
An Evaluation of OpenMP on Current and Emerging Multithreaded
Processors
Curtis-Maury, M., Ding, X., Antonopoulos, C. D., & Nikolopoulos, D. (2005). An Evaluation of OpenMP on
Current and Emerging Multithreaded Processors. In Proceedings of the First International Workshop on
OpenMP (IWOMP): Best Paper Award (Vol. 4315, pp. 133-142). (Lecture Notes in Computer Science). Springer.
https://doi.org/10.1007/978-3-540-68555-5_11

Published in:
Proceedings of the First International Workshop on OpenMP (IWOMP)

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:04. Aug. 2022

https://doi.org/10.1007/978-3-540-68555-5_11
https://pure.qub.ac.uk/en/publications/53a5c9b9-aca4-410e-8ff1-cd706991fae5


An Evaluation of OpenMP on Current and Emerging

Multithreaded/Multicore Processors

Matthew Curtis-Maury, Xiaoning Ding,

Christos D. Antonopoulos and Dimitrios S. Nikolopoulos

Department of Computer Science

The College of William and Mary

McGlothlin–Street Hall. Williamsburg, VA 23187–8795

Abstract. Multiprocessors based on simultaneous multithreaded (SMT) or mul-

ticore (CMP) processors are continuing to gain a significant share in both high-

performance and mainstream computing markets. In this paper we evaluate the

performance of OpenMP applications on these two parallel architectures. We use

detailed hardware metrics to identify architectural bottlenecks. We find that the

high level of resource sharing in SMTs results in performance complications,

should more than 1 thread be assigned on a single physical processor. CMPs, on

the other hand, are an attractive alternative. Our results show that the exploitation

of the multiple processor cores on each chip results in significant performance

benefits. We evaluate an adaptive, run-time mechanism which provides limited

performance improvements on SMTs, however the inherent bottlenecks remain

difficult to overcome. We conclude that out-of-the-box OpenMP code scales bet-

ter on CMPs than SMTs. To maximize the efficiency of OpenMP on SMTs, new

capabilities are required by the runtime environment and/or the programming in-

terface.

1 Introduction

As a shared-memory programming paradigm, OpenMP is suitable for parallelizing ap-

plications on simultaneous multithreaded (SMT) [17] and multicore (CMP) [16] pro-

cessors. These processors appear to dominate both the high-end and mainstream com-

puting markets. Products such as Intel’s Hyperthreaded Pentium IV are already widely

used for desktop and server computing, with similar products being marketed or in late

stages of development by other vendors. At the same time, high-end, future micropro-

cessors encompass aggressive multithreading and multicore technologies to form pow-

erful computational building blocks for the next generation of supercomputers. All three

vendors selected by the DARPA HPCS program (IBM, Cray and Sun) have adopted

multithreaded and multicore processor designs, combined with different technological

innovations such as streaming processor cores and proximity communication [5, 6, 15].

With the advent of multithreaded and multicore multiprocessors, a thorough eval-

uation of OpenMP on such architectures is a timely and necessary effort. In this pa-

per we evaluate a comprehensive set of OpenMP codes, including complete parallel

benchmarks and real-world applications, on both a real multi-SMT system, composed



of Intel’s Hyperthreaded processors, and on a simulated multiprocessor with CMP pro-

cessors. For the latter architectural class we use complete system simulation to factor in

any operating system effects. Our evaluation uses detailed performance measurements

and information from hardware performance counters to pinpoint architectural bottle-

necks of SMT/CMP processors that hinder the scalability of OpenMP, as well as areas

in which OpenMP implementations can be improved to better support execution on

SMT/CMP processors.

We observe that the extensive resource sharing in SMTs often hinders scalability,

should threads co-executing on the same physical processor have conflicting resource

requirements. The signifi cantly lower degree of resource sharing in CMPs, on the other

hand, allows applications to effectively exploit the multiple execution cores of each

physical processor. We quantitatively evaluate the effects of resource sharing on the L2

miss rate, the number of stall cycles and the number of data TLB misses. We then eval-

uate the effectiveness of a run-time mechanism that transparently determines and uses

the optimal number of threads on each SMT processor. This technique yields measur-

able, though limited performance improvement. Despite its assistance, the architectural

bottlenecks of SMTs do not allow OpenMP applications to effi ciently exploit the addi-

tional execution contexts of SMT processors.

The rest of the paper is organized as follows: In section 2 we outline related work.

In section 3 we evaluate the execution of OpenMP codes on SMT- and CMP-based

multiprocessors and pinpoint architectural bottlenecks using a variety of performance

metrics. Section 4 evaluates a simple, yet effective mechanism that automatically deter-

mines and exploits the optimal number of execution contexts on SMT-based multipro-

cessors. In section 5 we outline some implications of the proliferation of hybrid, SMT-

and CMP-based multiprocessors for OpenMP. Finally, section 6 concludes the paper.

2 Related Work

Earlier research efforts have ported and evaluated OpenMP on specifi c processor de-

signs, including heterogeneous chip multiprocessors [14], slipstream processors [9] (a

form of 2-way chip multiprocessors in which the second core is used for speculative

runahead execution) and Cyclops, a fi ne-grain multithreaded processor architecture in-

troduced by IBM [1]. Our evaluation focuses on commodity processors, with organi-

zations spanning the design space between simultaneous multithreading and chip mul-

tiprocessors and a few execution contexts. Although not at the high end of the design

space of supercomputing architectures, such processors are becoming commonplace

and are natural building blocks for larger multiprocessors. A recent study of OpenMP

loop scheduling policies on multiprocessors with Intel’s Hyperthreaded processors indi-

cated the need for adaptation of both the degree of concurrency and the loop scheduling

algorithms when OpenMP applications are executed on simultaneous multithreading

architectures, because of different forms of interferences between threads [18]. Our

evaluation corroborates these results and provides deeper insight on the architectural

reasons due to which adaptivity is an effective method for improving the performance

of OpenMP programs on SMT processors.



3 Experimental Evaluation and Analysis

3.1 Hardware and Software Environment and Configuration

In order to ascertain the effects of the characteristics of modern processor architectures

on the execution of OpenMP applications, we have considered two types of multipro-

cessors which are becoming more and more popular in today’s computing environment,

namely multiprocessors based on either SMTs or CMPs. SMTs incorporate minimal ad-

ditional hardware in order to allow multiple co-executing threads to exploit potentially

idle processor resources. The threads usually share a single set of resources such as

execution units, caches and the TLB. CMPs on the other hand integrate multiple in-

dependent processor cores on a chip. The cores do, however, share one or more outer

levels of the cache hierarchy, as well as the interface to external devices.

We used a real, 4-way server based on Hyperthreaded (HT) Intel processors as a

representative SMT-based multiprocessor. Intel HT processors are a low-end / low-cost

implementation of simultaneous multithreading. Each processor offers 2 execution con-

texts which share execution units, all levels of the cache, and a common TLB. The ex-

periments targeted at the CMP-based multiprocessors have been carried out on a sim-

ulated 4-way system. The simulated CMP processors integrate 2 cores per processor.

They are confi gured almost identically to the real Intel HTs, apart from the L1 cache

and TLB which are private, per core on the CMP and shared between execution contexts

on the SMT. Note that using private L1 caches and TLBs favors CMPs by providing

more effective cache and TLB space to each thread and reducing contention. Therefore,

our experimental setup seems to favor CMPs. Note however, that we are evaluating a

CMP with in-order issue cores, which are much simpler than the out-of-order execu-

tion engines of our real SMT platform. Furthermore, the multicore organization of our

simulated CMP enables a chip layout with private L1 caches at a nominal increase in

die area [13]. For these reasons, the simulated CMP platform can still be considered

as roughly equivalent (in terms of resources) to our real SMT platform. We used the

Simics [7] simulation platform to conduct complete system simulations, including sys-

tem calls and operating system overhead. Table 1 describes the confi guration of the two

systems in further detail.

Processors L1 Cache L2 Cache L3 Cache TLB Main Mem.

SMT

4 x Intel P4 Xeon, 1.4 GHz 8K Data, 256K Unifi ed, 512K Unifi ed, 64 Entries Data, 1GB

Hyperthreaded x 2 Execution 12K Trace (Instr.), Shared Shared 128 Entries Instr.,

Contexts per Processor Shared Shared

CMP

4 Processors 2x8K Data, 256K Unifi ed, 512K Unifi ed, 2x64 Entries Data, 1GB

x 2 P4 Cores per Processor 2x12K Trace (Instr.) Shared Shared 2x64 Entries Instr.,

Private per Core Private per Core

Table 1. Configuration of the SMT- and CMP-based multiprocessors used throughout the exper-

imental evaluation.

We evaluated the relative performance of OpenMP workloads on the two target

architectures, using 7 OpenMP applications from the NAS Parallel Benchmarks suite

(version 3.1) [11]. We executed the class A problem size of the benchmarks, since it is



a large enough size to yield realistic results. At the same time, it is the largest problem

class that allows the working sets of all applications to fi t entirely in the available main

memory of 1GB.

We executed all the benchmarks on the SMT with 1, 2, 4, and 8 threads. The main

goal of this experiment set was to evaluate the effects of executing 1 or 2 threads on the

2 execution contexts of each processor. We thus ran our experiments under six different

thread placements: i) 1 thread, ii) 2 threads bound on 2 different physical processors, iii)

2 threads bound on the 2 contexts of 1 processor, iv) 4 threads bound on 4 processors, v)

4 threads paired on the execution contexts of 2 processors and vi) 8 threads paired on 4

processors. Each thread is pinned on a specifi c execution context of a specifi c processor

using the Linux sched setaffinity system call. The applications were executed

using Intel VTune [10] performance analyzer. We recorded both the execution time and

a multitude of additional performance metrics attained from the hardware performance

counters available in the processor. Such metrics provide insight into the interaction

of applications with the hardware, thus they are a valuable tool for understanding the

observed application performance.

The same experiments have been repeated on the simulated CMP-based multipro-

cessor. Full system simulation with Simics introduces an average 7000-fold slowdown

in the execution time of applications, compared with the execution on a real machine.

We simulated the same application binaries, using the same data sets, however we re-

duced the number of iterations1 we ran on the simulator in order to limit the execution

time to reasonable levels. More specifi cally, we executed only 3 of the outermost it-

erations of each benchmark, discarding the results from the fi rst iteration in order to

eliminate transient effects due to cache warmup. The simulator directly provides simi-

lar, detailed performance information as Vtune.

All experiments were performed on a dedicated machine in order to rule out data

perturbations due to interactions with third-party applications and services. The operat-

ing system on both the real and the simulated system was Linux 2.4.25.

3.2 Experimental Results

We evaluated the relative performance of the benchmarks on the real SMT-based and the

simulated CMP-based multiprocessors when 1 or 2 threads are activated per physical

processor, using the different binding schemes described in section 3.1. We monitored

a multitude of direct (wall clock time, number of instructions, number of L2 and L3

references and misses, number of stall cycles, number of data TLB misses, number of

bus transactions) and derived (CPI, L2 and L3 miss rates) performance metrics. Due to

space limitations we only present and discuss the results for L2 miss rates, stall cycles,

data TLB misses and execution time.

The results for the L2 miss rate evaluation are depicted in Figure 1. The reported

values are for 2 threads per processor and have been normalized with respect to the

single-thread per processor execution of each benchmark on the specifi c architecture

and number of processors. This way, the graphs emphasize the effects of using a second

1 All the NAS applications we used are iterative. The computational routines are enclosed in an

external, sequential loop.



L2 Miss Rate (SMT)

0

0.5

1

1.5

2

2.5

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

L2 Miss Rate (CMP)

0

0.5

1

1.5

2

2.5

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

Fig. 1. Normalized L2 miss rates of the benchmarks on the SMT and CMP multiprocessor (left

and right diagrams respectively). The corresponding 1 thread/processor miss rates on each archi-

tecture and number of processors have been used as references for the normalization.

thread per processor. The relative L2 cache performance of applications when 1 and 2

threads are executed on each physical processor depends highly on the specifi c charac-

teristics of the application. If the working sets of both threads do not fi t in the L2 cache,

there is an increase in the L2 miss rate, since cross-thread cache-line eviction results in

more misses. If, on the other hand, the 2 threads executing on the same processor share

data, then each of them will probably benefi t from data already fetched to the cache by

the other thread.

In most cases, executing 2 threads per processor on the SMT system proved benefi -

cial for L2 cache performance. On average, thread pairing resulted in 1.05 times lower

miss rates in comparison with the single-thread per processor execution. An application

in which thread cross-eviction appears is FT. The FT threads have large working sets

that can not entirely fi t into any level of the cache hierarchy. Moreover, the degree of

data sharing between threads co-executing on the same processor is low. As a result,

miss rates increase signifi cantly if both execution contexts of each processor are acti-

vated. Another interesting pattern can be observed in CG. Although the exploitation of

the second hyperthread of each processor results in a signifi cant reduction in miss rate

in the single processor experiments, as more physical processors are added the trend

is reversed. CG has a high degree of data sharing between the threads. If few threads

are active, the benefi ts of the shared cache are evident. However, as more physical pro-

cessors are added, inter-processor data sharing results in a large number of cache-line

invalidations, which eventually outweigh the benefi t of intra-processor data sharing.

On the CMP-based multiprocessor the L2 cache miss rate generally appears to be

uncorrelated to the exploitation of 1 or 2 execution cores per physical processor. Al-

though the L2 is shared between both cores, the private, per core L1 caches function

as a buffer that prevents many memory accesses from reaching the second level of the

cache. In fact, the use of a second thread on SMTs results in an increase in the number

of L2 cache accesses, due to the inter-thread interference in the L1 cache. More specif-

ically, the number of L2 accesses always increases, by 1.42 times on average, when the

second execution context is activated on each physical processor. The private L1 caches

in CMPs alleviate this problem. The number of L2 accesses is reduced by an average

factor of 1.37 when the second core - and its private L1 cache - are activated on each



CPU. The behavioral patterns observed for CG and FT on the SMT-based multiproces-

sor are repeated on the CMP as well.

TLB Misses (SMT)

0

5

10

15

20

25

30

35

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

TLB Misses (CMP)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

Stall Cycles (SMT)

0

1

2

3

4

5

6

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

Stall Cycles (CMP)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r
 1

 T
h

r
/C

P
U

 

E
x
e
c
u

ti
o

n

1 CPU

2 CPUs

4 CPUs

Fig. 2. Normalized number of TLB misses (top diagrams) and stall cycles (bottom diagrams)

of the benchmarks on the SMT and CMP multiprocessor (left and right diagrams respectively).

The corresponding 1 thread/processor stalls and TLB misses on each architecture and number of

processors have been used as references for the normalization.

Figure 2 depicts the normalized number of stall cycles and TLB misses. Once again,

the reported values have been normalized with respect to the corresponding single-

thread per processor execution of each benchmark on the specifi c architecture and num-

ber of processors. The results indicate that using the second execution context of the

SMT processors has a signifi cant effect on the number of TLB misses. Their number

suffers an up to 27-fold increase when we move from binding schemes that assign 1

thread per processor to those that assign 1 thread per execution context. On average,

TLB misses increase by 10.78 times. The 2 threads on each processor often work on

different areas of the virtual address space, thus being unable to share TLB entries.

Furthermore, the Intel SMT processor has a surprisingly small data TLB (64 entries),

which can not achieve a good coverage of the virtual address space of the benchmarks

we executed. As a result, the effective per thread size of the shared TLB is reduced

drastically when both execution contexts of each processor are activated. The CMP

processor provides private TLBs for each core. As a consequence, the number of TLB

misses is much more stable than on the SMT system. In fact, the execution of 1 or 2

threads per processor has, on average, no effect on the number of TLB misses.

The behavior in terms of stall cycles also varied signifi cantly between the two archi-

tectures. On SMT processors the number of stall cycles represents the cumulative effect

of both cycles spent waiting for data to be fetched from any level of the memory hi-



erarchy and cycles during which execution was stalled because of conflicting resource

requirements of the threads executing on the different execution contexts of the pro-

cessor. On CMPs, co-executing threads share only the 2 outer levels of the cache and

the interface to external devices, thus the second factor does not contribute to the total

number of stall cycles. For all benchmarks executed on the SMT, the number of stall

cycles increased – on average by 3.1 times – when the confi guration was changed from

1 to 2 threads per processor. The corresponding average overhead on the CMP is a mere

1.03. This is a safe indication that the vast majority of stall cycles on the SMT can

be attributed to conflicting requirements of co-executing threads for internal processor

resources.

Exec. Time (SMT)

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT LU-HP MG SP UA

R
a

ti
o

 o
v

e
r 

s
e

q
. 
e

x
e

c
u

ti
o

n

(1,1)

(1,2)

(2,2)

(2,4)

(4,4)

(4,8)

Exec. Time (CMP)

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT LU-HP MG SP UA

R
a
ti

o
 o

v
e
r 

s
e
q

. 
e
x
e
c
u

ti
o

n

(1,1)

(1,2)

(2,2)

(2,4)

(4,4)

(4,8)

Fig. 3. Normalized execution time of the benchmarks on the SMT and CMP multiprocessor (left

and right diagram respectively). The single-threaded (sequential) execution time on each archi-

tecture is used as a reference for the normalization.

Finally, Figure 3 depicts the results from the execution time of applications on

the two target multiprocessor architectures. This time, the reported values have been

normalized with respect to the sequential (single-threaded, single-processor) execution

time of applications on each architecture. The different binding schemes are labeled

as (num processors, num threads), where num processors stands for the

number of physical processors onto which the threads are bound and num threads

for the number of threads used for the application execution.

All 7 benchmarks scale well on both the SMT and the CMP as more physical pro-

cessors are made available to the application. This indicates that potential performance

problems under some binding schemes can not be attributed to the scalability character-

istics of the benchmarks. In fact for the 2-threaded BT and CG execution on the CMP

the speedups are superlinear, due to the availability of cumulatively larger L1 cache and

TLB when more than 1 threads are used.

Given a specifi c number of threads, execution times on the SMT multiprocessor are

always lower if the threads are spread across as many physical processors as possible,

instead of being placed on both execution contexts of each processor. Moreover, in 7

out of 21 experiments the activation of the second execution context, given a specifi c

number of physical SMT processors, resulted in a reduction of the observed application

performance. It should also be pointed out that, even for a given application, it is not

always clear whether the exploitation of all execution contexts of each processor is the



optimal strategy or not. In the case of SP, for example, exploiting 2 execution contexts

per processor is optimal when 1 and 2 processors are available, however it results in

performance penalties when all 4 processors are used.

The results are totally different on the CMP-based multiprocessor. In 8 out of 14

cases placing a given number of threads on the cores of as few processors as possi-

ble yields higher performance than spreading them across processors. Moreover, the

activation of the second core always resulted in performance improvements. The repli-

cation of execution units, L1 caches and TLBs on the CMPs allows threads to execute

more effectively, without the limitations posed by resource sharing on SMTs. The re-

duction in resource conflicts due to hardware replication often allows the benefi ts of

inter-processor cache sharing to be reflected in a reduction in execution time.

4 Adaptive Selection of the Optimal Number of Execution

Contexts for OpenMP on SMTs

The selection of the optimal number of execution contexts for the execution of each

OpenMP application is not trivial on SMT-based SMPs. We thus experiment with a

performance-driven, adaptive mechanism which dynamically activates and deactivates

the additional execution contexts on SMT processors to automatically approximate the

execution time of the best static selection of execution contexts per processor. We used

a simpler mechanism than the exhaustive search proposed in [18], which avoids modi-

fi cations to the OpenMP compiler and runtime. Our mechanism identifi es whether the

use of the second execution context of each processor is benefi cial for performance and

adapts the number of threads used for the execution of each parallel region. The algo-

rithm introduced in [18] also targets identifi cation of the best loop scheduling policy.

Our method is based on the annotation of the beginning and end of parallel regions

with calls to our runtime. The calls can be inserted automatically, by a simple prepro-

cessor. Alternatively, run-time linking techniques such as dynamic interposition can be

used to intercept the calls issued to the native OpenMP runtime at the boundaries of

parallel regions and apply dynamic adaptation even to unmodifi ed application binaries.

We slightly modify the semantics of the OMP NUM THREADS environment variable,

using it as a suggestion for the number of processors to be used instead of the number

of threads. Moreover, we add a new environment variable (OMP SMT). If OMP SMT is

defi ned to be 1 or 2, the application always uses 1 and 2 execution contexts per physical

processor respectively. If its value is 0, or the variable is not defi ned, adaptive execu-

tion is activated. In this case, each kernel thread is fi rst bound on a specifi c execution

context upon program startup. On the second and third time each parallel region is en-

countered, our runtime executes it using 1 and 2 execution contexts per processor and

monitors execution time. After the third execution of each region, a decision is made

using the timing results from the two test executions. Upon additional invocations of

the parallel region, the runtime automatically adjusts the number of threads according

to the decision. The fi rst execution of each parallel region is not monitored, in order to

avoid any interference in the decision process due to cache warmup effects. The runtime

makes decisions independently for each parallel region. The execution of most appli-

cations proceeds in phases, with different execution characteristics for each phase. The



boundaries of parallel regions often indicate phase changes. Thus, varying the number

of threads at the boundaries of parallel regions offers context sensitive adaptation2.

We evaluated the performance of our adaptive mechanism using the NAS Parallel

Benchmarks along with two other OpenMP codes: MM5 [8], a mesoscale weather pre-

diction model, and COBRA [4], a matrix pseudospectrum computation code. We ran

each of the benchmarks statically with 1 and 2 threads per processor on 1, 2, 3, and 4

processors. We then executed each benchmark using the adaptive strategy. Even in the

experiments using a static number of threads, threads are bound on specifi c execution

contexts in order to avoid unfairly penalizing performance due to suboptimal thread

placement decisions of the Linux scheduler. The results are depicted in Figure 4.

Relative Performance of the 3 Execution Strategies

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

BT CG FT LU-HP MG

Im
p

ro
v

e
m

e
n

t 
o

v
e

r 
th

e

W
o

rs
t 

S
tr

a
te

g
y

(1,1)

(1,2)

(1,A)

(2,1)

(2,2)

(2,A)

(3,1)

(3,2)

(3,A)

(4,1)

(4,2)

(4,A)

Relative Performance of the 3 Execution Strategies

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

SP UA COBRA MM5

Im
p

ro
v

e
m

e
n

t 
o

v
e

r 
th

e

W
o

rs
t 

S
tr

a
te

g
y

(1,1)

(1,2)

(1,A)

(2,1)

(2,2)

(2,A)

(3,1)

(3,2)

(3,A)

(4,1)

(4,2)

(4,A)

Fig. 4. Relative performance of adaptive, 1 and 2 threads per physical processor execution strate-

gies. The execution times have been normalized with respect to the execution time of the worst

strategy for each experiment.

Compared with the optimal static number of threads for each case, our approach was

only 3.0% slower on average. At the same time, it achieved a 10.7% average speedup

over the worse static number of threads for each (benchmark, number of processors)

combination. The average overall speedup observed over all static confi gurations was

3.9%. In 17 out of the total 36 experiments the adaptive mechanism even provided a

performance improvement over both static strategies for selecting the number threads.

2 In fact loop boundaries can offer a better approximation of application phases. OpenMP spec-

ifications however, prohibit varying the number of active threads inside a parallel region, thus

adaptive mechanisms like ours can not be used to make decisions at a loop-level resolution.



This can be attributed to the flexibility of the adaptive mechanism and its ability to

decide the optimal number of threads independently for each parallel region.

The adaptive technique did not perform well for MG. MG performs only 4 outer-

most iterations. Given that 3 iterations are needed for the initialization and decision

phases, MG executes in adaptive mode for only 1 iteration. However, it does not take

many iterations for the adaptive execution to compensate for the overhead of the mon-

itoring phase. CG, for example, performs just 15 iterations and the adaptive strategy is

only slightly inferior than the best static strategy.

The performance benefi ts attained by our simple mechanism are lower than those at-

tained by the combined adaptation of the number of threads and loop schedules in [18].

They indicate that dynamic adaptation can provide some speedup on SMT-based multi-

processors, however the inherent architectural bottlenecks of contemporary SMTs hin-

der the effi cient exploitation of the additional execution contexts.

5 Implications for OpenMP

Our study indicates that although scaling OpenMP on CMPs can be effortless, scaling

on SMTs is hindered by the effects of extensive resource sharing. We argue that it is still

worthwhile to consider performance optimizations for OpenMP on SMTs. In addition to

the current Intel family of SMT processors, multicore architectures with SMT cores are

also gaining popularity, because such designs often achieve the best balance between

energy, die area and performance [12]. In our view, optimizing OpenMP for SMTs en-

tails both additional support from the runtime environment and possible extensions to

the programming interface. Clearly, the runtime environment should differentiate be-

tween threads running on the same SMT and threads running across SMTs. This can

be achieved in a number of ways: For example, a new SCHEDULE clause would allow

the loop scheduler to assign iterations between SMTs using a given policy and then

use an SMT-aware policy for splitting iterations between threads on the same SMT. Al-

ternatively, OpenMP extensions for thread groups [3] can be exploited, so that threads

within the same SMT processor belong to the same group and use their own schedul-

ing and local synchronization mechanisms. Note that using groups in this case does not

necessarily imply the use of nested parallelism. SMT-aware programs may utilize just a

single level of parallelism but use different policies for executing threads within SMTs.

In fact, current SMTs do not allow the exploitation of parallelism with granularity much

fi ner than what can be exploited by conventional multiprocessors [2]. If no extensions

to the OpenMP interface are desired, then more intelligence should be embedded in the

runtime environment, to dynamically identify threads sharing an SMT and differentiate

its internal thread management policies. Although such an expectation is not unreason-

able for regular iterative scientifi c applications, it is diffi cult to achieve the same level

of runtime sophistication for irregular applications.

Regarding portability (of both code and performance), one of the most important

problems for implementing an SMT-aware version of OpenMP is thread binding to

processors and execution contexts within processors. Clearly, if the programmer wishes

to exploit a single level of parallelism in a non-malleable program, the issue of bind-

ing is irrelevant. If however the programmer wishes for any reason to utilize SMTs



for an alternative multithreaded execution strategy (e.g. for nested parallelism, or for

slipstream execution), then it is necessary to specify the placement of threads on pro-

cessors. Although the OpenMP community has proposed extensions to handle similar

cases (e.g. via an ONTO clause), exposing architecture internals in the programming in-

terface is undesirable in OpenMP. Therefore, new solutions for improving the execution

of OpenMP programs on SMTs in an autonomic manner are desirable.

6 Conclusions

In this paper we evaluated the performance of OpenMP applications on SMT- and CMP-

based multiprocessors. We found that the execution of multiple threads on each proces-

sor is more effi cient and predictable on CMPs than it is on SMTs due to the higher de-

gree of resource isolation, which results in fewer conflicts between threads co-executing

on the same processor. Although adaptive run-time techniques can improve the perfor-

mance of OpenMP applications on SMTs, inherent architectural bottlenecks hinder the

effi cient exploitation of these processors.

Our analysis indicated that the interference between co-executing threads in the

shared levels of the cache or the shared TLB may prove a determining factor for perfor-

mance. Driven by this observation, we intend to evaluate run- and compile-time tech-

niques for TLB partitioning on SMTs and cache partitioning on both SMT and CMP

architectures. The forthcoming proliferation of processors which combine simultaneous

multithreading and chip multiprocessing, such as the IBM Power5, and their use as ba-

sic building blocks of multiprocessors will certainly generate a multitude of challenging

software optimization problems for system software and application developers.

Acknowledgements

This work is supported by an NSF ITR grant (ACI-0312980), an NSF CAREER award

(CCF-0346867) and the College of William and Mary.

References

1. G. Almasi, E. Ayguade, C. Cascaval, J. Castanos, J. Labarta, F. Martinez, X. Martorell, and

J. Moreira. Evaluation of OpenMP for the Cyclops Multithreaded Architecture. In Proc.

of the 2003 International Workshop on OpenMP Applications and Tools (WOMPAT’2003),

pages 147–159, Toronto, Canada, June 2003. LNCS Vol. 2716.

2. C. D. Antonopoulos, X. Ding, A. Chernikov, F. Blagojevic, D. S. Nikolopoulos, and

N. Chrisochoides. Multigrain Parallel Delaunay Mesh Generation: Challenges and Opportu-

nities for Multithreaded Architectures. In Proc. of the 19th ACM International Conference

on Supercomputing (ICS’2005), Cambridge, MA, U.S.A., June 2005.

3. E. Ayguadé, M. Gonzàlez, X. Martorell, J. Oliver, J. Labarta, and N. Navarro. NANOSCom-

piler: A Research Platform for OpenMP Extensions. In Proc. of the First European Workshop

on OpenMP, pages 27–31, Lund, Sweden, October 1999.

4. C. Bekas and E. Gallopoulos. Cobra: Parallel path following for computing the matrix pseu-

dospectrum. Parallel Computing, 27(8):1879–1896, July 2001.



5. W. Dally, P. Hanrahan, M. Erez, T. Knight, F. Laboté, J. Ahn, N. Jayasena, U. Kapasi, A.

Das, J. Gummaraju, and I. Buck. Merrimac: Supercomputing with Streams. In Proc. of the

IEEE/ACM Supercomputing’2003: High Performance Networking and Computing Confer-

ence (SC’2003), Phoenix, AZ, November 2003.

6. K. Ebcioglu, V. Saraswat, and V. Sarkar. The IBM PERCS Project and New Opportuni-

ties for Compiler-Driven Performance via a New Programming Model. Compiler-Driven

Performance Workshop (CASCON’2004), October 2004.

7. F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, F. Lundholm, A. Moestedt, J. Nilsson,

P. Stenström, and B. Werner. Simics/sun4m: A virtual workstation. In Proc. of the 1998

USENIX Annual Technical Conference, New Orleans, LA, June 1998.

8. G. A. Grell, J. Dudhia, and D. R. Stauffer. A Description of the Fifth-Generation Penn

State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398 + STR, Na-

tional Center For Atmospheric Research (NCAR), June 1995.

9. K. Ibrahim and G. Byrd. Extending OpenMP to Support Slipstream Execution Mode.

In Proc. of the 17th International Parallel and Distributed Processing Symposium

(IPDPS’2003), Nice, France, April 2003.

10. Intel Inc. Intel VTune Performance Analyser. http://www.intel.com/software/products/vtune,

2003.

11. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel Benchmarks

and its Performance. Technical report nas-99-011, NASA Ames Research Center, October

1999.

12. R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip: A Dual-Core Multithreaded

Processor. IEEE Micro, 24(2):40–47, March 2004.

13. R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-Core Chip Multiprocessing. In Proc. of the

37th International Symposium on Microarchitecture (MICRO-37), pages 195–206, Portland,

OR, December 2004.

14. F. Liu and V. Chaudhary. Extending OpenMP for Heterogeneous Chip Multiprocessors. In

Proc. of the 2003 International Conference on Parallel Processing, pages 161–168, Kaohsi-

ung, Taiwan, October 2003.

15. J. Mitchell. Sun’s Vision for Secure Solutions for the Government. National Laboratories

Information Technology Summit, June 2004.

16. K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a Single-

Chip Multiprocessor. In Proc. of the 7th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’96), October 1996.

17. D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing

On-Chip Parallelism. In Proceedings of the 22nd Intenational Symposium on Computer

Architecture, pages 392 – 403, June 1995.

18. Y. Zhang, M. Burcea, V. Cheng, R. Ho, V. Cheng, and M. Voss. An Adaptive OpenMP Loop

Scheduler for Hyperthreaded SMPs. In Proc. of PDCS-2004: International Conference on

Parallel and Distributed Computing Systems, San Francisco, CA, September 2004.


