ (Figs 5 & 7). Bayes-DIVA is the most ‘decisive’:

maximum probabilities assigned to ancestral ranges at nodes

were significantly higher than in the Lagrange analyses

(Fig. 7a). Lagrange Str was more ‘decisive’ than Lagrange

M1, although the difference was not significant (Fig. 7a). One

reason for this is that Lagrange M1 is similar to a parsimony-

based method like DIVA in that it has a flat prior on dispersal

rates: all dispersal pathways are allowed in the Q matrix and

this fact translates into more uncertainty in inferring ancestral

ranges. By imposing geographical structure to the model, i.e.

by assigning lower rates to certain dispersal pathways,

Lagrange Str results in higher decisiveness and lower

uncertainty than Lagrange M1. Likewise, by incorporating

uncertainty in the tree topology – the only parameter

considered by DIVA when inferring ancestral ranges – Bayes-

DIVA shows a higher decisiveness (confidence) in ancestral

range reconstruction. However, it should be noted that the

ancestral range probabilities estimated by Lagrange and

Bayes-DIVA are not directly comparable. Bayes-DIVA esti-

mates marginal probabilities by integrating biogeographical

reconstructions over the posterior probability distribution of

the tree topology parameter. In contrast, relative probabilities

in Lagrange are fractions of the global likelihood estimated

node-by-node by integrating over all possible range inheritance

scenarios in the rest of the tree. Furthermore, the higher

‘decisiveness’ of Bayes-DIVA in assigning an optimal ancestral

area to the node (higher maximum probability) could be partly

explained by the fact that only those trees containing the node

of interest are considered in estimating marginal probabilities

(Nylander et al., 2008a).

CONCLUSIONS AND PERSPECTIVES

This study analyses the benefits and limitations of parametric

approaches to historical biogeographical analysis. It also

provides for the first time a world-wide biogeographical model

that takes into account area connectivity through time (Fig. 3)

and can be used to estimate ancestral ranges and range

inheritance scenarios in large cosmopolitan families such as

Sapindaceae. Future improvements should focus on: (1)

integrating biogeographical, phylogenetic and dating inference

uncertainty through the use of a fully Bayesian approach in

which divergence times, ancestral ranges and phylogenetic

relationships are estimated simultaneously in a composite

phylogenetic–biogeographical model; (2) relaxing the assump-

tion of equal dispersal and extinction rates across lineages and

areas, for example by incorporating a prior probability on

area-extinction rates correlated to area size and on lineage-

extinction rates correlated to lineage age; (3) accounting for

differences in dispersal capabilities among lineages, e.g. for

plant species with fleshy fruits north–south dispersal events are

more likely than east–west dispersal events due to the

latitudinal migration of birds; the opposite is true for

anemochorous fruits, for which east–west winds (e.g. the West

Wind Drift) are more important; and finally on (4) coupling

lineage diversification with biogeographical range evolution

models (Ree & Sanmartı́n, 2009) to test the hypothesis that

dispersal into new areas can lead to accelerated diversification

(e.g. Moore & Donoghue, 2007).
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