
An Evaluation of Non-Equijoin Algorithms�

David J. DeWitt Je�rey F. Naughton

Donovan A. Schneider

Abstract

A non-equijoin of relations R and S is a band join if the join predicate

requires values in the join attribute of R to fall within a speci�ed band
about the values in the join attribute of S. We propose a new algorithm,

termed a partitioned band join, for evaluating band joins. We present a

comparison between the partitioned band join algorithm and the classical
sort-merge join algorithm (optimized for band joins) using both an analyt-

ical model and an implementation on top of the WiSS storage system. The

results show that the partitioned band join algorithm outperforms sort-

merge unless memory is scarce and the operands of the join are of equal

size. We also describe a parallel implementation of the partitioned band

join on the Gamma database machine, and present data from speedup

and scaleup experiments demonstrating that the partitioned band join is

e�ciently parallelizable.

1 Introduction

In this paper we consider evaluation algorithms for a class of non-equijoins that we call

\band joins." A band join between relations R and S on attributes R:A and S:B is a

join in which the join condition can be written R:A� c1 � S:B � R:A+ c2. The con-
stants c1 and c2 may be equal, and one of the two may be zero. We use the term \band"

because a tuple r in R joins with a tuple s in S only if r:A appears within a \band"

of size c1 + c2 about s:B. To the best of our knowledge, currently systems implement
band joins using either nested loops or sort-merge. We propose a new algorithm, the

partitioned band join algorithm, and present both analytic and experimental evidence

(from an implementation on top of the WiSS storage system [CDKK85]) that it is

faster than sort-merge over a wide range of band join queries and memory sizes. An-

other desirable property of the partitioned band join algorithm is that it maps well

to shared-nothing parallel database machines. We also present experimental scaleup
results from our implementation on the Gamma database machine [DGS+90].

Band joins arise in queries that require joins over continuous \real world" domains

such as time or distance. For example, if the tuples in R and S represent events, and
the attributes R:A and S:B represent the times at which events occur, then �nding all

�Authors' a�liations: David J. DeWitt and Je�rey F. Naughton: Computer Sciences De-

partment, University of Wisconsin,Madison, WI. Donovan A. Schneider: Hewlett Packard

Labs, Palo Alto, CA.

1



pairs of events that occurred at nearly the same time will entail a band join. Note that

unless the clocks measuring events in R and S are exactly synchronized, even �nding

events that occurred at the \same time" will require a band join, where the band is
large enough to capture the skew between the two clocks.

From an algorithmic point of view, band joins are interesting because they present
challenges not present in equijoins. There is a growing body of both analytic and

experimental evidence that hash-based algorithms are highly e�ective for equijoins,

surpassing the performance of sort-merge and nested-loops almost everywhere. Unfor-

tunately, hash-based algorithms are ine�ective for band joins, since the join condition

involves ranges of values rather than exact matches of values. Furthermore, there is

no way to use hashing to partition R into disjoint subsets R1;R2; . . . ;Rk, and S into

disjoint subsets S1; S2; . . . ; Sk, such that the band join can be computed by the union

of the joins Ri 1 Si.

The algorithm we develop in this paper, the partitioned band join algorithm, works
by partitioning R and S in such a way that the S partitions overlap both portions of

other S partitions and portions of multiple R partitions. The basis for the partitioning

lies in �nding the quantiles for the join attribute of R; to avoid fully sorting R, we
�nd these quantiles by sampling. We compute the number of samples required to �nd

the quantiles to the required accuracy and con�dence by using the Kolmogorov test

statistic. The cost of this sampling is included in both our analytic and experimental
results.

A critical parameter of a band-join is the number of tuples of R and S that �t

within one band. (Two tuples t1 and t2 appear in the same band if the constants in
the join attribute in each are within c1 + c2 of each other.) In this paper we assume

that the bands are \small" in the sense that the number of tuples that �t in one band

will also �t in memory. This is the most interesting case to consider; if the number of
tuples that �t in one band will not �t in memory, then the join result will be huge,

and gains due to clever evaluation algorithms will be swamped by the cost of writing

the result relation to disk.
The rest of this paper is organized as follows. Section 2 describes the partitioned

band join algorithm, while Section 3 describes our adaptation of the sort-merge join

algorithm to band joins. Section 4 presents an analytic comparison between the parti-
tioned band join algorithm and the classical sort-merge join algorithm applied to band

joins. In Section 5 we describe an implementation of the algorithms and present results

from experiments with the implementation in Section 6. Section 7 describes how the

partitioned band join algorithm can be adapted for a shared-nothing multiprocessor

and gives speedup and scaleup results from the implementation on Gamma.

2 Partitioned Band Join

The partitioned band join algorithm works by splitting up R and S into partitions Ri

and Si, then computing the band join by joining Ri and Si for each i. The algorithm

achieves its high performance by carefully choosing the partition sizes and overlaps,

by performing the partitioning without sorting either R or S, and by using an e�cient

method for computing the subjoins between Ri and Si.



2.1 Overview of the Partitioned Band Join Algorithm

A primary goal of the algorithm is to try to minimize the number of disk accesses by

guaranteeing that pages never need to be re-read during the join of Ri with Si. We
can achieve this goal by ensuring the following two conditions:

1. Each of the Ri �ts entirely into the bu�er pool, and

2. For every tuple r in Ri, all tuples of S that join with r appear in Si.

When these two conditions are satis�ed, then we can join Ri and Si by reading Ri

into memory, then reading in Si one page at a time, joining all tuples on each page of

Si with all of Ri before reading the next page of Si.

We ensure the �rst condition by choosing partitioning elements by sampling R.

This process is described more fully in Subsection 2.2. Here we consider the second

condition, which determines the required overlaps between the partitions.

If condition two above is to be satis�ed, then it must be the case that the range

of tuples in Si overlaps the range of tuples in Ri. The precise requirement is that if
hi is the greatest element appearing in R:A in some tuple of Ri, and li is the least

element appearing in R:A in some tuple of Ri, then Si must contain all tuples s such

that li� c1 � s:B � hi+ c2 (A and B are the join attributes of R and S, respectively).
Since it is possible that hi = li+1, this implies that the range for Si+1 must overlap

the range for Si by c1 + c2.

Assuming that the partitioning values have been determined (by sampling), the
tuples of the relations must actually be partitioned into the Ri and the Si. There

are two ways to do this, which we term \hybrid" and \Grace" partitioning, after

the corresponding partitioning methods for hash-based equijoins [DKO+84, KTMo83].
Grace partitioning works by allocating a number of bu�er pages equal to the number of

partitions. Then each page of the relation is read into an input bu�er, and each tuple

t on the page is copied into the bu�er page for the partition in which t belongs. To
determine which partition a tuple t belongs, we binary search a table of partitioning

values (constructed by sampling, as described below). The table contains the join

attribute values that mark the boundaries between the R partitions. As a bu�er page

for a partition is �lled up, it is written to disk. Note that when partitioning S the

tuples in the overlapping portions of the S partitions are copied into multiple bu�er

pages, since these tuples must appear in multiple consecutive partitions.
Suppose that s is determined (by consulting the partitioning table) to fall in parti-

tion Si, and suppose again that we are computing the join S:B�c1 � R:A � S:B+c2.

Furthermore, let the value xi+1 divide partitions Ri and Ri+1. To see if s also belongs
in Si+1, we check if the join attribute of s, denoted s:B, satis�es xi+1 � c1 � s:B �
xi+1 + c2. This can be seen by noting that the largest value in Si is xi+1 + c2, while

the smallest value in Si+1 is xi+1 � c1.

Hybrid partitioning works in the same way as Grace partitioning, except that

enough bu�er pages are allocated to keep all of R1 in memory during the partitioning

phase. Then after R has been partitioned, partition R1 remains in memory, while

partitions R2; . . . ; RN are on disk. When S is being partitioned, if an S tuple s falls

in partition S1, it is immediately joined with R1 rather than written to disk. The goal

of hybrid partitioning is to avoid re-reading R1 between the partitioning and joining
phases.



Once the relations have been partitioned as described above, the band join problem

is reduced to computing the individual joins Ri 1 Si for 1 � i � k, where k is the

total number of partitions. The basic idea for computing one of these subjoins, as
mentioned above, is to read in Ri, then read in Si one page at a time, joining each

tuple of the current S page with all of Ri. To avoid scanning all of Ri for each S tuple,
we �rst sort Ri using an in-memory sort. Then the join of each S tuple s with Ri can

be accomplished by �rst binary searching Ri to �nd the �rst R tuple that joins with

s, then scanning Ri until we pass the last R tuple that joins with s.

2.2 Sampling and Partitioning

To guarantee that each Ri �ts in memory, we need to partition R into approximately

equal sized partitions, each partition about the size of the bu�er pool. The most
straightforward way to partition R would be to sort R on R:A, then scan R to �nd

the partitioning elements. This would incur the cost of a full sort of R during the

partitioning phase, something that we wish to avoid. A better way is to randomly
sample R to determine partitioning elements that with high probability are close to

elements that would be found if we sorted R.

Suppose that we wish to partition R into k equal sized, disjoint partitions. We
begin by taking n random samples (tuples) from R which are then sorted on R:A.

Let the n sorted tuples be designated r1; r2; . . . ; rn in order of increasing R:A value.

If we wish to partition R into k partitions R1 through Rk, we take rn=k:A to be

the partitioning element between R1 and R2, r2n=k :A to be the partitioning element

between R2 and R3, etc. By the Kolmogorov test statistic [Con71], with 99% certainty

the percentile of each of the partitioning elements is o� by at most plus or minus

1:628=
p
n. For example, suppose we take 256 samples, recording the join attribute

value of each sample, and then sort the resulting 256 values. If a value x appears at

the 50% mark in the sorted list of samples, then with 99% certainty x appears between

the 40th and 60th percentile in the sorted list of the join attribute of all tuples of R.

Note that this error guarantee requires no assumptions about the distribution of the

values in R:A; the Kolmogorov test is a non-parametric test that works equally well
for any distribution.

Choosing the number of partitions is an interesting problem, perhaps best ex-

plained by an example. Suppose that R has jRj pages, and that we have jRj=3 memory
bu�er pages available. Furthermore, suppose that we are using hybrid partitioning.

The bu�er pages required by hybrid during partitioning are of two types: those for

partition R1, and those for partitions R2; . . . ; Rk. For the purposes of this example, we

will ignore those pages for R2; . . . ;Rk, since k will be small but the size of R1 will not.

(Our implementation does not ignore these pages, but including them complicates the

exposition.)
In an ideal situation, we could choose k = 3, and R1 would exactly �t in memory.

Since our partitioning elements are only approximate, we cannot expect the partitions

to be of equal size, so k = 3 is unreasonable. Note that if R1 is actually larger than the
bu�er pool, the correctness of the algorithm is not a�ected; however, during both the

partitioning and the joining phases performance will su�er due to bu�er pool thrashing.

Thus, for performance reasons, we need to pick k so that it is highly unlikely that R1

will exceed the available bu�er space.



The next logical choice is to set k = 4. In this case, the expected size of R1 will

be jRj=4 pages, so we are left with jRj(1=3� 1=4) = jRj=12 bu�er pages available to

handle any over
ow due to errors in the estimation of the partitioning elements. Now
suppose we wish to be 99% certain that R1 �ts in the bu�er pool. With n samples, the

expected error in the quantiles is 1:628=
p
n. Since a quantile is just a percentage, this

means that the expected number of error pages is 1:628 � jRj=
p
n. We need that this

quantity is less than jRj=12, so the equation de�ning the number of samples required

is
1:628 � jRj

p
n

� jRj=12

which implies that we must take at least n = 382 samples.
Still another choice would be to set k = 5. The same analysis as above shows that

in this case we must take only n = 150 samples. However, now the expected size of

R1 is smaller by jRj=4 � jRj=5 = jRj=20. This in turn means that we can expect to

do jRj=20 more reads and writes with k = 5 than with k = 4, since we save less by

leaving a smaller R1 in memory.

To summarize, there is a tradeo� between reducing non-sampling I/O by choosing
k small, and reducing sampling I/O by choosing k large. To resolve this tradeo�, we

have written an optimization procedure that takes as input jRj, the available memory
size, the cost of a sample, and the cost of other I/O, and chooses a reasonable k and the
number of samples required so that with 99% certainty there will be no thrashing of

the bu�ers. We re-emphasize that this is not to say the join algorithm is 99% correct;

it is always correct, the 99% merely refers to the probability that no paging of the

bu�er pool will be needed.

An interesting point to note is that the number of samples required does not

depend upon jRj. Rather, it depends upon the ratio of jRj to the available memory.

This implies that if we scale jRj and the available memory together (keeping the ratio

constant) the cost of sampling relative to the cost of reading the relation diminishes.

3 Sort-Merge Band Join

The standard sort-merge join algorithm for equijoins can be adapted to handle band
joins. However, in the case of band joins, the algorithm can be expected to \back up"

much more often than in the case of equijoins, as it scans to pick up joining pairs of

tuples. Our implementation of sort-merge was further complicated in that we used
the optimization of skipping the �nal merge of each sort, performing the join on the

�nal set of runs instead of on the two completely sorted relations. More detail on this

optimization in particular, and on the band sort-merge algorithm in general, is given

in Section 5. Here we focus on the question of how to handle backing-up in the �nal

joining merge.
Suppose that we have sorted R and S down to their �nal set of runs (just before

the merge that would produce the sorted relations). The general idea for the band

merge-join is as follows: at all times, we have in the memory bu�ers 1) one page from
each run of R, 2) one page from each run of S, and 3) a \window" of pages from the

fully sorted S relation. Let the pages in this \window" of the sorted S relation be

numbered S[m], S[m+1], . . ., S[m+ k], where S[m] is the most recent page of tuples
merged out of the S runs.



At any given time, let r be the tuple with the smallest value in any of the R sorted

runs. That is, if we were proceeding with the �nal merge in a sort of R, then r would

be the next tuple to be added to the output. The tuple r is used to probe the tuples
in the S window, searching for joining S tuples. If r does not join with any tuples in

page S[m+ k], then S[m + k] is eliminated from the bu�er pool, since no subsequent
R tuple could join with any tuple in S[m+ k]. Note that it is not necessary to write

S[m+k] to disk, since it will not be referred to again. If r joins with the last tuple in

sorted order in page S[m], then another page of S tuples, S[m� 1], is merged out of

the S runs. Finally, r is deleted from the bu�er page for the R run from which it was

taken. If r was the last tuple on this page, the next page from that R run is read into

memory.

4 Analytic Comparison

In this section we give simple cost formulas for evaluating the relative performance of

sort-merge band join and both variants of the partitioned band join algorithm (that

is, using hybrid and Grace partitioning.) The formulas below omit the cost of creating

the answer tuples and writing the answer, since this cost will be similar for both

algorithms.

For both algorithms, we used the following set of parameters:

COMP 0.001 ms. to compare keys

KEYSWAP 0.003 ms. to exchange two keys

MOVE 0.010 ms. to move a tuple

SWAP 0.030 ms. to swap two tuples

IOSEQ 10.0 ms. to do a sequential IO

IORAND 25.0 ms. to do a random IO

Furthermore, assume that there are B tuples per page, let R contain jRj pages, and
let S contain jSj pages, and let F be the fraction of R pages that �t in memory.

For the sort-merge band join, assuming that the memory is large enough so that

both relations can be sorted in two passes each, the I/O cost consists of three parts:

(jRj+ jSj) � IOSEQ to read the relations

+ (jRj+ jSj) � IOSEQ to write the initial runs

+ (jRj+ jSj) � IORANDto re-read initial runs

Assuming that when forming the initial runs we sort (join attribute, pointer) pairs

using some n log n internal sort and then copy the runs into sorted order (in memory),
the CPU cost for the algorithm is

jRj � B � log(jRj �B � F ) � (KEY SWAP + COMP )
// form initial R runs

+ jSj �B � log(jSj � B � F ) � (KEY SWAP +COMP )

// form initial S runs
+ (jRj+ jSj) �MOV E

// copy to sorted positions
+ jRj � B � log(jRj=F ) � (COMP + SWAP )

// merge R runs



+ jSj �B � log(jSj=F ) � (COMP + SWAP )

// merge S runs

The total cost of the algorithm is the sum of the CPU and IO costs.
For the Grace partitioned algorithm, the I/O consists of four parts. Letting s be

the number of samples taken, and k the number of partitions, the I/O cost is

s � IORAND
// initial sampling

+ (jRj+ jSj) � IOSEQ
//to read the relations

+ (jRj+ jSj) � IORAND
// to write the partitions

+ (jRj+ jSj) � IOSEQ
// to re-read partitions

The CPU cost is given by

(jRj+ jSj) �B � log(k) �COMP

// �nd partition

+ (jRj+ jSj) � B �MOV E

// copy to output partition
+ jRj � B � log(R �B=k) � (KEY SWAP + COMP )

// sort R partitions

+ jRj � B �MOV E

// copy to sorted order

+ jSj �B � log(R � B=k) � COMP

// �nd �rst joining R tuple

Again, the total cost is the sum of I/O and CPU costs.

Finally, for hybrid partitioning, the cost is

s � IORAND
// initial sampling

+ (jRj+ jSj) � IOSEQ
// to read the relations

+ ((k � 1)=k) � jRj+ jSj) � IORAND
// to write the partitions

+ ((k � 1)=k) � jRj+ jSj) � IOSEQ
// to re-read partitions

The CPU cost is the same as the CPU cost for Grace partitioning, and again the total

cost is the sum of I/O and CPU costs.

We tested these equations for a wide variety of parameters, and also tested similar

cost formulas for two other algorithms, nested-loops and a variant of the partitioned

band join algorithm in which for 1 � i � k, both Ri and Si are sorted and are simul-
taneously memory resident. Since these two algorithms were worse than sort-merge

and the basic partitioned band join algorithms everywhere, we did not pursue them

further. A representative graph of these cost formulas for various fractions of R �tting

in memory appears in Figure 1. In that graph, both R and S had 500 pages, and



0 0.5 1

50

60

70

80

90

time

(sec)

Percent of R in bu�ers

SM

GP

HP

Figure 1: Model comparison between GP, HP, and SM.

40 tuples per page. The optimal number of samples and partitions for each memory

con�guration were computed by the same optimization procedure used in our imple-
mentation of the partition band join algorithm. Since the model gave performance

results similar to our implementation, we defer a discussion of the performance results

until Section 6.

5 Implementation Details

In order to evaluate the relative performance of the sort-merge and partitioned band

join algorithms, each was implemented using the single user version ofWiSS [CDKK85].

The services provided by WiSS include sequential �les, byte-stream �les as in UNIX,

B+ tree indices, long data items, an external sort utility, and a scan mechanism. A

sequential �le is a sequence of records that may vary in length (up to one page) and

that may be inserted and deleted at arbitrary locations within a �le. Optionally, each
�le may have one or more associated indices that map key values to the record iden-

ti�ers of the records in the �le that contain a matching value. One indexed attribute

may be designated to be a clustering attribute for the �le.
Rather than using the standard WiSS bu�er pool (which uses an LRU replacement

policy) to bu�er data pages, each of the join algorithms explicitly managed its own

bu�er space. Several factors motivated this decision. First, doing so simpli�ed the

task of varying the amount of bu�er space available for a query without having to

recompile WiSS each time. Second, since the WiSS sort code (which we intended

to use as the basis for the sort-merge band join algorithm) already managed its own
bu�er space, doing the same thing for two partitioning algorithms seemed the fairest

thing to do. Finally, allowing each algorithm to carefully manage replacement of pages

directly, ensures that each algorithm is evaluated in the best possible light.
In order to avoid the di�culties of gathering reproducible results on a time-shared

system with multiple users, �le system bu�ering, and virtual memory paging, we

elected instead to use a single node of the iPSC-2 hypercube on which the Gamma
database system is implemented. Each node has a 386 processor, 8 megabytes of



memory, and a 330 megabyte disk; more details are given in Section 7.

5.1 Hybrid and Grace Partitioned Band Join Algorithms

As described in Section 2, both the hybrid and Grace band join algorithms begin
by splitting the the two relations to be joined, R and S, into partitions Ri and Si,

for 1 � i � N . The inputs to the partitioning operator include N , the number

of partitions, a description of the partitioning (join) attribute (type, length, o�set),
an N -element partitioning vector that speci�es the upper and lower bounds of each

partition (as discussed in Section 2, these bounds are produced by sampling the inner

relation, R), and the number of bu�er pages to be used to hold tuples of each partition
during splitting process. With the hybrid algorithm, typically one page is allocated to

partitions 2 to N with the remaining bu�er space being used for partition 1. In the

case of the Grace algorithm, each partition is allocated the same number of bu�ers,
typically 1 or 2, depending on the number of partitions selected during the sampling

phase.

Sampling was implemented by randomly generating a key value for the relation,
and retrieving the tuple with that value. For implementational convenience, we used a

dense index on the key attribute for this purpose, although the ability to take random

samples from a relation does not depend upon this assumption [OR89, ORX90].
Our sampling technique e�ectively means at least one I/O per sample (more if

the pages forming the upper levels of the index are not resident in the bu�er pool.)

Optionally, we could sample at the page level, using all tuples on a page when it is
brought in. (Page level sampling has been proposed in [HOT88] for the purpose of

join and selection selectivity estimation.) If the tuples on each page are not correlated

on their join attribute, page level sampling is very e�ective, and would reduce the

sampling overhead in our algorithms by a factor equal to the number of tuples per

page. We did not implement this alternative, so our performance �gures are \worst-

case" numbers for sampling.

Partitioning the relations proceeds as described in Section 2. However, as an

important optimization, as the inner relation (R) is being partitioned, a \range-vector"

�lter is formed containing the actual minimum and maximum attribute values of each

partition. As each tuple is added to its partition, its join attribute value is compared

to the current minimum and maximum values for the partition to determine if the

value constitutes a new minimum or maximum. This is most signi�cant for the \�rst"
and \last" partitions | for example, the range-vector only gives an upper bound on

the join attribute values for tuples in the �rst partition. If the actual smallest value

appearing in the join attribute of the �rst partition is x, and the band is c, then any
tuple in the outer (S) relation with join attribute less than x � c can be discarded,

since it could not possibly join with any tuple of the inner relation. This �lter is

employed while partitioning the outer relation much as bit vector �lters are used when
processing equijoins [DG85, SD89].

Once both relations have been partitioned, the actual join proceeds as follows (the

di�erences between the Grace and hybrid algorithms will be discussed below). For each
partition, the pages of the corresponding partition of the inner relation are read into

memory and sorted (actually, instead of sorting entire tuples, pointers to the tuples are
sorted). Next, the pages of the corresponding outer partition are processed. For each

outer tuple, a lower (upper) bound is computed by subtracting (adding) the band value



from (to) the tuple's join attribute value. The lower bound is then used to perform

a binary search of the sorted inner partition to determine the appropriate starting

tuple. Beginning with this tuple, the outer tuple is then joined with all subsequent
inner tuples whose join attribute values are greater than the computed upper bound.

As result tuples are produced they are blocked into pages and written to the result
relation.

With the Grace algorithm all partitions are treated identically. In the case of the

hybrid algorithm, the partitioning of the inner relation sorts partition 1 and leaves it

resident in memory rather than writing it back to disk. Then, as the outer relation is

partitioned, tuples that overlap the range of partition 1 are joined immediately rather

than being written to disk. Partitions 2 to N are processed in the same way as they

are with the Grace algorithm.

5.2 Sort Merge Band Join Algorithm

The sort-merge equijoin algorithm begins by sorting both relations on the join at-

tribute. Then, the two sorted relations are scanned, joining tuples with equal join
attribute values. While each tuple of the \outer" relation is examined only once, if

the join attribute values of the outer relation are not unique, the scan of the inner

relation must be \backed up" in order to produce the correct result. As mentioned in
Section 3, adapting this algorithm to handle band joins is straightforward except that

since each outer tuple joins with a band of tuples from the inner relation, the scan of

the inner relation needs to be backed up after almost every single outer tuple.
In the past our comparisons of the relative performance of the sort-merge and

hybrid equijoin algorithms have sometimes been criticized [Gra] for not being totally

fair. In particular (as we ourselves �rst observed in [DG85]), it is possible to improve

the performance of the sort-merge join algorithm (for both equi- and band-joins) by

combining the �nal merge phase of both sort steps with the actual join phase, avoiding

reading and writing the �nal runs of the two sorted relations. For this paper, we

implemented this modi�ed merge-join algorithm as discussed below.

Our sort-merge band join algorithm operates as follows. As with the hybrid and

Grace algorithms, the algorithm manages its own bu�er space so that the replacement

of pages can be directly controlled. The algorithm begins by performing a partial

external merge sort of the inner relation. Given a K+1 page bu�er, the initial runs of

K pages are sorted in memory using the same pointer-based, quick-sort algorithm used
to sort the inner partitions of the two partitioning algorithms. Runs are then merged

using a K-way merge until the �rst two pages of the �nal sorted run are produced.

(This implicitly assumes that if there are B tuples per page, then there are no more
than B tuples in the band. This was true for all our test cases.) At this point the

sort of the inner relation is \suspended" until more inner tuples are needed (this will

become clearer below).

Next, the sort of the outer relation is initiated. This sort is processed in a similar

fashion to the sort of the inner relation except that as the �nal sorted run is being

formed outer tuples are immediately joined with the appropriate tuples of the inner
relation. Additional tuples from the inner relation are produced \as needed" during

this join process by reactivating the sort of the inner relation to produce the next page
of sorted inner tuples. (In e�ect, the sort of the inner relation and the sort/join of the

outer relation are implemented as co-routines.) Pages of the sorted inner relation are



discarded as soon as it can be safely determined that the tuples they contain cannot

possibly join with any additional tuples from the outer relation. Result tuples are

blocked into pages and written to the output relation.
It is important to understand that this performance \optimization" does not come

totally for free. In particular, during the join phase, one must allocate input bu�ers
for runs of both the inner and outer relations as well as several bu�ers for the merged

input tuples and the output tuples.

6 Uniprocessor Experiments

In this section we describe a series of experiments that we ran on our uniprocessor

implementation of the band join algorithms. In all cases the test relations were based

upon the Wisconsin Benchmark relations [BDT83], with some �elds modi�ed to be

more useful in testing band joins. The new �elds will be discussed as they are used
in the experiments below. The tuple size was 188 bytes. Furthermore, in each of the

experiments below an answer tuple t was de�ned to be the concatenation of the pair

of tuples that joined to produce t, so answer tuples were 376 bytes long. In all cases
we used a symmetric band, that is, c1 = c2.

For the �rst experiment we ran, we used the two attributes hundreds and hundredsPlus1.

In a relation with N tuples, the attribute hundreds contains the numbers 0, 100, . . . ,
100 � (N� 1) in random order, while hundredsPlus1 contains the numbers 1, 101, . . . ,

100 � (N � 1)+1, again in random order. In this experiment, each relation had 20,000

tuples; we joined column hundreds in R with hundredsPlus1 in S with a band of size
two (c = 1). This means that each tuple of R joins with one tuple of S, and vice-versa.

Figure 2 gives the results for memory sizes ranging from 1/10 of R in memory to all of

R in memory. The curve for sort-merge is labeled SM; the curves for Grace partitioned
band join and the hybrid partitioned band join are labeled GP and HP, respectively.

Note the similarity in the shapes and relative positions of the curves to those

generated by the analytical model, shown in Figure 1. The absolute values for the
plots in the graphs di�er for a number of reasons, primarily because 1) the graph

in Figure 1 omits the cost of forming and writing the answer, and 2) we made no

attempt to do an exact match of the hardware parameters in the model with the
hardware parameters of our implementation.

The high cost for the Grace and hybrid partitioned band join algorithms when less

than about 1/3 of R �ts in the bu�er pool is due to sampling overhead. Table 1 gives
the percentage of execution time due to sampling for the Grace partitioned band join

curve in Figure 2. Note that if we implemented page-level sampling (as described in

Section 5) this overhead would be reduced by a factor of 43, the number of tuples per
page.

The next experiment we ran was designed to test the performance of the three

algorithms when the input relation sizes di�er. For this purpose, we used an R relation
of 10K tuples, and an S relation of 100K tuples. For the join, we used the attribute

twenties in R, and the attribute twentyWrap in S. These attributes are de�ned such

that for these relation sizes, the R tuples contain the join attribute values 0, 20, . . . ,
20 � (10000� 1) in random order, while S contains the join attribute values 0,1,. . . , 9,

20,21,. . . ,29, . . . , 20 � (10000� 1), 20 � (10000� 1)+ 1, . . . , 20 � (10000� 1)+ 9. With

a band of size 2 (c = 1), every R tuple joins with two S tuples, while 2/10 of S tuples



0 0.5 1

100

150

200

250

time

(sec)

Percent of R in bu�ers

SM

GP

HP

Figure 2: 20K tuples join 20K tuples, answer 20K tuples.

mem size sampling time percent of total

0.1 103 sec. 40

0.2 20 sec. 13
0.3 7 sec. 5

0.5 3 sec. 2

1.0 0 sec. 0

Table 1: Sampling costs as a percentage of running time.

join with one R tuple and 8/10 of S tuples join with no R tuple, giving a result size

of 20K. A graph of the results of this experiment is presented in Figure 3. Note that

although not all S tuples join with an R tuple, the ranges for the join attributes in R

and in S are essentially the same, so range-�ltering had no e�ect.

This graph illustrates several important properties of the algorithms. Most obvious

is the bene�t that both the partitioned band join algorithms gain from not having to

sort a 100K relation (S). This is most apparent for the small memory data points.

At memory equal to 0.1 of R pages, sort-merge had to make multiple passes over R

and S before even beginning the �nal merge; it wasn't until memory equal to 0.5 of R

that the large S relation could be sorted in two passes (with the join computed on the

second pass.) It is also clear that hybrid performs much better than Grace for large

memory sizes. There are two reasons for this: �rst, hybrid doesn't have to re-read the
portion of R that falls in R1. However, this is not very signi�cant, since the cost of

re-reading part of the 10,000 R tuples is dwarfed by the cost of reading the 100,000 S

tuples and writing 20,000 answer tuples that are twice as large as the R tuples. Much
more importantly in this case, the portion of S that falls in S1 is never written to

disk or read back in, because those tuples in S1 are immediately joined with R1 in the

partitioning phase of the algorithm.
The �nal experiment we ran was designed to demonstrate the e�ect of range �lter-



0 0.5 1

200

300

400

500

600

time

(sec)

Percent of R in bu�ers

SM

GP

HP

Figure 3: 10K by 100K, band 2, answer 20K tuples.

ing, as described in Section 5. We again joined 20K tuples with 20K tuples, but this

time the join attribute in R contained the values 0, 20, . . . , 20�(20000�1) (in random
order), while the join attribute in S contained the values 0, 100, . . . , 100 � (20000� 1)

(again in random order). With a band of size 100 (c = 50), 1/5 of the S tuples join

with 5 R tuples, and the remaining S tuples join with no R tuples, so the answer size

is again 20K tuples. However, in this case the range for the join attribute in the R

relation is 1/5 the range of the join attribute for the S relation, so range �ltering has

a signi�cant a�ect.

The result graph for this experiment appears in Figure 4. Both Grace and hybrid

are able to \�lter" 4/5 of the S tuples, which means that these tuples are just read

once and thrown away. Hybrid does even better than Grace for large memory sizes,

again since it 1) doesn't re-read R1, and 2) joins S1 without writing it or re-reading it.

Hybrid is especially successful here, since for large memory sizes, all S tuples either

fall in S1 or are �ltered out, so the result is that the join is computed by reading the
pages of the S relation and never writing them.

7 Multiprocessor Experiments

In this section we consider the execution of band joins in a parallel environment. In

order to simplify the implementation e�ort, we implemented only a parallel version of

the hybrid partitioning band join algorithm.

7.1 Parallel Hybrid Partitioning Band Join

The Gamma Database Machine [DGS+90] served as our experimental vehicle. Gamma

falls into the class of shared-nothing [Sto86] architectures. The hardware consists of a

32 processor Intel iPSC/2 hypercube. Each processor is con�gured with a 80386 CPU,

8 megabytes of memory, and a 330 megabyte MAXTOR 4380 (5 1/4 in.) disk drive.

Each disk drive has an embedded SCSI controller which provides a 45 Kbyte RAM

bu�er that acts as a disk cache on sequential read operations.



0 0.5 1

100

150

200

time

(sec)

Percent of R in bu�ers

SM

GP

HP

Figure 4: 20K tuples join 20K tuples, answer 20K tuples.

The nodes in the hypercube are interconnected to form a hypercube using cus-

tom VLSI routing modules. Each module supports eight full-duplex, serial, reliable
communication channels operating at 2.8 megabytes/sec. A custom operating system,

NOSE, tailored especially for database processing, runs on each processor.

In Gamma, relations are horizontally partitioned [RE78] (also known as decluster-

ing [LKB87]) across all disk drives in order to increase the aggregate I/O bandwidth

provided by the hardware. The query language of Gamma provides the user with sev-

eral alternative declustering methods. For the experiments described below, the user

determined which tuples reside on each site based on a range predicate applied to the

partitioning attribute of each tuple of the relation. A collection of tuples stored on a

processor is referred to as a fragment of the relation.

Extending the sequential version of the hybrid partitioning band join algorithm to

a parallel environment was relatively straightforward. To simplify the implementation,

each partition was mapped to an individual processor. In addition, we assumed that
each partition of the inner relation was small enough to �t entirely in a processor's

bu�er pool.

The parallel version of the hybrid partitioned band join algorithm is as follows.
First, each processor randomly samples its local fragment of the inner relation and

sends the join attribute values of the sampled tuples to a central coordinator. The

coordinator sorts all the sampled values and determines the partitioning elements such
that the inner relation will be divided into as many buckets as there are processors. The

coordinator then sends a copy of these partitioning elements to each processor whose

disk contains a fragment of the inner relation. Each processor reads its local fragment
of the inner relation and re-distributes it over the network using the partitioning

elements. As tuples from the inner relation arrive at a processor, they are stored

in memory and subsequently sorted. After this phase is complete, the outer joining
relation is similarly re-distributed over the network using the partitioning elements

derived from the inner joining relation. Of course, tuples that fall into a neighboring

bucket due to the width of the band are replicated and sent to the processor that is
handling this bucket. Hence, in a parallel environment, an increase in the size of the



band results in increased network tra�c. As tuples from the outer relation arrive at

a processor, they are used to binary search the sorted inner tuples and compute any

output tuples, exactly as was done in the uni-processor version of the algorithm.
One problem to overcome with this parallel algorithm is how to to correctly and

e�ciently sample the inner relation in parallel in order to determine the partitioning
elements. For correctness, the relation must be sampled randomly as if it were stored

on a single processor. That is, each tuple, regardless of the processor that it is stored

on, must be equally likely to be sampled. Note that if we wish to take N samples, it

is not acceptable to have each processor take 1/N samples, since this will not result

in a truly random sample. To see this, note that if each processor takes 1=N samples,

then we will never get a set of N samples in which more than 1=N tuples come from

any single processor's portion of the database.

To take a truly random sample while still making use of the parallelism available,

in our implementation, each processor attempts to sample N tuples from its local
fragment of the relation (each processor uses the same random number generator

with the same seed). However, for e�ciency, each processor checks the local catalog

information to determine if the tuple to sample is indeed stored on its local disk. If
so, the tuple is retrieved from disk and its join attribute value is sampled. If the tuple

is not stored locally, the sample can be ignored. In terms of disk I/O, the e�ect is the

same as if some central processor generated N random keys, then sent to each processor
p only the keys that for tuples in the partition stored at p. As in the uni-processor

experiments, a B-tree index is used to e�ciently retrieve the tuple to sample.

Note that this optimization does not require that the join attribute of the inner
relation be identical to the attribute used to partition the inner relation during relation

creation. Instead, it only requires that the attribute used to fetch a random tuple is

the same attribute used to partition the inner relation during relation creation. Fur-
thermore, if no such catalog information is available the algorithm still works correctly,

it will only su�er a performance degradation due to unsuccessful searches of the index

for tuples stored on other processors.

7.2 Experiments and Results

Scaleup and speedup are useful metrics for evaluating multiprocessor database ma-

chines [DG90]. Scaleup is an interesting metric for multiprocessor database machines
as it indicates whether a constant response time can be maintained as the workload is

increased by adding a proportional number of processors and disks. Speedup is an in-

teresting metric because it indicates whether additional processors and disks result in
a corresponding decrease in the response time of a query. A similar set of experiments

were reported in [EGKS89] for equi-join queries on Release 2 of Tandem's NonStop

SQL system and in [DGS+90] for equi-join queries in Gamma.

7.2.1 Scaleup

For the scaleup experiments, we varied the number of processors with disk from 1 to

30. At 1 processor, a 10,000 tuple relation was joined with a 100,000 tuple relation.

At 10 processors, the relations were scaled to 100,000 tuples and 1,000,000 tuples,

respectively. Similarly, at 30 processors, the sizes of the relations to be joined were

300,000 and 3,000,000 tuples. For every con�guration, each of the relations to be joined



0 10 20 30

0

100

200

300

time

(sec)

Number of Processors

Band=2

Band=10

Figure 5: Scaleup performance.

was evenly distributed during relation creation amongst all the processors by applying

a range predicate to the unique1 attribute (whose values range from 0 to the relation
cardinality minus 1). The join query tested was the twenties join twentyWrap, as

described in the uniprocessor experiment in Section 6.

Figure 5 presents the scaleup results for the parallel hybrid partitioning band join

algorithm for band sizes of 2 and 10. Three factors contribute to the slight increase

in response times. First, the task of initiating �ve processes at each site (two relation

scans, a join, a store, and a sampling operator) is performed by a single processor.

Second, as the number of processors increase, the e�ects of short-circuiting [DGS+90]

messages during the execution of the query diminishes. For example, in the 5 processor

con�guration, approximately 1/5th of the tuples of the input relations and the result

relation will be sent to a process on the same processor, thereby short-circuiting the

communications network. As the number of processors is increased, the number of

these short-circuited packets decreases to the point where, with 30 processors, only
1/30th of the packets will be short-circuited. Because these intra-node packets are

less expensive than their corresponding inter-node packets, smaller con�gurations will

bene�t more from short-circuiting. Finally, the more processors added, the larger the
skew in the sizes of the subjoins allocated to each processor.

This demonstrates another interesting tradeo� between sampling time and execu-

tion time. Roughly speaking, the more sampling, the lower the skew, hence the faster
the execution time exclusive of sampling; but clearly, the more sampling, the higher

the overhead of sampling. In more detail, as we increase the workload, the total rela-

tion size increases. Since the errors in the sizes of the partitions are proportional to the
size of the total relation, this means that if the total number of samples is kept con-

stant, then the expected error in the partitions will increase. In our implementation,

we scaled the number of samples along with the number of processors, keeping the
expected number of samples per processor constant. For example, the �ve processor

join took �ve times as many samples as the one processor join. However, since the

error is inversely proportional to square root of the number of samples, scaling the
number of samples linearly is not su�cient to keep the expected error in the partitions



constant. That is why we saw larger skews at the larger con�gurations.

To keep the skew constant as we add processors, we would have to scale the number

of samples quadratically in the number of processors. Since the number of processors
grows linearly, this means that the expected number of samples taken by each processor

will also grow linearly. For example, in the 30 node con�guration, if we wish the skew
to be the same as in the two processor case, each processor will need to take, on

average, 15 times as many samples as in the two node case. This implies that while we

saw good scaleup to 30 processors, the parallel hybrid partitioning band join algorithm

will not scale inde�nitely.

7.2.2 Speedup

For the speedup experiments, we kept the size of the relations to be joined constant at

1,000,000 and 100,000 tuples while varying the number of processors from 5 to 30. We

also held constant the number of samples used to determine the partitioning elements.
We again used the twenties join twentyWrap query with band size 2 as our test query.

no. of processors execution time speedup

5 349.2 1.00
10 177.5 1.97

15 125.6 2.78

20 100.1 3.49

30 75.9 4.60

Table 2: Speedup results.

The response time and speedup for a band join of size two (result relation size of

200,000 tuples) are shown in Table 2. It is obvious that adding additional processors

signi�cantly reduces the execution time of the query. Several factors prevent the system

from achieving perfectly linear speedups. (It is important to note that since the base

case was 5 processors a perfect speedup factor for 30 processors would be 6.0 and

not 30.0!) As was the case in the scaleup experiments, performance is limited by the

overhead of scheduling the operators of the query tree, the e�ects of short-circuiting,

and the e�ects of skew in the size of the subjoins allocated to each processor.

To demonstrate the e�ect of skew, we measured the number of tuples produced
at each join site. We then took the maximum of these values and measured how

far it di�ered from the optimal value (assuming a perfectly uniform distribution).

In the 5 processor con�guration, the maximum skew was approximately 5%. In the
30 processor con�guration, though, the maximum skew was found to be 18% above

optimal. Since in a multiprocessor, performance is limited by the slowest site, the

increase in skew as processors are added results in sublinear speedups.

8 Conclusions

The two variants of the partitioned band join algorithm, Grace and hybrid, com-

pare favorably to the optimized sort-merge band join algorithm. This is encouraging



and perhaps somewhat surprising: while it has previously been demonstrated that the

equijoin hash-based join algorithms outperform sort-merge, it was not initially obvious

that these new algorithms would be as e�ective for band joins as the hash based algo-
rithms are for equijoins. This is because, when compared to the hash-based equijoin

algorithms, the partitioned band join algorithms do signi�cantly more work: where
the equijoin algorithm hashes a bucket of the inner relation, the partitioned band join

algorithm sorts a partition of the inner relation; where the equijoin algorithm does

a hash-based lookup, the partitioned band join algorithms do a binary search; and

�nally, the equijoin algorithms have no equivalent to the sampling overhead in the

partitioned band join algorithms.

Unlike the situation for the hybrid and Grace hashed equijoin algorithms, Grace

partitioned band join does not always dominate sort-merge, and hybrid partition band

join does not always dominate Grace partitioned band join. The reason for this is the

added cost of sampling; when memory is scarce, both the Grace and the hybrid variants
of the partitioned band join algorithm must take a lot of samples to ensure that the

errors in the partition sizes do not cause thrashing of the bu�er pool. For small

memory sizes, hybrid must sample more than Grace because there is e�ectively less
memory available for R1 in hybrid partitioning than there is for the partitions in the

Grace algorithm. This implies that a system should probably have all three algorithms

available for performing band joins; the optimizer must decide which algorithm is
appropriate for a given band join.

The partitioned band join algorithms perform especially well in two cases: when

a signi�cant fraction (say, more than 50%) of one of the operands �ts in memory, and
when the input relation sizes are di�erent. The latter is an especially important case,

since it will often occur when the band join is part of a query of the form �(R) 1 S.

Finally, we have demonstrated that the partitioned band join algorithm is e�ective
in multiprocessor systems, achieving good speedy and scaleup for con�gurations of at

least 30 processors (the maximum we could measure.)

Acknowledgements

This research was funded by an IBM Research Initiation Grant. We would also like

to thank Rick Rasmussen for his help both in porting the uniprocessor version of the

three algorithms to the hypercube and in locating a particularly nasty Gamma bug.

References

[BDT83] D. Bitton, D. J. DeWitt, and C. Turby�ll. Benchmarking database sys-

tems: A systematic approach. In Proc. of the Ninth VLDB Conf., pages

8{19, 1983.

[CDKK85] H-T. Chou, D. J. Dewitt, R. H. Katz, and A. C. Klug. Design and im-
plementation of the Wisconsin Storage System. Software|Practice and

Experience, 15(10):943{962, October 1985.

[Con71] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons,

New York, NY, 1971.



[DG85] D. M. DeWitt and R. Gerber. Multiprocessor hash-based join algorithms.

In Proc. of the Twelfth VLDB Conf., pages 151{164, 1985.

[DG90] D. DeWitt and J. Gray. Parallel database systems: The future of database

processing or a passing fad. SIGMOD Record, 19(4), 1990.

[DGS+90] D. DeWitt, S. Ghandeharizadeh, D. Scneider, A. Bricker, H.-I Hsiao, and

R. Rasmussen. The Gamma database machine project. IEEE Trans. on

Knowledge and Data Engineering, 2(1), 1990.

[DKO+84] D. J. DeWitt, R. H. Katz, F.Olken, L. D. Shapiro, M. R. Stonebraker, and

D. Wood. Implementation techniques for main memory database systems.

In Proc. of the 1984 SIGMOD Conf.

[EGKS89] S. Englert, J. Gray, T. Kocher, and P. Shah. A benchmark of NonStop

SQL Release 2 demonstrating near-linear speedup and scaleup on large

database. Technical Report 89.4, Tandem Part No. 27469, Tandem Com-
puters, 1989.

[Gra] Goetz Graefe. Personal Commuication.

[HOT88] W. C. Hou, G. Ozsoyoglu, and B. K. Taneja. Statistical estimators for

relational algebra expressions. In Proc. of the 1988 PODS Conf.

[KTMo83] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of hash to data
base machine and its architecture. New Gen. Comp., 1(1), 1983.

[LKB87] M. Livny, S. Khosha�an, and H. Boral. Multi-disk management algorithms.
In Proc. 1987 SIGMETRICS Conf., 1987.

[OR89] F. Olken and D. Rotem. Random sampling from B+-trees. In Proc. of the

Fifteenth VLDB, 1989.

[ORX90] F. Olken, D. Rotem, and P. Xu. Random sampling from hash �les. In

Proc. ACM SIGMOD Conf., pages 375{386, 1990.

[RE78] D. Ries and R. Epstein. Evaluation of distribution criteria for distributed

database systems. Technical Report UCB/ERL Tech. Rep. M78/22, UC-

Berkeley, May 1978.

[SD89] D. A. Schneider and D. J. DeWitt. A performance evaluation of four

parallel join algorithms in a shared-nothing multiprocessor environment.
In Proc. of the 1989 SIGMOD Conf.

[Sto86] M. Stonebraker. The case for shared nothing. Database Engineering, 9(1),

1986.


