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 This paper addresses the use of micro-injection moulding for the fabrication of 

polymeric parts with microfeatures. Five separate parts with different micro-feature designs are 

moulded of Polymethylmethacrylate. The design-of-experiments approach is applied to correlate 

the quality of the parts to the processing parameters. Five processing parameters are 

investigated using a screening half-factorial experimentation plan to determine their possible 

effect on the filling quality of the moulded parts. The part mass is used as an output parameter to 

reflect the filling of the parts. The experiments showed that the holding pressure is the most 

significant processing parameter for all the different shapes. In addition, the experiments showed 

that the geometry of the parts plays a role in determining the significant processing parameters. 

For a more complex part, injection speed and mould temperature became statistically significant. 

A desirability function approach was successfully used to improve the filling quality of each part. 

Keywords: micro-injection moulding, design-of-experiments, geometry, processing 

parameters, quality control. 

1. Introduction 

 Micro-injection moulding (μIM) is a polymer replication process of high potential for the 
mass-production of polymeric parts with microfeatures. Mass-production capabilities, high 

replication fidelity and the ability to process polymers of a wide range of properties are some of 

the advantages associated with μIM. 

 For some time the main approach to identify influential processing parameters in μIM 
was by changing one parameter at a time while keeping the others constant and then observing the 

effect of this parameter (Wimberger-Friedl 2000; Yao and Kim 2002; De Mello 2002). This 

approach was inherited from conventional injection moulding, as it was useful in drawing basic 

conclusions about how each parameter affects the filling quality of the moulded part. 

 This approach, however, has two main limitations (Eriksson et al. 2008): the first 

limitation is that it is relatively time consuming when many parameters are being investigated. The 

second drawback is that it does not take into consideration the effect of the interaction between 

two or more parameters, which is a relevant consideration in complex processes such as 

micromoulding.  

 The design-of-experiments (DOE) approach was introduced into this research domain as a 

useful alternative to this conventional method. A number of research groups have used a variety of 

DOE experimentation plans to investigate the relation between processing parameters and part-
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filling quality. A summary of the main DOE experiments is available in the literature (Attia et al., 

2009).  

 The responses chosen for the experiments have included, filling quality of micro-sized 

channels (Mönkkönen et al., 2002), part dimensions (Zhao et al. 2003a; Aufiero 2005; Sha et al. 

2007b; Pirskanen et al. 2005; Sha et al. 2007a), flow length (Griffiths et al. 2007; Jung et al. 2007), 

weld-line formation (Tosello et al. 2007), demoulding forces (Griffiths et al. 2008) and filled 

volume fraction (Lee et al. 2008). This is a reflection of the main research challenge in micro-

moulding, which is the filling of small cavities. The choice of response is informed by such 

considerations as: is a specific dimension (or dimensions) critical for the part functionality, e.g. the 

depth of a channel or the diameter of a hole?, or is the order of magnitude of the part mass suitable 

for measurement?, e.g. variations in the part mass may be too small to be separated from 

experimental noise. DOE has also been used to minimise injection time, pressure and temperature 

distribution using a three-dimensional simulation package (Shen et al. 2002).  

 Results presented in the literature show that different DOE designs yield different outputs. 

For example, there is disagreement about the importance of holding pressure and injection speed. 

Furthermore, certain experiments have highlighted interactions between processing parameters 

which have not been seen in other work. These differences in experimental results may be due to 

the different geometrical shapes, polymers and experimental set-ups used in each experiment. It 

would, therefore, seem reasonable to claim that, at present, significant processing parameters in 

μIM are indentified on case-by-case basis and cannot be generalized for all situations. 

 This paper addresses the effect of processing parameters on the filling quality of μIM 
through a design-of-experiments (DOE) approach. In order to focus on the issue of general 

applicability highlighted above, the most influential processing parameters of five differently 

micro-structured parts were each investigated. The parts were of high enough mass to allow part 

mass to be used as the response. The polymer type (Polymethylmethacrylate (PMMA)) and grade 

were kept constant over the five micro-parts. Optimized processing conditions were calculated and 

tested for each of the five parts. They were then compared, so that the effect of the part geometry 

on the filling behaviour of the polymer could be discussed. 

 It is worth noting in more detail the prior work which is closest to that of this present 

study. Whilst some DoE-based experimental data are available, in which part geometries have 

been deliberately varied within a single moulding (Sha et al. 2007b), no prior work exists which 

assesses geometrically-different whole micro-moulded parts produced using a particular polymer. 

In the literature (Zhao et al. 2003a; Zhao et al. 2003b), part mass was used as the response for two 

different micro-parts, but the moulding polymer was also varied: a polyoxymethylene (POM) 

micro-gear and a polycarbonate (PC) lens array. The micro-gear consisted of a gear-and-shaft 

arrangement, where the gear diameter was 2.5 mm and the shaft length was 5 mm. It was produced 

with a three-plate mould with a gate diameter of 0.6 mm. The lens component had overall 

dimensions of 12 x 3 x 2 mm carrying lens surfaces of radii 0.35 and 0.5 mm with a gate diameter 

of 0.3 mm. Five processing parameters were evaluated, namely mould temperature, melt 

temperature, injection speed, metering size, hold pressure time and cooling time. For the gear 

structure, the holding pressure time and metering size were highlighted as significant parameters. 

For the lens array, metering size, injection speed and mould temperature were identified as most 

significant parameters. 
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2. Experiment 

2.1. Methodology and equipment 

 In this experiment, five parts (a to e) with micro-scaled features were investigated. The 

parts, which were components of a microfluidic device, were designed to have the same external 

dimensions but different sets of features, both on the surface of, and through the component. 

Different definitions of micromoulding are in the literature (Attia et al. 2009), so the scope of 

micromoulding in this experiment was “macro” components with micro-structured regions. 

 The polymer chosen for this study was Polymethylmethacrylate (PMMA) (VS-UVT, 

Altuglas®). The grade was selected for its ease of flow (MFI = 24 g/10 min) and its optical 

transparency (light transmittance 92%). The micro-injection moulding machine was a Battenfeld 

Microsystems 50.  

 Five processing parameters were investigated as input factors: polymer-melt temperature 

(Tp), mould temperature (Tm), injection speed (Vi), holding pressure (Ph) and cooling time (tc). The 

response (quality parameter) in all experiments was the part mass (W). 

 The experimental programme was conducted in three stages following the protocol laid 

out in Eriksson et al.: familiarization, screening, and optimization (Eriksson et al., 2008). These 

are detailed in Section 2.4. Weighing of the moulded parts was done using a sensitive scale with a 

readability of 0.01 mg. Experimental data were processed and analysed using Minitab® 15 

(Minitab Inc. 2009). 

2.2. Part Geometry 

 The five moulded parts used in this study were all disc-shaped with a diameter of 10 mm 

and a thickness of 1 mm. The parts were designed to be building elements in a microfluidic device 

for a medical application. Each of the five components has a different set of micro-features, the 

majority of which are in place in order to form through-hole features in the final device. Figure 1 

presents a schematic half-cross-section diagram of the five part designs (denoted by letters from a 

to e) with some of their critical dimensions: 
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Fig 1 Half-cross-section diagrams of the five parts a to e with some of the main dimensions 

highlighted 

2.3. Mould manufacturing 

 Each part was moulded by an individual aluminium mould that was housed within a main 

steel micro-mould body. A detailed description of the mould design and machining process for the 

mould inserts can be found elsewhere (Marson et al. 2009). Figure 2 shows SEM images of two of 

the mould-inserts. 

 

 

 

 

 

 

 

 

 

 

Fig 2 SEM micrographs of the micro-features of mould inserts 
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2.4. Experimentation stages 

2.4.1. Familiarization stage 

In the familiarization stage, a set of experiments were conducted in which the selected input 

parameters were assessed in order to determine the most extreme levels at which the experiment 

successfully yielded a response. This process window of parameters was then translated to become 

the high and low levels of the input parameters used in the screening experiments. The metering 

volumes of the parts were determined experimentally. The volume of each part was selected such 

that the polymer amount is enough to fill the cavity space without applying any holding pressure. 

The metering volumes are then kept constant throughout the experiments. 

 The sampling range was also determined, i.e. the number of moulding cycles after which 

the process is considered to become stable. Stability was defined as having been achieved when 

each of the moulded parts possess the same mass within a given tolerance. 

 The sampling range of the moulding process was determined using statistical control 

charts. The average mass of the produced parts become stable within the upper and lower limits of 

the chart after 30 to 40 continuous cycles depending on the mould insert used. As a standard 

practice, for each set of experimental conditions, samples were randomly collected after 50 cycles. 

 Table 1 shows the criteria used for selecting the upper and lower values for each 

parameter. 

Factor Selection criteria 

Lower level Higher level 

Tp [°C] The minimum value for this level was the 

recommendation of the material supplier 

(around 200°C). Based on experimentation, 

relatively higher temperatures were selected, 

such that the injection process ran 

continuously. 

This was selected by experimentation as a 

safe high limit, above which signs of 

degradation appeared. 

Tm [°C] The minimum temperature was selected as 

the temperature recommended by the material 

supplier. 

The high level was selected close to, but 

below, the Tg of the polymer (approx. 86°C). 

Ph [bar] The minimum holding pressure value was 

obtained from the literature (Osswald 2001). 

The higher holding pressure value was 

selected not to cause the material to flash. 

Vi [mm/s] This value was selected based on 

experimentation. 

This value was selected based on 

experimentation. 

tc [s] The minimum value was calculated as the no-

flow time, which is the time by which the 

gate was actually frozen. 

The maximum was selected as approximately 

twice the minimum. 

Table 1. Criteria for selecting the upper and lower levels of the experiment. 

 Table 2 shows the upper and lower parameter levels selected for each of the five parts in 

addition to the metering volume selected for each part (including the runner system): 

P
art 

Metering 

Volume 

[mm3] 

Tp [°C] Tm [°C] Vi [mm/s] Ph [bar] tc [s] 

Low 

level 

(-) 

High 

level 

(+) 

Low 

level 

(-) 

High 

level 

(+) 

Low 

level 

(-) 

High 

level 

(+) 

Low 

level 

(-) 

High 

level 

(+) 

Low 

level 

(-) 

High 

level 

(+) 

a 179 240 255 70 81 200 300 250 500 4 7 

b 178 230 250 72 80 200 300 100 300 4 7 

c 177 230 250 72 84 200 300 100 300 3 6 

d 177 230 250 72 84 200 300 100 300 3 6 

e 177 230 250 70 84 150 300 100 300 3 6 

Table 2. Higher and lower levels for the five tested parameters for the five parts. 
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2.4.2. Screening stage 

 The screening stage consisted of the execution of the set of designed experiments. The 

number of samples and the levels of the input variables were obtained from the familiarization 

stage. Statistical software and regression models were used to analyse the data. Significant 

processing parameters and interactions were determined.  

 The data obtained from the familiarization stage were used in the selected 

experimentation design. The DOE scheme used was a two-level, half-factorial 16-run (2
5-1

) design.  

 This design was selected because it is a resolution-V design, which offers two advantages. 

Firstly, the number of experimental runs required is half that of a full factorial design. Secondly, 

this reduction in runs does not affect the results significantly.  This is because the main effects are 

not confounded with other main effects or with second-order interactions and the second-order 

interactions are not confounded with each other.  

 The levels of the experimental runs are tabulated in table 3. For each set of experiments, 

the order in which the experimental runs were conducted was randomized using a built-in 

randomization function in Minitab. 

Standard 

Order 
Tp [°C] Tm [°C] Ph [bar] Vi [mm/s] tc [s] 

1 - - - - + 

2 + - - - - 

3 - + - - - 

4 + + - - + 

5 - - + - - 

6 + - + - + 

7 - + + - + 

8 + + + - - 

9 - - - + - 

10 + - - + + 

11 - + - + + 

12 + + - + - 

13 - - + + + 

14 + - + + - 

15 - + + + - 

16 + + + + + 

Table 3. A half-factorial, two level 16-run (2
5-1

) experimentation design. 

 After stabilisation, ten samples were randomly collected for each run.  The average mass 

of the samples was recorded as the experiment response. The experimental data collected was 

processed with Minitab® 15 and main-effects plots and Pareto charts were plotted.  

 One technique for correlating the factors to the response is by regression models. Similar 

to conventional regression models used to correlate two variables, a regression model can be used 

to fit the obtained responses to the input factors. The model can be linear, interaction, quadratic or 

even cubic, depending on the number of experiments conducted (Eriksson et al. 2008). In this 

particular screening design, an interaction model was selected since it takes into consideration the 

effect of possible interactions on the response value. The selected regression model takes the 

following format: 

...4114311321125544332211  xxxxxxxxxxxcy   (1) 

In equation (1): y is the response, c is a constant, β values are the model-term coefficients and x1 to 

x5 are factors. The values and signs of the regression coefficients, β, represent the magnitude and 

the relation of each model term, respectively. Once the coefficients of equation (1) are determined, 

the response y of any set of given factors can be calculated. 
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 The accuracy of the fit was evaluated by comparing the values of responses calculated 

from the model, based on the obtained coefficients, to the corresponding actual experimental 

values. 

2.4.3. Determining optimum processing conditions 

 One approach to optimize the data obtained from the screening stage is to run another 

round of full factorial designs involving the influential parameters obtained during the screening 

stage. This approach is usually used when there are a number of influential factors with relatively 

close effects. A full factorial design would be implemented in this case to optimize the factors with 

a design that has no confounding factors. In this set of experiments, however, only one or two 

significant parameters are already identified from the screening stage, so optimization will 

basically focus on obtaining a suggested set of processing parameters that gives a required value of 

the response within specified limits. 

 Optimization was carried out using the desirability function approach to calculate 

optimum values of the input parameters (Lahey and Launsby 1998; Montgomery  2005). This 

approach searches for a combination of values for input factors to satisfy a requirement for an 

output response (or multiple responses). The pre-set requirement of the function would be either to 

hit a target value within an upper and lower limit, to minimize the response value or to maximize 

the response value. Another pre-set value of the function is the weight r, which specifies the 

function shape and emphasises (or deemphasises) the target value relative to the limit values. 

 In case of one response being optimized, the individual desirability can be represented by 

the equation (Minitab Inc. 2009): 

di = fi(y)
Wi

                                              (2) 

where Wi is the weight of the response, in this case equal to 1, and the function fi(y) depends on 

whether the purpose of the optimisation is to hit a target, minimize or maximize. In this case, the 

function is desired to hit a target value T within upper and lower limits, so it can be represented by 

the following equation, where U and L are the upper and lower limits, respectively (Montgomery 

2005): 
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 The function in equation (3) is linear because the weight r is set to 1. Otherwise, the 

bracket terms would have been raised to the power r1 and r2 that define the weights of the lower 

and upper limits, respectively. 

 For each of the five parts investigated in this set of experiments, the target, upper and 

lower values were selected based on the filling quality of the produced samples. This was 

undertaken as follows. For each part, after each set of experiments, samples of the 16 runs were 

inspected under the microscope to check their filling quality. Although each run had a different 

average mass, one or more runs (i.e. one or more combinations of factors) could have produced 

completely-filled samples. All the completely filled samples were weighed and an average mass 

was calculated. The filled samples that had the smallest and the largest masses were also 
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identified. The average mass calculated from all of the filled samples was set as the target weight 

for the desirability function. The masses of the filled samples with smallest and largest mass 

values were used as the pre-set lower and upper limits of the desirability function, respectively. 

3. Results 

3.1. Responses from the screening experiments 

 Table 4 shows the average masses in milligrams of the 10 samples collected for each of 

the five parts: 

Standard 

Order 
Tp Tm Ph Vi tc 

Mass [mg] averaged from 10 samples 

a b c d e 

1 - - - - + 91.0 86.4 84.8 88.3 86.9 

2 + - - - - 91.2 87.3 85.2 88.5 88.0 

3 - + - - - 91.9 87.8 84.9 88.6 87.5 

4 + + - - + 91.2 87.4 85.3 88.8 89.6 

5 - - + - - 92.5 88.4 87.0 90.0 91.6 

6 + - + - + 93.4 87.9 86.7 89.8 91.6 

7 - + + - + 93.6 88.3 87.2 89.9 91.6 

8 + + + - - 93.8 88.7 87.2 90.5 92.1 

9 - - - + - 90.6 86.6 84.8 87.4 89.3 

10 + - - + + 90.4 86.7 85.0 87.7 88.1 

11 - + - + + 90.7 86.5 85.2 87.8 88.1 

12 + + - + - 91.3 87.3 85.8 88.4 90.7 

13 - - + + + 92.8 88.2 86.5 89.4 90.6 

14 + - + + - 93.2 88.2 87.1 89.6 92.2 

15 - + + + - 93.2 88.0 87.1 89.8 91.0 

16 + + + + + 93.0 88.3 87.3 89.8 92.5 

Table 4. Average masses in mg for each of the five parts. 

Figure 3 shows a number of SEM micrographs of the replicated plastic parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 SEM images of some of the replicated plastic parts 

 Figures 4 to 8 show the Main-effects plots and Pareto charts of standardized effects 

plotted for the five moulded parts. A main-effect plot for a particular factor is a plot of the average 

of the data points at the low factor setting and the average of the data points at the high factor 

setting. The larger the slope of the line that connects the two averages, the more important the 

500 μm 500 μm 

500 μm 500 μm 
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effect is. A Pareto chart is a bar chart where bars are ordered in decreasing magnitude. The greater 

the bar magnitude, the more effect its corresponding factor (or interaction) has on the response. In 

the Pareto chart the following symbol set is used: polymer-melt temperature (A), mould 

temperature (B), holding pressure (C), injection speed (D) and cooling time (E). 

 In figure 4a main effect are plotted for each of the input parameters, with mass as the 

output parameter.  Hence, for example, the first graph of figure 4a is a plot of mass against melt 

temperature (A). 

 In figure 4b factor effects are plotted as a bar chart, which are related to the averages of 

the main-effect plots. Briefly, if Δ is the difference between the two averages of the response 
points for a particular factor, i.e. the difference between the two points connected by the sloped 

line, then the effect bar corresponding to that particular factor is the absolute value of half the 

effect, i.e. |Δ/2| (Lahey and Launsby 1998). 

 Figure 4b plots both the main input parameters, for example, C the holding pressure, and 

the interactions between input parameters, for example, BE, the interaction between the mould 

temperature and the cooling time.  The vertical line on the figure corresponds to the threshold 

beyond which factors become statistically significant at the significance level determined by the 

value of alpha. This value is determined from the t-distribution, where t is the 1-(alpha/2) quantile 

of the distribution (Minitab Inc. 2009).  The significance of the effect can be found by the 

relationship of the histogram value to this line. The alpha value, also referred to as the level of 

significance, is a measurement of risk in detecting effects, and is expressed as a probability 

between 0 and 1. An alpha value of 0.05 indicates that the chance of finding an effect that does not 

exist is only 5% (a confidence limit of 95%). 

 Figures 5 to 8, representing the screening experiment data for parts b to e, are plotted 

using the same approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4 Screening results for part a: [a] Main effects plot, and [b] Pareto chart 
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Fig 5 Screening results for part b: [a] Main effects plot, and [b] Pareto chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6 Screening results for part c: [a] Main effects plot, and [b] Pareto chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7 Screening results for part d: [a] Main effects plot, and [b] Pareto chart 

 

 

 

 

 

AB

BC

DE

CE

D

CD

BE

AE

BD

E

AD

AC

A

B

C

2.01.51.00.50.0

T
e

rm

Effect

0.442

A Melt T

B Mould T

C Hold P

D Inj. V

E C ool t

F actor Name

Pareto Chart of the Effects for Part c
(response is part mass, Alpha = 0.05)

[b] 

DE

AD

BD

BC

AE

CE

AC

AB

BE

CD

E

A

B

D

C

1.81.61.41.21.00.80.60.40.20.0

T
e

rm

Effect

0.282

A Melt T.

B Mould T.

C Hold P.

D Inj. v .

E C ool t.

F actor Name

Pareto Chart of the Effects for Part d
(response is WT-R1, Alpha = 0.05)

[b] 

250230

90.0

89.5

89.0

88.5

88.0

8472 300100

300200

90.0

89.5

89.0

88.5

88.0

63

Melt T.

M
e

a
n

Mould T. Hold P.

Inj. v. Cool t.

Main Effects Plot for WT-R1 (Part d)
Data Means

[a] 

250230

87.0

86.5

86.0

85.5

85.0

8472 300100

300200

87.0

86.5

86.0

85.5

85.0

63

Melt T

M
e

a
n

Mould T Hold P

Inj. V Cool t

Main Effects Plot for Part c
Data Means

[a] 

250230

88.2

87.9

87.6

87.3

87.0

8072 300100

300200

88.2

87.9

87.6

87.3

87.0

74

Melt T

M
e

a
n

Mould T Hold P

Inj. V. Cooling t.

Main Effects Plot for Part B
Data Means

[a] 

AE

BE

AB

AD

CD

AC

BC

CE

BD

A

DE

D

E

B

C

1.41.21.00.80.60.40.20.0

T
e

rm

Effect

0.686

A Melt T

B Mould T

C Hold P

D Inj. V .

E C ooling t.

F actor Name

Pareto Chart of the Effects for Part B
(response is part mass, Alpha = 0.05)

[b] 



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 Screening results for part e: [a] Main effects plot, and [b] Pareto chart 

3.2. Desirability function processing conditions 

 Table 5 tabulates desired part mass, the calculated optimum values of the process 

parameters to achieve these mass values and actual part mass obtained experimentally at these 

processing conditions. 

 The desired part masses were derived from the screening experiments. The moulded 

samples are inspected, and the completely filled samples are identified and weighed. The average 

mass of the complete samples is used as the “target” mass for the desirability function. The 

minimum and maximum masses of the completely filled samples are input as the lower and upper 

limits for the target mass, respectively. They are tabulated in table 5 as the target mass and a 

minimum and maximum acceptable mass value. 

 The experimental conditions, i.e. the levels of the input parameters, predicted to achieve 

those masses are outputs of the desirability function.  These are tabulated in table 5 for each of the 

five input variables (denoted as “required levels”). 

 In table 5, the “experimental mass” is the average mass of ten samples collected randomly 
after the moulding machine had reached stability. The minimum and maximum values are the 

mass of the samples with lowest and highest mass magnitude within the ten samples, respectively. 

P
art 

Desired mass [mg] Required levels of process parameters 
Experimental mass 

[mg] 

Target Min. Max. 
Tp 

[°C] 

Tm 

[°C] 

Vi 

[mm/s] 

Ph 

[bar] 
tc [sec] Avg. Min. Max. 

a 93.1 92.6 93.6 250 81 200 416 4 93.1 92.9 93.3 

b 88.6 88.2 89.0 250 80 200 300 4 88.7 88.4 88.9 

c 86.5 86.0 87.0 250 81 300 170 3 86.7 86.2 86.9 

d 90.0 89.6 90.4 250 84 200 300 3 90.1 89.9 90.3 

e 92.5 92.0 93.0 243 84 300 300 3 92.0 91.8 92.2 

Table 5. Required masses and limits, calculated optimum parameters and corresponding 

experimental results. 
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4. Discussion 

4.1. Screening stage 

 Figures 4 to 8 show a significant effect of holding pressure for all the five parts, with four 

parts, a, b, c and e, showing it as the only significant effect. This substantial effect was also visible 

during the experiments, as all samples that were produced at a lower level of holding pressure 

exhibited evidence of incomplete filling, regardless of the levels of the other four parameters. In 

contrast, cooling time had no effect for any of the parts. 

 For Part d, three significant effects were observed: holding pressure, injection velocity 

and mould temperature. However, aside from Part d, mould temperature and injection velocity had 

no apparent effect on the mass of other parts.  

 The importance of holding pressure lies in the fact that it overcomes the tendency of the 

polymer melt to prematurely freeze before the injection process is complete. Premature freezing is 

likely to be exacerbated by the relatively high rate of heat transfer between the polymer and the 

mould walls for parts with micro-scaled dimensions. In prior work (Zhao et al. 2003a; Zhao et al. 

2003b), metering volume and holding pressure time were used as factors. In this work, metering 

size was kept constant, as it was determined from the familiarization stage (Section 2.4.1), and the 

holding pressure value was used rather than the holding pressure time. It is possible that both the 

holding pressure magnitude and time (or their interaction) would be significant if they are used 

together as factors in a more extended DOE plan. 

 The lack of significance of cooling time is consistent with previous work (Zhao et al. 

2003a; Zhao et al. 2003b). This is because the effect of cooling in injection moulding is usually 

associated with changes in the component geometry (e.g. shrinkage, warpage) (Osswald 2001), but 

the cooling scheme does not have the same effect on the part weight as its effect takes place after 

the cavity is already filled. 

 The lack of significance of mould temperature may lie in the selection of the two levels at 

values below the Tg of the polymer. This is consistent with the data presented in (Shen et al. 2002) 

where increasing the mould temperature improved the filling quality, although all the experiments 

were performed while the mould temperature was below the Tg of the PMMA. It is less consistent 

with the numerical simulation data of (Zhao et al. 2003a) which predicted short shots unless the 

mould temperature was raised above the Tg of the PMMA. 

 The general tendency found here of the lack of significance of melt temperature was also 

found in prior work.  For small part volumes, like those found in micro-moulding, the melt 

temperature decreases at a very high rate once the polymer contacts the cavity walls, as long as the 

mould temperature is kept below the melt temperature of the polymer (Yao and Kim 2004). In the 

work presented here, both the high and low levels of the mould temperature were kept below Tg. 

Hence, by the time the polymer filled the part cavity it would have seen a significant reduction in 

its temperature. 

 The lack of significance of the injection velocity as a parameter may lie in the relatively 

small change of shear rate associated with changing between the two levels of injection velocity. 

The relation between shear rate and injection velocity can be approximated by (Osswald 2001): 

3

4

r

Q





                                        (4) 
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where 
Q

is the volume flow rate, and r is the radius of the flow path cross section (in this case the 

part gate). The flow rate is a function of the injection speed Vi, so equation (4) can be rewritten as: 

3

24

r

RVi                                   (5) 

where R is the radius of the injection plunger.  

 Since the gates have a rectangular cross section (1 x 0.5 mm), the equivalent hydraulic 

diameter may be used in equation (5) to estimate the value of r. The calculated shear rates based 

on low-level and high-level value for injection velocity both have an order of magnitude of 10
5
 s

-1
. 

Shear rate vs. viscosity data for the PMMA grade used indicates that these shear rates correspond 

to viscosities in the order of 10
1
 Pa.s at 230°C at which no significant shear-thinning behaviour 

would be observed. 

4.2. Desirability function processing conditions 

 Table 5 presented the suggested processing parameters for improved filling, which are 

obtained by meeting the conditions listed in equation (3). It should be noted that the desirability 

function cannot recommend parameter values outside the lower and high levels of the factors. 

Whilst certain parameter values in table 5 lie between the high and low levels, the majority lie 

either at the high level or the low level. This is indicates that the desirability function might have 

recommended an even higher or lower level of the parameter, had the original levels been more 

widely spread. 

 Table 5 shows also that the average masses of the parts produced under the conditions 

predicted by the desirability function lie within 0.5% of the specified target values. All the 

produced parts were within the mass upper limit pre-set in the function, but for Parts b and e, some 

of the produced samples were under the lower limit by approximately 0.2 mg. 

 Figure 9 shows an example of how the desirability function improved the filling quality 

of the parts. Figure 9 (a) shows a view of a sample of Part d from the screening stage (run 5) where 

some areas of the edges that are close to the last filled point are incomplete. Voids can also be seen 

on the surface around the cylindrical hole. Figure 9 (b) shows the same part after application of the 

desirability function, where the edges are completely filled and voids are no longer apparent on the 

part surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9 SEM micrograph of samples of Part d. 4(a) an example before applying the desirability 

function (Tp = 230°C, Tm =72°C, Vi = 300 mm/s, Ph = 100 bar and tc = 3 s); 4(b) after applying the 

desirability function (Tp = 250°C, Tm =84°C, Vi = 200 mm/s, Ph = 300 bar and tc = 3) 

500 μm 

Incomplete edge (a) (b) 
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 Table 5 shows the data from applying the desirability function independently to each part. 

However, an individual-part desirability function approach is difficult to extend to a prediction of 

any compromise parameters which would be result in relatively high filling quality for all the five 

parts if they were produced by a single mould in one shot. 

 One method to achieve such a compromise might be to discern if there were general 

trends that could be observed when comparing the desirability function to the screening 

parameters, and then apply these trends in required process parameters to establish compromise 

conditions. In effect, this means comparing the required levels of process parameters in table 5 

with the envelope of parameter high and low levels of table 2. Such a comparison does show that 

general trends are present, independent of the part shape.  The desirability function predicts that 

setting the melt temperature, mould temperature and holding pressure to their high levels would 

generally result in better filling, as does, with a few exceptions, setting the injection velocity and 

cooling temperature to their low levels. 

Table 6 shows a set of compromise processing conditions constructed following these general 

trends in desirable process parameters.  To test this prediction, the micro-mould was reconfigured 

such that all the five parts are injected through a common runner system, and parts processed using 

the conditions of table 6: 

Parameter Tp [°C] Tm [°C] Vi [mm/s] Ph [bar] tc [s] 

Value 250 84 200 300 3 

Table 6. Processing parameters for a five-part micro-moulded component. 

 The produced part is shown in figure 10, where all the parts were checked under the 

microscope to be completely filled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10 A photograph of a completely filled, five-part plastic component produced under 

compromise conditions 

4.3. Effect of part geometry 

 The results shown in figures 4 to 8 provide some information on the effect of the mould 

geometry on the filling quality of the part.  

 As noted in section 4.1, for Part d, other effects, in addition to the holding pressure, were 

of significance in filling quality. It seems likely that this is owing to the relatively high geometrical 

complexity of this part in comparison to the other parts. This complexity is generated from the 

10 mm 
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four micro-scaled flow paths that exist in Part d, which represent a rapid change in part thickness 

that imposes „extra resistance‟ on the flow of the material to completely fill the cavity. Figure 11 
presents photographs of mouldings of Parts a and d, as being at the two extremes of geometrical 

complexity amongst the five moulded parts. The mouldings are „short shots‟ produced to visualise 

the difference in filling sequence between the two parts. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11 (a) Short shot of Part a. (b) Short shot of Part d 

 In Part a the last filled point is located at the far end of the flow path, whereas in Part d 

the last filled point is located close to the centre. Such differences are expected as a consequence 

of the „hesitation effect‟ commonly seen in polymer flow, where, in cavities with varying 

thickness values, polymer melts tend to fill areas with larger thickness before they flow into 

smaller thicknesses. In Part a, where the part thickness is uniform, the polymer fills the cavity 

gradually as the flow path is divided at the central “pin” of the mould and then rejoins afterwards 
forming a weld line. In Part d, the rapid change in thickness causes the polymer flow to experience 

hesitation during the filling process, and a higher injection pressure will be required for the 

polymer to flow through these features. Larger flow-path cross-sections, for example the perimeter 

of the shape in Part d, are filled before the polymer starts to pass through the four “openings” at 
the centre area of the part (see figure 1 Part d). 

 Owing to the relatively small dimensions of each of the four openings (500 x 600 μm) a 
high possibility of premature freezing would be expected at these locations. Similarly to 

conventional injection moulding, the cooling time of the polymer during micromoulding is 

dependent, among other factors, on the part thickness squared (Yao and Kim 2004). This indicates 

that the cooling process in Part d, where, in the four opening areas, the minimum thickness is 500 

μm, is much faster than, for example, Parts a and b, where the minimum thickness is 950 μm to 1 
mm. 

 The rapid decrease in thickness does not only affect the freezing process, but it also 

influences other parameters. As suggested in the literature (Yao and Kim 2004), as the part 

thickness decreases to fractions of a millimetre, a drastic increase is observed in the injection 

pressure required to fill the cavity, and a higher possibility of incomplete filling is expected. This 

is particularly observed for cold-mould filling, i.e. when mould temperature is lower than the melt 

temperature, as is the case in this work. This explains why mould temperature becomes significant 

at such rapid changes in thickness as seen in Part d. Part thickness also affects the role of injection 

speed on the required filling pressure. As the thickness decreases, the variation in injection speed 

becomes more significant in affecting the injection pressure required to fill the mould cavity (Yao 

and Kim 2004).  

[b] 

Gate location 

Last filled point [a] 

Gate location 

Last filled point 
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5. Conclusions 

 In order to investigate the effect of part geometry on moulding parameters, this paper 

investigated the moulding parameters of five different micro-parts using mass as an experiment 

response. Parts differed in the through-hole and surface geometries, but had a constant outer radius 

and similar thicknesses. The same polymer, a PMMA grade, was used throughout the experiments. 

 A three-stage design of experiments approach consisting of feasibility, screening and 

desirability function, was undertaken to evaluate the filling quality in micro-injection moulding 

and correlate it to the processing parameters. It was shown that holding pressure was the main 

influential processing parameter for all of the part geometries.  

 A comparison of desirable moulding parameters for different part geometries, showed the 

influence of geometry on processing conditions. Sharp changes in thickness within a part 

correlated with an increase in the number of significant moulding parameters. For a complex part, 

injection speed and mould temperature became statistically significant. 

 For each part, a desirability function was used to specify a combination of processing 

conditions that would improve filling quality. The produced parts had average masses that were 

within 0.5% of the target values.  

 Comparing the desirability function predictions with the high and low parameter values of 

the screening stage showed, with some exceptions, that regardless of part geometry, desirability 

function predictions for a particular process parameter exhibited clustering behaviour. These 

trends in clustering behaviour were used to produce a set of compromise moulding conditions to 

micromould a multi-part component. Multi-part components moulded using these parameters 

exhibited complete filling in each of the five parts. 
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