
An Evaluation of Open Source Serverless

Computing Frameworks Support at the Edge

Andrei Palade, Aqeel Kazmi and Siobhán Clarke

School of Computer Science and Statistics, Trinity College Dublin, Ireland,

{apalade,aqeel.kazmi,siobhan.clarke}@scss.tcd.ie

Abstract—The proliferation of Internet of Things (IoT) and
the success of resource-rich cloud services have pushed the data
processing horizon towards the edge of the network. This has the
potential to address bandwidth costs, and latency, availability and
data privacy concerns. Serverless computing, a cloud computing
model for stateless and event-driven applications, promises to
further improve Quality of Service (QoS) by eliminating the bur-
den of always-on infrastructure through ephemeral containers.
Open source serverless frameworks have been introduced to avoid
the vendor lock-in and computation restrictions of public cloud
platforms and to bring the power of serverless computing to on-
premises deployments. In an IoT environment, these frameworks
can leverage the computational capabilities of devices in the local
network to further improve QoS of applications delivered to
the user. However, these frameworks have not been evaluated
in a resource-constrained, edge computing environment. In this
work we evaluate four open source serverless frameworks,
namely, Kubeless, Apache OpenWhisk, OpenFaaS, Knative. Each
framework is installed on a bare-metal, single master, Kubernetes
cluster. We use the JMeter framework to evaluate the response
time, throughput and success rate of functions deployed using
these frameworks under different workloads. The evaluation re-
sults are presented and open research opportunities are discussed.

I. INTRODUCTION

Next generation technologies such as self-driving cars,

smart cities or augmented reality services require new ap-

proaches to deal with the network traffic generated by the

IoT devices deployed to enable such technologies [1]–[5].

In this context, edge computing has emerged as a promising

solution to satisfy the Quality of Service (QoS) requirements

of such applications by pushing the data processing horizon

towards the edge of the network, and by relieving devices from

computationally-intensive tasks, to reduce energy consump-

tion [6]–[9]. Serverless computing, a well-known cloud com-

puting paradigm also sometimes referred to as Function-as-a-

Service (FaaS) has eliminated the need for always-on infras-

tructure through ephemeral containers [10]. These containers

can be stopped and destroyed, then rebuilt and replaced with

an absolute minimum set up and configuration. This event-

driven service execution model enables on-demand access to

functions (or services), which has the potential to address

bandwidth costs, and latency, availability and data privacy

concerns introduced by the IoT devices [11]. Incorporating

serverless computing at the edge of an IoT network for

executing small tasks may reduce the overall processing time

of these tasks [12], [13].

Currently, all major cloud service providers offer server-

less computing platforms (e.g., AWS Lambda [14], Azure

Functions [15], IBM Cloud Functions [16], and Cloud Func-

tions [17]). However, such platforms require functions to be

written or deployed in a certain way, which results in vendor

lock-in [18]. Several open-source FaaS frameworks have been

proposed to allow to run serverless computing on private

infrastructure, thereby avoiding any forms of vendor lock-

in. Recent studies such as Mohanty et al. [18] and Kritikos

et al. [19] have evaluated the usefulness and performance of

selected open source serverless frameworks, but such studies

have not considered the constraints introduced by an edge-

based environment.

This paper presents an evaluation of four open source

serverless frameworks in an edge computing environment. The

evaluated frameworks include Kubeless [20], Apache Open-

Whisk [21], OpenFaaS [22], and Knative [23]. The experimen-

tal setup consists of services deployed on IoT devices that con-

stantly push measured data about environmental parameters to

a serverless-runtime deployed on edge-devices located in the

same local network as the IoT devices. The evaluation focuses

on qualitatively and quantitatively measuring the performance

of serverless frameworks deployed in an edge environment.

The evaluation captures the innovative capabilities introduced

by bringing such technologies at the edge of the network to

be used for processing data generated by IoT devices.

The paper is organised as follows: Section II outlines the re-

quirements of an open-source serverless computing framework

through an IoT scenario. Section III summarises the selection

methodology and presents an overview of four representative

frameworks. Section IV introduces the experimental setup and

the metrics used in the evaluation. Section V presents the

results of the evaluation. Open research challenges including

possible future research directions are presented in Section VI.

Section VII outlines related work. Finally, Section VIII con-

cludes the work and points to areas of potential future work.

II. USE CASE SCENARIOS AND REQUIREMENTS

Measuring human vital signs in disasters or in every day life

are common use cases that require low latency [12]. In case

of a major disaster, prompt paramedic attention is necessary

to save people’s lives. User wearable sensors can provide

critical information about patient’s medical condition and help

determine a priority queue for patient monitoring. In case of

every day life monitoring, sensors can continuously stream



TABLE I
GITHUB CONTRIBUTORS AND FOLLOWERS AS OF APRIL 18TH, 2019.

Name Contributors Stars Reference

Apache Openwhisk 151 3955 [21]

Knative 117 1655 [23]

OpenFaaS 99 13915 [22]

Kubeless 76 4523 [20]

Fission 76 4261 [26]

Fn 76 3940 [27]

Nuclio 36 2655 [28]

Iron Functions 32 2568 [29]

OpenLambda 17 594 [30]

data of electrocardiogram readings to a nearby edge device to

perform data analytics tasks. In such scenarios, a cloud-based

approach for such data processing tasks may not always be

feasible because of:

• High Latency. Moving a large amount of data to cloud

may be more expensive than processing it locally at the

edge.

• Privacy Concerns. Some tasks may contain confidential

data, which makes it infeasible to transfer and process

data in the cloud.

• Mobility Support. Non-stationary sensing devices may

introduce frequent disconnections, which increases the

resolution time and reduces the availability of applica-

tions developed for IoT environments.

One of the main drivers of edge computing is low latency

support. In this context, a serverless computing framework

can perform the operational procedures of the server, network,

load balancing and scaling. A function should be launched

instantaneously in response to an event [24]. A serverless

computing framework should provide the ability for auto-

scaling (or scale to zero) to minimise or to avoid the resource

usage of running the serverless-runtime (running & idle).

The framework may run zero to thousands of instances of

the function. This is based on demand for that function. A

serverless framework should handle load spikes, and provide

resource quotas. Also, the scaling of the functions should be

performed without knowledge of the application. As functions

run arbitrarily code from multiple IoT devices, they must

remain well isolated from the host platform while they are

required to satisfy certain QoS requirements [25].

Other concerns that should be considered are statefulness

(state management in stateless functions), security (when

running multiple functions on a shared platform), support for

legacy applications and cross-cloud support. These concerns

are not discussed here due to space limitations as we also

believe that such issues should be addressed in a separate

work.

III. METHODOLOGY FOR FRAMEWORK SELECTION

Recently, a number of open-source serverless frameworks

have been proposed such as Kubeless [20], Apache

OpenWhisk [21], OpenFaaS [22], Knative [23], Fn [27],

Iron Functions [29], Nuclio [28], Fission [26], and

OpenLambda [30]. An important criterion when selecting an

open-source project is the strong developer community around

that project. In this work, as selection criterion, the number

of contributors and followers of the source-code repository

associated with each framework is used. Table I outlines

the number Github contributors and the number of users

starring the repository. The number of Github contributors

is considered first, and, in case of a tie, the number of

Github stars is used. Using this criterion, Apache Openwhisk,

Knative, OpenFaaS, Kubeless and Fission have the highest

Github number of contributors. The number of Github stars

is used as a tie-breaker for Kubeless and Fission.

Kubeless. Kubeless is a Kubernetes-native serverless frame-

work. The Kubeless programming model is based on three

primitives: functions, triggers and runtime. A function is a

representation of the code to be executed, and trigger is an

event source. A trigger can be associated to a single function

or to a group of functions depending on the event source type.

Kubeless ensures that the associated function(s) are invoked

at least once. A runtime represents a language and runtime

specific environment in which a function will be executed.

Kubeless uses Custom Resource Definitions (CRDs) to extend

Kubernetes API, which allows developers to interact with

functions as if they were native Kubernetes objects.

The main component of this platform is a CRD controller

that continuously watches for changes to function objects and

takes the necessary actions, such as creation or deletion of

a new function object. The runtime image used to deploy a

function can be explicitly specified by the user, the image

artifact is generate on-the-fly, or a pre-built image is used

where using Kubernetes’ configmap the function code is

deployed into the corresponding Kubernetes pod. Upon

deletion, the controller releases the used computing resources.

Apache OpenWhisk. The OpenWhisk programming model

is based on three primitives: actions, triggers and rules. An

action is a stateless function that executes code, and a trigger

is a class of events that can originate from various sources. A

rule associates a trigger to an action. Multiple actions from

different languages may be composed together to create a

longer processing pipeline called a sequence. The polyglot

nature of the composition process decouples the orchestration

of the dataflow between functions from the choice of language.

The main components of this platform are: an Nginx

webserver, a controller component, an Apache Kafka

component, an Invoker component, and a CouchDB database

for storing the user credentials, action metadata, namespaces,

and the definitions of actions, triggers, and rules. The Nginx

webserver is used as a reverse proxy for the entire system.

The controller component performs the authentication,

authorisation and routing of every request before handing

over the control to the next component. The Kafka component

is used to manage the connection between the controller and

Invokers. The Invoker component copies the code from the

CouchDB component and injects that into a Docker container.

Also this component maintains the list of active Docker

containers where actions are deployed. When the execution



DM1 DM2

Physical 

Layer

Kubernetes 

Layer

E
d

g
e 

C
o

m
p

u
ti

n
g

 L
a

y
er

Io
T

 D
e
v

ic
es

 L
a

y
er

Distributed Load

Testing 
Metrics Collector

Metrics
Database

HTTP Request/Response

λ 

Serverless 

Platform Layer

Virtualisation 

Layer

Fig. 1. Deployment Setup.

of a certain action is finalised, the result is stored in the

CouchDB component for retrieval.

OpenFaaS. The OpenFaaS programming model is based

on one primitive: functions. The developer needs to provide

a handler and a function. The main component of this

platform is: an API gateway. The API gateway provides

access to the functions, collects metrics and provides scaling

by interacting with the orchestration engine (i.e., Kubernetes).

A command line interface is used to package each function

into a Docker container. Each container contains a watchdog

(i.e., a webserver that acts as an entry point to the container

and invokes the function). OpenFaaS uses the AlertManager

component (combined with Prometheus) or the Kubernetes

Horizontal Pod Scaler (HPA) to enable the zero-scale feature.

Knative. The Knative framework is built on top of Kuber-

netes [31] and Istio [32], which provide application (container-

based) runtime and advanced network routing. This allows

Knative to extend Kubernetes platform using CRDs to enable

a higher-level of abstractions.

Knative is a set of building blocks for serverless platforms

running on top of Kubernetes. The main components of

this platform are: Build, Serving and Eventing. The Build

component is implemented using a Kubernetes CRD and is a

pluggable model for building applications (in containers) from

source code. Serving extends Kubernetes to provide runtime

computing support for deploying and running serverless work-

loads. This component provides scale-to-zero support based

on the received requests, and it uses Istio for network routing.

The Eventing component provides the necessary primitives for

consuming and producing events. Knative is not a complete

serverless platform and leaves the higher-level API concepts,

CLIs, tooling, etc. up to specific vendors to implement (e.g.,

combining this platform with Apache OpenWhisk [33]).

IV. EXPERIMENTAL SETUP

A. Common Experimental Architecture

We deploy each serverless framework on top of a common

experimental architecture (Figure 1). This architecture is com-

posed of two layers: an Edge Computing Layer and an IoT

Devices Layer. The Edge Computing Layer is divided in two

sub-layers: the physical layer and the virtualisation layer. The

physical layer contains the physical machines used to support

the Edge Computing layer. The physical layer is represented

by two Desktop Machines (DM) where first machine (DM1) is

equipped with an Intel(R) Core(TM) i7-3770 3.40GHz CPU,

and the second machine has an Intel(R) Core(TM) i7-2600

3.40GHz CPU. Each machine has 12GB of DDR3 1333 MHz

RAM. Each machine is running Ubuntu 16.04.5 LTS machines

(Linux 4.4.0-142-generic). In the virtualisation layer, each

machine has Docker v18.09.2 installed. The containers on each

machine are managed through the Kubernetes v1.13.3 cluster

where DM1 is the manager node and DM2 is a worker node.

Flannel v0.11.0 is used to build the overlay network in this

cluster. Each serverless framework is installed in the cluster

and interacts directly with the Kubernetes cluster manager.

The IoT Devices Layer contains four Raspberry PI devices

used as IoT devices: two Raspberry PI 2 Model B v1.1 and two

Raspberry PI 3 B v1.2 model. Each device is running JMeter

v5.1. Each device will be used to trigger HTTP requests

that invoke functions deployed on each serverless framework.

This process is performed through a distributed load testing

procedure and orchestrated using a desktop machine that has

a JMeter client installed. The specification of this machine is

omitted as its only purpose is to display the metrics collected

by the JMeter engines running on each IoT device.

B. Evaluation Metrics

1) Qualitative metrics:

• Open Source License: freely access to modify, and dis-

tribute (in both modified and unmodified form) code to

other developers.

• Developer Community Support: a framework should have

a strong and thriving developer community support. This

feature is identified based on the number of code commit

frequency, pull requests/merge request frequency, reputa-

tion, availability of developer support through extensive

documentation, mailing lists or chat rooms.

• Programming Language Support: a framework should

offer support for multiple languages. Also, it should be

possible to add support for other languages.

• Container Orchestration Engine Support: a framework

should offer support for multiple container orchestra-

tion engines (e.g., Kubernetes [31], Docker Swarm [38],

Mesos [39], Nomad [40], Kontena [41]) to provide more

flexibility for both the developers and operations team.

These orchestration engines provide an abstraction layer

between the application containers that run on the avail-

able resources, and the actual resource pools.

• Monitoring Support: a framework should have an inte-

grated monitoring tool that can help the operations team

to monitor the performance metrics of a deployed func-

tion, such as the number of invocations or the execution

time of a function.

• Function Triggers: a framework should offer support

for both synchronous (HTTP-based) and asynchronous



TABLE II
RESULTS OF THE QUALITATIVE EVALUATION AND THE EASE OF DEPLOYMENT MEASUREMENTS.

Kubeless
Apache

Openwhisk
OpenFaaS Knative

Open Source License Apache License 2.0 Apache License 2.0 MIT License Apache License 2.0

Programming Language

Support

Ballerina (v0.981.0),
Go (v1.10), Java (v1.8),
NodeJS (v6, v8),
PHP (v7.2),
Python (v2.7, v3.4, v3.6),
Ruby (v2.3, v2.4, v2.5),
.NET Core (v2.0) [34]

Ballerina (v0.990.2.),
Go (v1.11), Java (v1.8),
NodeJS (v6, v8, v10),
PHP (v7.3),
Python (v2.7, v3.6),
Ruby (v2.5), Swift (v4.2),
.NET Core, C# ,
Docker actions [35]

Go (v1.10), Java (v1.8),
NodeJS (v8.9.1),
PHP (v7.2),
Python (v2.7, v3.6),
Ruby (v2.5.1)
C#,
Docker file [36]

Go (v1.12), Java (v1.8 or later),
NodeJS (v10), Kotlin (v1.2.61),
PHP (v7.2), Python (v2.7 or later),
Ruby (v2.3 or later),
Scala (latest version),
.NET Core (v2.1), C# [37]

Container Orchestration

Engine Support
Kubernetes Kubernetes

Kubernetes, Docker
Swarm, Apache Mesos

Kubernetes

Monitoring Support

(Out-of-the-box)

Prometheus with
Grafana

None
Prometheus with

Grafana
Prometheus with

Grafana

Function Triggers
HTTP and

other event sources
HTTP or

Feeds triggers
HTTP and

other event sources
HTTP or

Message Broker

Auto-scaling Yes Yes Yes Yes

CLI Interface kubeless wsk faas-cli kubectl

Ease of Deployment (mins) 5 15 10 20

(event-based) triggers.

• CLI Interface: the availability of the command line inter-

face, which should ease of the management of functions

and allow for better integration with third party tools such

as event-driven triggers.

2) Quantitative metrics: Serverless functions are expected

to serve infrequent and sporadic demands. The framework

must scale to efficiently utilise the available physical infras-

tructure with varying levels of incoming traffic.

• Response Time: the resolution time of the request.

• Throughput: the number of satisfied requests (transac-

tions) per second.

• Success Rate: the ratio between the number of successful

requests and the total number of requests.

• Ease of Deployment: a time metric showing the duration

from when the initialisation script is triggered until all

the components are deployed.

C. Test Case Generation

The JMeter tool is configured to perform 10 requests

with various levels of concurrency (1, 5, 10, 20 concurrent

requests). The concurrency level affects the number of requests

received simultaneously by the framework. We created a

NodeJS function that receives HTTP request and replies with

a confirmation message. The header of this request includes a

value, which represents a temperature reading. This function

is installed in each framework. We chose this function to

have minimal overhead in terms of business logic and code

dependencies. We measure the response time, throughput and

the success rate of received responses under various levels

of concurrency. An independent replication method is chosen

with 50 iterations to achieve adequate statistical significance.

We measure the impact of auto-scaling on each evaluated

metric. The CPU utilisation is used as a metric to perform

the auto-scaling, and is set to 50% in this evaluation. When

utilisation exceeds this threshold, the creation of a new func-

tion is triggered. All frameworks rely on the Kubernetes’

Horizontal Pod Autoscaler to perform scaling based on the

CPU utilisation.
V. RESULTS

Table II shows the results of the qualitative evaluation

performed in this paper. The results show that each framework

has similar features in offering. An evaluation of ease of the

deployment is also attached here to show how quickly each

framework can be deployed. The values recorded represent

the duration from the moment the initialisation command is

triggered until all the required components of the framework

are deployed. These measurements are performed using the

common experimental architecture presented in Section IV-A.

While Knative does not have an official CLI interface, third-

party implementations such as knctl [42] are available.

Figure 2 shows the results of the quantitative evaluation.

While all the frameworks leave the scaling decisions to the

Kubernetes HPA feature, we observed that the values obtained

for the evaluated metrics vary considerably. For instance,

Apache OpenWhisk has the worst performance of all evaluated

frameworks for all the metrics. In case of one service/device,

its success rate is similar to the other three frameworks but

decreases considerably as the load increases. This performance

degradation is because of the (centralised) Nginx component,

which handles all the received HTTP requests, becomes a

bottleneck. While response time and throughput improves

as the load increases, a large number of requests made by

the services deployed on IoT devices receive 429 Too Many

Requests. Further configuration of this component, may reduce

the performance bottleneck.

The difference in success rate and throughput for the

Kubeless, OpenFaas and Knative is not observable. However,

we observe that Kubeless scales better in terms of response

time, as the load increases. Kubeless maintains on average

12.57 to 13.79 ms as the number of services per IoT device is

increased, whereas the response time increases in OpenFaaS

from 96.92 to 106.82 ms and in Knative from 86.27 to 253.66

ms on average.



Apache
OpenWhisk

Kubeless OpenFaaS Knative
101

102

103

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s) 1 service/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

5 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

10 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

15 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

20 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative
0

20

40

Th
ro

ug
hp

ut
 (t

ra
ns

ct
io

ns
/s) 1 service/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

5 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

10 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

15 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

20 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative
0

25

50

75

100

Su
cc

es
s R

at
e 

(%
)

1 service/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

5 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

10 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

15 services/device

Apache
OpenWhisk

Kubeless OpenFaaS Knative

20 services/device

Fig. 2. Results of the Quantitative Evaluation.

VI. OPEN RESEARCH CHALLENGES

In the context of this evaluation we observed that a number

of open research challenges introduced by running serverless

platforms at the edge of the network:

• Observability. This includes monitoring, alerts, log ag-

gregation and distributed system tracing. Achieving log

aggregation and distributed system tracing implies more

effort, especially when using external services because

of lack of agents or deamons monitoring the functions.

Open-source projects such Zipkin [43] may be explored.

• Resource limitations. Functions have limitations in re-

gards to memory allocation, timeout, payload sizes, de-

ployment sizes, concurrent executions, etc. Such bound-

aries should be consistent with the serverless philosophy

where a small function with a single responsibility should

run in a short time with low memory allocation. To what

extent of these technologies can be used for long running

processes with high memory footprint should be explored.

• Lack of QoS Support. Users have little or no control

over the QoS of functions deployed using such frame-

works. The auto-scaling feature does not provide any QoS

guarantees. These frameworks should consider the user’s

or provider’s objectives in a coordinated manner.

• Fault Tolerance. The evaluated frameworks have limited

support for fault tolerance. In case of a failed container,

a basic retry-mechanism is used. An open research chal-

lenge is to explore the existing fault detection mecha-

nisms employed and scheduling functions on other edge

nodes [44].

• Function Composition. While FaaS functions enable

users to quickly deploy small services, any more complex

use cases require multiple functions. Although existing

tools to develop functions’ chains have been developed

(e.g., Fission worksflows [26]), how to efficiently and

effectively perform function composition and placement

remains to be explored especially in an edge environment.

VII. RELATED WORK

Serverless computing has received a significant amount of

attention because of the potential benefits in configuration

and management overhead reduction. Baldini et al. [45] high-

lighted this in a survey of several serverless frameworks. In

their study, the authors outlined use cases for such frameworks,

and identified some open technical challenges to enable the

serverless computing vision. Lynn et al. presented a multi-level

feature analysis and feature comparison of seven enterprise

serverless computing platforms [46].

Open-source serverless frameworks have been introduced

to avoid the vendor lock-in. Mohanty et al. [18] performed a

feature comparison of four open source serverless frameworks

(Kubless, OpenFaaS, Fission, and OpenWhisk). The authors

also evaluated the performance of three frameworks (excluding

OpenWhisk) when deployed on Kubernetes cluster. In another

study, Kritikos et al. [19] reviewed and provided a feature

analysis comparison of seven open source serverless frame-

works and outlined a set of challenges that require attention

from research community. These works have not considered

open source frameworks in the context of edge computing.

A number of works have investigated using the serverless

computing technology at the edge for executing data process-

ing functions. These works have identified the challenge of

auto-scaling, which is not predictable to the user. When a

function is scaled down, the cold start problem can cause

latency issues in a constrained environment [10], [47]–[49].



Nastic et al. [12] presented a serverless real-time data analytics

platform to support data processing at the edge. Cicconetti et

al. [50] propose a fully distributed delegation architecture to

address the limitations of existing serverless platforms that

require a logically centralised controller for task scheduling.

While Kuntsevich et al. [51] proposed a method to benchmark

the Openwhisk platform, a comparison of this with existing

open-source solutions support in an edge environment have

not been previously presented.

VIII. CONCLUSION AND FUTURE WORK

The traditional way of deploying IoT applications is to

use IoT infrastructure in conjunction with cloud resources

to perform data processing. However, this technique adds

high latency even for small tasks. Incorporating serverless

computing at the edge of an IoT network for executing small

tasks can reduce the overall processing time of these tasks.

To demonstrate the viability of such an approach, this article

has quantitatively and qualitatively evaluated four open-source

serverless computing frameworks in an edge environment.

We presented some typical scenarios where such platforms

may be used. We also presented a set of requirements that

a serverless computing framework may need to provide to

enable the potential features of serverless computing at the

edge of the network. We found that Kubeless outperforms the

other frameworks across the proposed scenarios in terms of

response time and throughput. Apache OpenWhisk has the

worst performance. Future work will explore the support for

composition of functions offered by these frameworks.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for Internet of Things: a Survey,” IEEE Internet of things journal,
vol. 3, no. 1, 2016.

[2] C. Cabrera, A. Palade, and S. Clarke, “An Evaluation of Service
Discovery Protocols in the Internet of Things,” in SAC. ACM, 2017.

[3] A. Palade, C. Cabrera, G. White, M. A. Razzaque, and S. Clarke,
“Middleware for Internet of Things: A Quantitative Evaluation in Small
Scale,” in 2017 IEEE 18th WoWMoM. IEEE, 2017.

[4] C. Cabrera, G. White, A. Palade, and S. Clarke, “The Right Service
at the Right Place: a Service Model for Smart Cities,” in 2018 IEEE

PerCom. IEEE, 2018.
[5] C. Cabrera, A. Palade, G. White, and S. Clarke, “Services in IoT: A

Service Planning Model Based on Consumer Feedback,” in International

Conference on Service-Oriented Computing. Springer, 2018.
[6] G. White, A. Palade, and S. Clarke, “Qos Prediction for Reliable Service

Composition in IoT,” in ICSOC. Springer, 2017.
[7] A. Palade, C. Cabrera, G. White, and S. Clarke, “Stigmergic Service

composition and Adaptation in Mobile Environments,” in International

Conference on Service-Oriented Computing. Springer, 2018.
[8] A. Palade and S. Clarke, “Stigmergy-Based QoS Optimisation for

Flexible Service Composition in Mobile Communities,” in 2018 IEEE

World Congress on Services (SERVICES). IEEE, 2018.
[9] G. White, A. Palade, C. Cabrera, and S. Clarke, “IoTPredict: Collabo-

rative QoS Prediction in IoT,” in 2018 IEEE IPerCom. IEEE, 2018.
[10] D. Pinto, J. P. Dias, and H. Sereno Ferreira, “Dynamic Allocation of

Serverless Functions in IoT Environments,” in IEEE 16th International

Conference on Embedded and Ubiquitous Computing (EUC), 2018.
[11] A. Hall and U. Ramachandran, “An Execution Model for Serverless

Functions at the Edge,” in Proceedings of the International Conference

on Internet of Things Design and Implementation. ACM, 2019.
[12] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,

M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A Serverless
Real-Time Data Analytics Platform for Edge Computing,” IEEE Internet

Computing, vol. 21, no. 4, 2017.

[13] G. White, C. Cabrera, A. Palade, and S. Clarke, “Augmented Reality in
IoT,” in ICSOC, 2018.

[14] “AWS Lambda,” https://aws.amazon.com/lambda/, online: 2019-01-20.
[15] “Azure Functions,” https://azure.microsoft.com/en-us/services/

functions/, online: 2019-01-20.
[16] “IBM Cloud Functions,” https://www.ibm.com/cloud/functions/, online:

2019-01-20.
[17] “Google Cloud Functions,” https://cloud.google.com/functions/, online:

2019-01-20.
[18] S. K. Mohanty, G. Premsankar, and M. Di Francesco, “An Evaluation

of Open Source Serverless Computing Frameworks,” in 2018 IEEE

CloudCom. IEEE, 2018.
[19] K. Kritikos and P. Skrzypek, “A Review of Serverless Frameworks,” in

2018 IEEE/ACM UCC Companion. IEEE, 2018.
[20] “Kubeless,” https://kubeless.io/, online: 2019-03-20.
[21] “OpenWhisk,” https://openwhisk.apache.org/, online: 2019-03-20.
[22] “OpenFaaS,” https://www.openfaas.com/, online: 2019-03-20.
[23] “Knative,” https://github.com/knative/, online: 2019-03-20.
[24] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge Computing for

the Internet of Things: A Case Study,” IEEE Internet of Things Journal,
vol. 5, no. 2, 2018.

[25] R. Koller and D. Williams, “Will Serverless End the Dominance of Linux
in the Cloud?” in Proceedings of the 16th Workshop on Hot Topics in

Operating Systems. ACM, 2017.
[26] “Fission,” https://fission.io/, online: 2019-03-12.
[27] “Fn Project,” https://fnproject.io/, online: 2019-03-12.
[28] “Nuclio,” https://nuclio.io/, online: 2019-03-12.
[29] “Iron Functions,” https://open.iron.io/, online: 2019-03-12.
[30] “OpenLamda,” http://www.open-lambda.org, online: 2019-04-16.
[31] “Kubernetes,” https://kubernetes.io/, online: 2019-01-20.
[32] “Istio,” https://istio.io/, online: 2019-01-20.
[33] “Knative,” https://cwiki.apache.org/confluence/display/OPENWHISK/

%5BWIP%5D+OpenWhisk+on+Knative, online: 2019-03-20.
[34] “Kubeless,” https://kubeless.io/docs/runtimes/, online: 2019-03-01.
[35] “OpenWhisk Runtime,” https://github.com/apache/incubator-openwhisk/

blob/master/docs/actions.md, online: 2019-02-26.
[36] “OpenFaaS,” https://github.com/openfaas/templates, online: 2019-02-27.
[37] “Knative Runtime Support,” https://github.com/knative/docs/tree/master/

serving/samples, online: 2019-03-01.
[38] “Docker,” https://docs.docker.com/engine/swarm/, online: 2019-01-20.
[39] “Apache Mesos,” http://mesos.apache.org/, online: 2019-01-20.
[40] “Nomad,” https://www.nomadproject.io/, online: 2019-01-20.
[41] “Kontena,” https://www.kontena.io/, online: 2019-01-20.
[42] “knctl,” https://github.com/cppforlife/knctl, online: 2019-04-18.
[43] “Zipkin,” https://github.com/apache/incubator-zipkin, online: 2019-04.
[44] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless Edge Computing:

Extending Serverless Computing to the Edge of the Network,” in
SYSTOR, 2017.

[45] I. Baldini, P. C. Castro, K. S.-P. Chang, P. Cheng, S. J. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” CoRR, vol.
abs/1706.03178, 2017.

[46] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary Re-
view of Enterprise Serverless Cloud Computing (Function-as-a-Service)
Platforms,” in 2017 IEEE CloudCom, Dec 2017.

[47] E. d. Lara, C. S. Gomes, S. Langridge, S. H. Mortazavi, and M. Roodi,
“Hierarchical Serverless Computing for the Mobile Edge,” in 2016

IEEE/ACM Symposium on Edge Computing (SEC), 2016.
[48] L. F. Herrera-Quintero, J. C. Vega-Alfonso, K. B. A. Banse, and

E. Carrillo Zambrano, “Smart ITS Sensor for the Transportation Plan-
ning Based on IoT Approaches Using Serverless and Microservices
Architecture,” IEEE Intelligent Transportation Systems Magazine, 2018.

[49] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, and F. Esposito,
“Reunifying Families after a Disaster via Serverless Computing and
Raspberry Pis,” in 2018 IEEE LANMAN, 2018.

[50] C. Cicconetti, M. Conti, and A. Passarella, “An Architectural Framework
for Serverless Edge Computing: Design and Emulation Tools,” in 2018

IEEE CloudCom. IEEE, 2018.
[51] A. Kuntsevich, P. Nasirifard, and H.-A. Jacobsen, “A Distributed Anal-

ysis and Benchmarking Framework for Apache OpenWhisk Serverless
Platform,” in Middleware Conference. ACM, 2018.


