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Summary

Pure Spectrum-Based Fault Localization (SBFL) is a well-studied statistical debug-

ging technique that only takes a set of test cases (some failing, some passing) and

their code coverage as input and produces a ranked list of suspicious program ele-

ments to help the developer identify the location of a bug that causes a failed test

case. Studies show that pure SBFL techniques produce good ranked lists for small

programs. However, our previous study based on the iBugs benchmark that uses the

ASPECTJ repository shows that for realistic programs, the accuracy of the ranked

list is not suitable for human developers. In this paper, we confirm this based on a

combined empirical evaluation with the iBugs and the DEFECTS4J benchmark. Our

experiments show that on average at most ∼40%, ∼80% and ∼90% of the bugs can

be localized reliably within the first 10, 100 and 1000 ranked lines, respectively, in

the DEFECTS4J benchmark. In order to reliably localize 90% of the bugs with the best

performing SBFL metric D∗, ∼450 lines have to be inspected by the developer. For

human developers, this remains unsuitable, even though the results improve compa-

red to the results for the ASPECTJ benchmark. Based on this study, we can clearly see

the need to go beyond pure SBFL and take other information like information from

the bug report or from version history of the code lines into consideration.

KEYWORDS:

Debugging, Fault Localization, Empirical Studies

1 INTRODUCTION

Software is becoming the technology of choice for cost-efficiently realizing complex functionalities in a variety of systems –
from critical financial infrastructures to wearable devices. As many aspects of our daily life depend on the correct operation of
software, assuring its quality and prompt maintenance plays a critical role in every development process. The state of practice
for checking the correctness of software and its compliance to given specifications is testing. While most test cases are still
manually crafted by developers, the growing adoption by industry of automated test case generation and fuzzing techniques1 is
enabling developers to quickly discover bugs deeply buried within the complex interactions of components of a large system.

However, while tests are effective at exposing erroneous behavior, identifying the root cause behind a failure remains mostly
a manual activity, requiring significant time and costs2,3,4,5,6. This drove a significant effort within the research community
to investigate automated fault localization techniques7. Among them, Spectrum-Based Fault Localization (SBFL)4 techniques
exploit the evidence provided by failing and successful test cases to analyze and rank the elements of a code base according to
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a degree of suspiciousness of their involvement with an incorrect behavior. Intuitively, the more a code element is exercised by
failing test cases the more suspicious it is, i.e., the more likely it is to relate to the cause of such incorrectness. Similarly, the
more a code element is exercised by successful test cases, the less suspicious it is deemed.

Beginning with Tarantula4, a variety of SBFL approaches have been proposed, each characterized by a different suspiciousness
metric. Each of these metrics lays its foundation on statistical constructions or empirical evidence of its effectiveness. If for
the metric only the information from the failing and successful test executions including their coverage in the source code
are used, we call these techniques pure SBFL approaches. Naish et al.8 compared 33 SBFL approaches based on a simplified
single-bug application model. Xie et al.9,10,11 provide a theoretical evaluation of the original SBFL approaches investigated by
Naish et al. and approaches that have been derived by a genetic algorithm12. However, most of these metrics have originally
been evaluated and have subsequently been compared on relatively small-scale artifacts from the publicly available Software-
artifact Infrastructure Repository (SIR)13 (including14,15,16,17,4,18,19,6,20,21,22,11,23). Only recently, some SBFL techniques have
been evaluated on programs24,25 from the Defects4J benchmark26.

In our previous work27, we claim that an evaluation based only on small-size projects is insufficient to derive effectiveness
results of SBFL techniques. Thus, we evaluated the existing pure SBFL approaches on a large scale software application namely
ASPECTJ via 350 bugs from the iBugs repository28. ASPECTJ provides a significant challenge to pure SBFL approaches, because
the system contains up to ∼500, 000 lines of code, depending on the development stage. Furthermore, the main success criterion
used to assess such effectiveness is the localization of the fault within the top p% code elements of the produced ranking. This
criterion, while easy to compute, may be practically irrelevant. In fact, if the number of code elements is large, developers would
be required to inspect an impractically long list of suspects before finding the actual fault. In turn, this jeopardizes the practical
effectiveness of SBFL techniques29. The results of our study27 show that only 11 bugs can be detected in the best case by any of
the investigated SBFL approaches after examining the top 1000 suspicious lines in the ranking. Furthermore, it would require
on average 250 files that need to be inspected to discover any bug. These results demonstrate how the performance of the SBFL
metrics deteriorates with the size of the code base and that the final rankings would not be acceptable for a human developer29.

To confirm our previous results27 and to complement the existing theoretical9,10,11 and experimental25,11 evaluations of SBFL
metrics, this paper provides the following contributions:

• We provide an evaluation of pure SBFL approaches based on two large-scale benchmarks, namely ASPECTJ via the
iBugs28 repository and DEFECTS4J 26, where we specifically cross compare the results between the two benchmarks.

• We evaluate and compare SBFL approaches based on absolute metrics, such as the Wasted Effort (we), the number of
bugs found after inspecting X ranked element (Hit@X), the number of files investigated (nfi), as well as area between
curves (ABC) metrics which provide insights into the uncertainty of the provided ranking.

• In our evaluations, we additionally include the current state of the art SBFL metrics, namely Naish2 (Op2)8, D∗ 30, the GP-
evolved metric GP1312, and Hyperbolic functions31. These metrics have not been covered by our previous evaluation27.

The remainder of the paper is organized as follows. Section 2 overviews the background principles and definitions of SBFL and
defines the metrics that will be evaluated and compared, as well as the criteria they have been originally evaluated on. Section 3
describes the design of our study, also summarizing our previous preliminary results27. Section 4 describes the ASPECTJ and
DEFECTS4J case study, including the data collection process and the classification of the faults present in the code base. Section 6
concludes the work with a critical discussion of the lessons derived from the empirical evaluation in Section 5, as well as
recommendations for future research directions.

2 BACKGROUND AND DEFINITIONS

In this section, we introduce common definitions from the context of spectrum-based fault localization (SBFL) used in this
paper (Section 2.1). Thereupon, we introduce the SBFL ranking metrics which are used in our experiments, starting with the
traditional ranking metrics adopted from Naish et al.8 (Section 2.2), followed by ranking metrics which have been proposed more
recently (Section 2.3). Finally, we introduce common effectiveness metrics which are used to evaluate and compare different
SBFL techniques with each other (Section 2.4).
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2.1 Spectrum-based Fault Localization

Using program spectra for fault localization

A program spectrum is a collection of information recorded during the execution of a program, characterizing its behavior
w.r.t. a certain aspect32. While different types of program spectra have been proposed in the literature for various purposes33,
approaches to SBFL typically use hit-spectra which record the set of syntactical program elements that are covered during
program execution. The central idea of SBFL is to use spectra obtained from test case executions and to additionally record for
each test case whether it was successful or not. Intuitively, the higher the involvement with failing test cases and the lower the
involvement with successful ones, the higher is the suspiciousness of a program element to contain a fault. The suspiciousness

score of a program element is calculated by a ranking metric which yields a ranking of program elements in descending order of
suspiciousness. Developers shall localize a fault by going through the list element by element, starting with the most suspicious
one, based on the assumption that developers have a perfect fault understanding and can identify a fault as soon as they reach
the fault location while traversing the ranking list.

In the sequel, given a program P as a set of program elements and a test suite T as a set of test cases, let C ⊆ P be the set
of spectra elements, which is defined as the union of program elements being covered when P is executed against each of the
test cases in T . A ranking metric R is a function that assigns a suspiciousness score to each spectra element ci ∈ C , denoted as
suspR(ci).

Prominent bug

A common problem of SBFL is to deal with programs containing multiple faults which may interfere with each other such that
some faults cannot be localized using SBFL34. To overcome this limitation, DiGiuseppe and Jones34 propose to use SBFL in
an iterative process. In each step of this process, only a single fault is located and then fixed, and this step is repeated over and
over again until all bugs are fixed. With this approach, the first faulty spectra element that is found, i.e., the one with the highest
suspiciousness score, is the most important one, belonging to the so-called prominent bug. We call the respective spectra element
itself the prominent faulty spectra element. Let F ⊆ C be the set of all faulty spectra elements, then the following condition
holds for the prominent faulty spectra element fpro ∈ F :

∀fj ∈ F ∶ suspR(fpro) ≥ suspR(fj) (1)

2.2 Traditional SBFL Ranking Metrics

The set C = {c1,… cn} of spectra elements obtained for executing a program P against a suite T = {t1,… tm} of test cases
may be represented by an m-by-n matrix, referred to as coverage matrix30, in which each aij is a boolean value which indicates
whether spectra element cj has been executed (’true’) by test case ti or not (’false’). Consequently, a column in this matrix is
a boolean vector of length m, the coverage vector of a spectra element cj , indicating the test cases by which cj is covered. In
addition, the test case results yield another boolean vector of lengthm, called the result vector of executingP against T , indicating
whether test case ti causes a failure (’true’) or not (’false’). The basic idea of calculating the suspiciousness score of a spectra
element is that the higher the similarity of its coverage vector and the result vector, the higher is its suspiciousness. A number
of specialized ranking metrics, typically adaptations of standard similarity coefficients, have been proposed in the literature.
Typically, for each spectra element, a ranking metric counts the number of passed/failed involvements/non-involvements of this
spectra element and combines these four numbers using a dedicated formula. An overview of the 33 traditional ranking metrics
used in this paper, adopted from Naish et al.8, is shown in Table 1. We use the notation ⟨nnp, nnf , nip, nif ⟩ introduced by Abreu
et al.14 where the first index represents the involvement (i) or non-involvement (n) of a spectra element and the second index
represents passing (p) or failing (f) test case execution. For example, nnp refers to the number of passing test cases in which a
dedicated spectra element is not involved.

2.3 More Recently Proposed SBFL Ranking Metrics

In the sequel, we briefly introduce more recent ranking metrics which are not included in the set of traditional ranking metrics,
serving as baseline for the evaluation presented in8 and which were not considered in our previous work27.
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Op2 or Naish2

The ranking metric Naish2 (Op2) has been developed to be optimal with respect to a single-bug application model8. The authors
formulate two conditions which must be fulfilled by such a metric. First, when an element is involved in all failing test cases,
i.e., when nnf = 0, then the suspiciousness of this element is increasing in nnp or (equivalently) decreasing in nip. The intuition
behind this condition is, since the buggy element of a single-bug program is executed by all failing tests, its involvement in
passing test cases (nip) tends to be smaller, while its non-involvement in passing tests (nnp) tends to be higher. Second, when
there is a failing test case in which an element is not involved (nnf > 0), then the suspiciousness of this element is always less
than any suspiciousness score of elements with nnf = 0. Since for single-bug programs nnf is always zero for the buggy element,
any element with a non-zero nnf value can be given a lower rank.

The simplest ranking metric which fulfills the above conditions is to assign a suspiciousness score of −1 to all elements with
nnf > 0, and nnp otherwise. Actually, this metric, called O in8, can be theoretically shown to be optimal for a restricted class
of single-bug programs. Another ranking metric providing the same optimality guarantees as O is Naish2 (Op2) (a.k.a. Naish2)
which is defined as follows:

Naisℎ2 (Op2) ∶= nif −
nip

nip+nnp+1
(2)

In our experiments, we prefer Naish2 (Op2) over O, since it performs more rationally for multiple-bug programs where nnf
may be non-zero for all elements. In such a case, O would assign the suspiciousness score of −1 to all elements, which is
undesirable and which is avoided by Naish2 (Op2).

DStar (D∗)

Wong et al.30 derive a ranking metric from a set of requirements which are based on common intuitions. They argue that the
suspiciousness assigned to a program element should be (i) proportional to the number of failed tests that cover it, (ii) inversely
proportional to the number of successful tests that cover it, and (iii) inversely proportional to the number of failed tests that do
not cover it. Another requirement, in the sequel referred to as (iv), is that intuition (i) is the most important one and should thus
carry a higher weight.

The ranking metric derived from these requirements, named DStar (D∗), is defined as:

D∗ ∶=
n∗
if

nip+nnf
(3)

where ∗ may be any positive natural number. The ranking metric is a modification of the Kulczynski coefficient35 which is
equivalent to the case ∗ = 1 (D1). The Kulczynski coefficient already embodies the above intuitions (i), (ii), (iii). Moreover, any
value for ∗ greater than one increases the weight which is given to nif as compared to nip and nnf . This addresses intuition (iv)
which states that the involvement of a program element in failing test cases should be given a higher weight than its involvement
in passing test cases and its non-involvement in failing test cases, respectively.

GP-evolved ranking metrics

The traditional ranking metrics in Table 1 as well as the D∗ metric presented in the previous paragraph are designed by human
software engineers based on general intuitions. On the contrary, Yoo12 presents a genetic programming (GP) approach to auto-
matically develop ranking metrics, referred to as GP-evolved ranking metrics. Starting from traditional ranking metrics, these
formulae are mutated using a set of simple operators, namely addition, subtraction, multiplication, division and square root. A
slightly adapted variant of the wasted effort evaluation metric (see Section 2.4) serves as fitness function for the evolutionary
process.

The approach has been applied to 92 faults of four UNIX utilities taken from the SIR. The genetic programming algorithm was
repeated 30 times, using a random sample of 20 faults as training data in each individual run, while reserving the 72 remaining
faults for evaluation purposes. The following formula, referred to as GP1312, represents the ranking metric obtained after 13
runs of the genetic algorithm, and it is one of the best performing metrics found by Yoo12:

GP 13 ∶= nif

(
1 +

1

2nip+nif

)
(4)

Hyperbolic metrics

Neelofar et al.31 present a class of so-called hyperbolic metrics which are motivated by studying the contours of ranking metrics
being plotted over a two-dimensional domain using nip and nnf as x-axis and y-axis, respectively. The key observation is that, at
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TABLE 1 Overview of all 33 examined traditional SBFL ranking metrics adopted from Naish et al.8 and the four other metrics
examined in this study (bottom right).

SBFL ranking metric Formula

Ample
||||

nif

nif+nnf
−

nip

nip+nnp

||||
Anderberg

nif

nif+2(nnf+nip)

Arithmetic Mean
2nif nnp−2nnf nip

(nif+nip)⋅(nnp+nnf )+(nif+nnf )⋅(nip+nnp)

Cohen
2nif nnp−2nnf nip

(nif+nip)⋅(nnp+nip)+(nif+nnf )⋅(nnf+nnp)

Dice
2nif

nif+nnf+nip

Euclid
√
nif + nnp

Fleiss
4nif nnp−4nnf nip−(nnf−nip)

2

2nif nnf nip+2nnpnnf nip

Geometric Mean
nif nnp−nnf nip√

(nif+nip)⋅(nnp+nnf )⋅(nif+nnf )⋅(nip+nnp)

Goodman
2nif−nnf−nip

2nif+nnf+nip

Hamann
nif+nnp−nnf−nip

nif+nnf+nip+nnp

Hamming etc. nif + nnp

Harmonic Mean
(nif nnp−nnf nip)((nif+nip)(nnp+nnf )+(nif+nnf )(nip+nnp))

(nif+nip)⋅(nnp+nnf )⋅(nif+nnf )⋅(nip+nnp)

Jaccard
nif

nif+nnf+nip

Kulczynski1
nif

nnf+nip

Kulczynski2 1

2

(
nif

nif+nnf
+

nif

nif+nip

)

M1
nif+nnp

nnf+nip

M2
nif

nif+nnp+2(nnf+nip)

Ochiai
nif√

(nif+nnf )⋅(nif+nip)

Ochiai2
nif nnp√

(nif+nip)⋅(nnp+nnf )⋅(nif+nnf )⋅(nip+nnp)

Overlap
nif

min(nif ,nnf ,nip)

SBFL ranking metric Formula

Rogers & Tanimoto
nif+nnp

nif+nnp+2(nnf+nip)

Rogot1 1

2

(
nif

2nif+nnf+nip
+

nnp

2nnp+nnf+nip

)

Rogot2 1

4

(
nif

nif+nip
+

nif

nif+nnf
+

nnp

nnp+nip
+

nnp

nnp+nnf

)

Russell & Rao
nif

nif+nnf+nip+nnp

Scott
4nif nnp−4nnf nip−(nnf−nip)

2

(2nif+nnf+nip)⋅(2nnp+nnf+nip)

Simple Matching
nif+nnp

nif+nnf+nip+nnp

Sokal
2(nif+nnp)

2(nif+nnp)+nnf+nip

Sørensen-Dice
2nif

2nif+nnf+nip

Tarantula
nif

nif +nnf
nif

nif +nnf
+

nip

nip+nnp

Wong1 nif

Wong2 nif − nip

Wong3

nif − nip if nip ≤ 2

nif −
(
2 +

1

10
(nip − 2)

)
if 2 < nip ≤ 10

nif −
(
2.8 +

1

1000
(nip − 10)

)
otherwise

Zoltar
nif

nif+nnf+nip+
10000nnf nip

nif

Naish2 (Op2) nif −
nip

nip+nnp+1

DStar (D∗)
n∗
if

nip+nnf

GP13 nif

(
1 +

1

2nip+nif

)

Hyperbolic 1

K1+
nnf

nif +nnf

+
K3

K2+
nip

nif +nip

the bottom right and the top left, the contours of hyperbolas 1

nnf
+

1

nip
are like the contours of ranking metrics which are known

to be optimal for single-bug programs (Naish2 (Op2), see Naish et al.8) and for programs with only deterministic bugs causing
a failure whenever they are executed (Od , see Naish et al.36), respectively. Thus, Neelofar et al. argue that hyperbolas can be
adapted to either of the two extremes and, more importantly, to any setting between the two extreme cases, i.e., the usual case in
practice that a program has multiple bugs of which at least some are non-deterministic. To that end, the simple formula 1

nnf
+

1

nip

is adjusted and parameterized as follows:

Hyperbolic ∶=
1

K1+
nnf

nif +nnf

+
K3

K2+
nip

nif +nip

(5)

The adjustment compared to the formula 1

nnf
+

1

nip
is that both nnf and nip values are scaled to the range [0, 1]. Furthermore,

the parameters K1, K2 and K3 can be used to make contours flatter or steeper. Neelofar et al.31 propose a machine learning
approach based on genetic programming and simulated annealing for optimizing the parameter values on a given training data
set. In contrast to the GP-evolved ranking metrics introduced earlier in this section, only three numeric parameter values need
to be evolved instead of evolving entire formulae as proposed by Yoo12.
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2.4 Common Effectiveness Metrics for Evaluating SBFL

Traditionally, the research community commonly uses two metrics to assess the effectiveness of SBFL, namely the Wasted Effort

and the Proportion of Bugs Localized metric. Recently, new metrics such as the Hit@X metric have been proposed. This section
defines and explains these metrics.

Preliminaries

Common effectiveness metrics evaluate SBFL techniques by examining the position of the faulty element in the suspiciousness
ranking. However, the ranking position may be non-deterministic if multiple ranked elements have the same suspiciousness
score. Since SBFL techniques do not provide additional information on how to rank such elements, all elements with the same
score are randomly ordered. If there are multiple elements which are equally suspicious as the faulty element, the final ranking
thus has a best case and a worst case. In the best case, the faulty element is the first element of all elements with the same
suspiciousness:

best_rankR(cj) =
|||{ci ∈ C | suspR(ci) > suspR(cj)}

||| + 1 (6)

In the worst case, the faulty element is the last element of all elements with the same suspiciousness:

worst_rankR(cj) =
|||{ci ∈ C | suspR(ci) ≥ suspR(cj)}

||| (7)

As the random order follows a uniform distribution, the average case is defined by:

avg_rankR(cj) =
1

2

(
best_rankR(cj) +worst_rankR(cj)

)
(8)

With these ranking functions, it is possible to create effectiveness metrics for SBFL techniques.

Wasted Effort (WE)

As already mentioned, one of the basic assumptions of SBFL is that, in order to locate a fault, a developer has to inspect all
the program elements that are ranked higher than the faulty element. The number of inspected non-faulty elements may be thus
defined as the wasted effort for the developer. To date, the wasted effort is usually put in relation to the total number of ranked
elements, turning it into a relative metric which is defined as follows:

min_weR(cj) =
best_rankR(cj )−1

|C| (9)

max_weR(cj) =
worst_rankR(cj )−1

|C| (10)

Please note that min_weR and max_weR are defined for faulty spectra elements, and not for the ranking metric R itself. Thus,
the results obtained from the wasted effort metrics above need to be aggregated in order to calculate an effectiveness score for
a specific ranking metric. This can be achieved by an aggregation function a, for example, by taking the average values of the
wasted effort obtained for all faulty spectra elements:

min_wea(R) = a({min_weR(fj) | fj ∈ F }) (11)

max_wea(R) = a({max_weR(fj) | fj ∈ F }) (12)

Using the aggregated effectiveness score, different ranking metrics can be compared with each other.

Relative Proportion of Bugs Localized (rPBL)

Another commonly used effectiveness metric is the proportion of bugs localized when examining a certain percentage of spectra

elements. This effectiveness metric is defined for a ranking metric R and directly produces a score which can be compared to the
score of other ranking metrics. Let p ∈ [0, 1] be the percentage of inspected program elements, then two variants of the rPBL
effectiveness metric are defined as follows:

min_pblp(R) =
|{f∈F |max_weR(f )<p}|

|F | (13)

max_pblp(R) =
|{f∈F |min_weR(f )<p}|

|F | (14)
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Absolute Proportion of Bugs Localized (aPBL)

We also use the proportion of bugs localized when examining a certain number of spectra elements. Like the relative version,
this effectiveness metric is defined for a ranking metric R and directly produces a score which can be compared to the score of
other ranking metrics. Let n ∈ ℕ be the number of inspected program elements, then the two variants of the aPBL effectiveness
metric are defined as follows:

min_pbln(R) =
|{f∈F |worst_rankR(f )≤n}|

|F | (15)

max_pbln(R) =
|{f∈F | best_rankR(f )≤n}|

|F | (16)

Note that it will be clear from the context whether the relative or absolute version of the metric is being used.

Bugs Localized in the first X Elements (Hit@X)

A crucial issue w.r.t. traditional SBFL effectiveness metrics which has been raised by Parnin and Orso29 is that developers only
investigate a certain absolute number of ranked elements before giving up and using alternative debugging methods. Lucia et
al.20 address this issue by introducing a new effectiveness metric called “Hit@10”. The key idea is to count how many bugs can
be found when investigating a fixed amount of ranked elements. The authors have chosen 10 as threshold for the metric. For our
study, we generalize the metric as follows to have a varying threshold of X ranked elements:

min_Hit@X(R) = ||{f ∈ F |worst_rankR(f ) ≤ X}|| (17)

max_Hit@X(R) = ||{f ∈ F | best_rankR(f ) ≤ X}|| (18)

where X ∈ ℕ
+ represents the number of elements inspected.

2.5 Granularity Level of Program Elements

Note that we did not specify the exact nature of program elements up to this point. While the most popular fine-grained granu-
larity level is statements, there are studies examining the capabilities of SBFL for coarser levels of granularity such as blocks
or methods37,38,39. A recent study by Kochhar et al.40, surveying 386 software engineering practitioners, found that statement,
block and method level granularity are preferred by practitioners, while coarser granularity levels like class or even component
level are mostly deemed not sensible in practice. While the surveyed practitioners slightly preferred method level granula-
rity (51.81%) over statement and block level granularity (50.00% and 44.30%, respectively), the study states that “[t]here is no
clear winner among these three granularity levels [...]”.

In our view, statement level granularity has the benefit over coarser granularity levels of allowing for a more reasonably
founded estimate of the actual effort a developer has to put into localizing a fault with the aid of SBFL techniques. Coarser
program elements like blocks or methods may consist of heavily varying numbers of statements that, in turn, make up constructs
of greatly varying complexity. Thus, the actual effort for a developer to process a coarser program element will differ greatly
between different elements.

As an example, imagine two rankings consisting of, e.g., methods. Assume that the first ranking contains 10 very small
methods, while the second one contains 10 methods of very large size. If a faulty method is ranked in 10th place in both rankings,
they are identical to popular evaluation metrics like, e.g., wasted effort or Hit@X as defined above, but the first list of methods
will be much more acceptable to a developer than the second.

Due to the above reason, as well as to keep this study’s experiments and results consistent with our previous study27, we
decided to adhere to statement level granularity in our experiments.

3 STUDY DESIGN

3.1 Previous Findings and Research Questions

Previous experiments15,17,20 with small-sized programs as well as an empirical study of ranking-based automatic debugging
techniques with 68 developers29 indicate several problems w.r.t. the practicability of SBFL techniques for large-scale software
systems. These problems may be summarized as follows:

• SBFL techniques reveal faulty statements only after inspecting a large number of lines or code elements29.
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• SBFL techniques often assign the same suspiciousness scores for multiple lines or code elements20.
• Users of SBFL techniques do not inspect in the order provided by the ranked list2,29.
• SBFL techniques require a large number of failing test cases to accurately reveal a fault15,17.

The goal of this paper is to investigate if these problems really exist for a complex real-world software system. In the following,
we will have a closer look at each of the aforementioned problems and derive the research questions of our study.

SBFL techniques reveal faulty program statements only after inspecting a large number of lines or code elements

Strictly interpreting the traditional evaluation strategies for measuring the effectiveness of SBFL techniques (see Section 2.4) –
particularly the relative metrics such as the Wasted Effort (WE) metric (see Eq. 9 and 10) or the Proportion of Bugs Localized
(PBL) metric (see Eq. 13 and 14) – developers need to inspect several thousand lines of code for large-scale software systems
with hundred thousand lines of code and more. This is not feasible in practice and is considered a major drawback for SBFL
techniques29.

RQ1What is the absolute SBFL effectiveness? (Section 5.1)

SBFL techniques often assign the same suspiciousness scores for multiple lines or code elements
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FIGURE 1 Results for the rPBL metric for Tarantula for
the SIR programs ❢❧❡①, ❣③✐♣, ❣r❡♣, and s❡❞.

SBFL ranking metrics use only four numbers ⟨nnp, nnf , nip, nif ⟩
to calculate the suspiciousness score of a program element
(cf. Section 2). The sum of them corresponds to the number of avai-
lable execution traces, i.e., the number of test cases available in the
given test suite. If only a small number of test cases is available,
the number of possible different inputs to SBFL algorithms decre-
ases drastically and the amount of different suspiciousness scores
is limited. As a consequence, multiple program elements will share
the same suspiciousness score.

The real drawback of multiple program elements having the
same suspiciousness scores arises when producing an ordered list
of program elements which is to be inspected by developers. If
multiple program elements share the same suspiciousness, those elements cannot be distinguished, and the actual physical order
can only be chosen randomly. This randomness does not have a big influence on the developer’s investigation if only a few pro-
gram elements share the same suspiciousness, but the approach becomes increasingly inaccurate if this is the case for more than
hundreds to thousands of program elements. As an example, Fig. 1 shows that even for relatively small programs like ❢❧❡①,
❣③✐♣, ❣r❡♣ and s❡❞, there is a remarkable difference between best and worst case rankings, and this uncertainty may accentuate
for larger programs.

RQ2What is the uncertainty in the assigned suspiciousness scores? (Section 5.2)

Users of SBFL techniques do not inspect in the order provided by the ranked list

Parnin and Orso29 have shown in their study that developers do not linearly follow the ranking produced by SBFL. Instead,
they use the most suspicious statements as starting points for their investigation and then search for the actual fault location in
the surrounding method, class, or file. This observation indicates that it is more important to point developers to good starting
points using SBFL than to improve the ranking of the fault locations itself.

RQ3What is the number of files inspected when following SBFL techniques? (Section 5.3)

SBFL techniques require a large number of failing test cases to accurately reveal a fault

The results in Abreu et al.15 show that on the SIR benchmark13 even a small number of failing test cases
(nnf + nif ) provides a reasonable fault localization performance. However, the study also recommends that
more related failing test cases (specifically the ones that trigger the faulty lines nif ) are always better.
RQ4What is the relation between the number of related and unrelated failing test cases and SBFL’s accuracy? (Section 5.4)



Heiden ET AL 9

3.2 Study Subject

As in our previous study27, we use ASPECTJ 41 which is a compiler system that provides developers with an aspect-oriented exten-
sion to the Java programming language. Additionally, we examine the DEFECTS4J benchmark26, a collection of well-prepared,
real bugs taken from 6 different open-source Java projects: JFreechart, Closure, Apache commons-lang, Apache commons-math,
Joda-Time and Mockito (cf. Section 4). From these six programs, Closure is also a compiler similar to ASPECTJ. However, based
on the other 5 programs, we improve diversity among the study subjects.

3.3 Study Protocol

For our study, we use the available data for ASPECTJ that was gathered27, and for DEFECTS4J, we automatically mined the lines
related to the bugs. We do a comparison of all 33 used SBFL techniques summarized by Naish et al.8 and four additional pure
SBFL metrics (cf. Section 2.3). All examined SBFL metrics are given in Table 1. The goal of the descriptive evaluation is to
answer our research questions (RQ1-RQ4). Specifically, we will use the absolute wasted effort metric and the Hit@X metric
(Eq. 17 and 18) to answer RQ1. To answer RQ2 and RQ3, we use and extend our metrics developed in our previous studies27

which will be detailed in the following sections. To answer RQ4, we use the relative wasted effort metric (Eq. 9 and 10).

3.3.1 (absolute) Area Between Curves (ABC)

Traditional effectiveness evaluations always define a metric for the best and the worst case (and implicitly, due to the uniform
distribution, also an average case). If the best and worst case diverge, this means that there are ranked elements sharing the
same suspiciousness score, which in turn implies that parts of the ranking are randomly ordered. To measure the divergence of
a given best/worst case metric, the area between the best- and worst-case curves can be leveraged. As an extension of the ABC
metric27, we propose a variation of this metric which can be restricted to a specified number of ranked elements that are to be
considered by the metric instead of being based on the entire rankings.

Since Mworst ≤ Mbest holds in all points for a metric M , the area between the curves up to rank r is computed by:

ABCM (r) = AUCMbest
(r) − AUCMworst

(r), (19)

where AUCM ′(r) is the area under the curve up to rank r for a metric M ′:

AUCM ′(r) =
1

n
⋅

(
y0

2
+
∑n−1

i=1
yi +

yn

2

)
, (20)

for a set of equidistant points (xi, yi), i ∈ [0, n], n ∈ ℕ
+ and x0 = 0 and xn = r. Since we will use the PBL metric in our

experiments, we define the set of support points as

xi =
i⋅r

n
, yi = max_pblxi(R) for M ′ = Mbest, and

xi =
i⋅r

n
, yi = min_pblxi(R) for M ′ = Mworst.

As in27, the ABC value is presented as percentage of the maximum area that can be achieved by a completely diverging best
and worst case. This area is restricted by the maximum amount of bugs that is found by an SBFL metric R within the first r
ranking elements. We will show the upper bound of this area using a horizontal dashed line in the plots which marks the value
yn = max_pblxn=r(R).

3.3.2 Number of Files Investigated (NFI)

To assess the effectiveness of pointing a developer to the right places when following a list of ranked statements in a linear order,
we define the number of files investigated metric. This metric determines the number of files that need to be investigated before
the bug is found. The metric is defined for the best case and the worst case as follows, where file(ck) returns the file name of
the program element ck:

min_nfiR(cj) =
|||{file(ck) |worst_rankR(ck) < best_rankR(cj)} ∪ {file(cj)}

||| (21)

max_nfiR(cj) =
|||{file(ck) |worst_rankR(ck) ≤ worst_rankR(cj)}

||| (22)
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4 DATA COLLECTION & PREPARATION: ASPECTJ AND DEFECTS4J

4.1 ASPECTJ

TABLE 2 The number of bugs used in this study, associated
with different components of ASPECTJ.

Product ASPECTJ AJDT Sum

Component A
JB

ro
w

se
r

A
JD

oc

A
nt

C
om

pi
le

r

ID
E

L
ib

ra
ry

LT
W

ea
vi

ng

C
or

e

U
I

All bugs 9 21 33 1287 106 10 78 409 477 2430
Bugs in iBugs 1 8 4 231 19 3 19 19 46 350
Applicable bugs 0 1 1 72 7 0 3 4 0 88
Involved bugs 0 0 1 50 2 0 1 3 0 57

In our previous study27, we mined all 350 bugs from the iBugs
repository28 and analyzed the specific source code changes, the
compiled pre-fix/post-fix versions, and available test cases. The
350 bugs in the ASPECTJ iBugs benchmark suite range from the
ASPECTJ bug ID 28919 to ID 173602 and were reported between
December 30, 2002 and February 9, 2007, spanning four years
of development history. In the examined development timespan,
the contributors have produced a total of 7677 commits for a
system spanning ∼ 200, 000 to ∼ 500, 000 lines of code (data
taken from Openhub42). To evaluate the quality of the different
SBFL rankings, the source code changes were inspected and
each line was manually classified as either buggy or healthy27.

One major result of our previous study27 was that from the 350 buggy versions, only 88 were applicable for SBFL and 262
buggy versions needed to be removed from the dataset because:

• 86 buggy versions were classified as enhancement and not as a bug.

• 111 bugs did not contain a single line in the change set that was classified as fault location, because some of the change
sets did not include changes to Java source code at all, while others did change Java source code that does not appear in
coverage reports (e.g., refactoring names and changing imports).

• 65 bugs either had only faulty lines classified with low confidence or did not produce any faulty execution traces due to
compile time or runtime errors. Examples of runtime errors are environment issues based on hardware constraints that lead
to ❖✉t❖❢▼❡♠♦r②❊rr♦rs that were resolved by adding appropriate try-catch clauses. Another example are concurrency
issues that are fixed by adding a s②♥❝❤r♦♥✐③❡❞ modifier to a method.

From the set of 88 buggy versions, only fault locations of 57 versions were executed by at least one test case. In this paper,
we also use the term involved bugs for these 57 versions.

Table 2 shows the number of bugs and how the set of bugs was reduced through the various stages of data preparation. From
all 350 bugs in the benchmark, ∼25% were applicable for SBFL and ∼15% were actually involved in at least one test case.

4.2 DEFECTS4J

TABLE 3 Bugs in the DEFECTS4J benchmark.

project size number applicable
in kloc of bugs bugs

JFreechart (Chart) 96 26 25
Closure compiler (Closure) 90 133 126
Apache commons-lang (Lang) 22 65 54
Apache commons-math (Math) 85 106 104
Joda-Time (Time) 28 27 24
Mockito (Mockito) 68 38 37
total 395 370

As a second benchmark for our experiments, we used the
6 buggy open-source projects in the DEFECTS4J benchmark1

which currently contains a total amount of 395 bugs. The
DEFECTS4J benchmark includes a fixed change set for each bug
that only includes changes related to the error, i.e., no refacto-
rings or other changes to the source code that do not serve to fix
the respective bug are performed. Thus, the benchmark is more
suitable for fault localization experiments43 and provides a clea-
ner environment than the ASPECTJ benchmark, which is on the
one hand messy, but on the other hand it may provide a more realistic picture of real bugs. From the 395 Bugs present in the
DEFECTS4J benchmark, only 370 were found to be applicable for SBFL and are included in our experiments. The removed bugs
only contain bug-related lines that are not executable, i.e., lines that are not covered by the SBFL rankings. Please note that the
study by Pearson et al.25 just uses 310 bugs for their experiments. The number of total bugs for each project is shown in Table 3.

1https://github.com/rjust/defects4j/

https://github.com/rjust/defects4j/


Heiden ET AL 11

5 EXPERIMENTAL RESULTS

5.1 RQ
1
: What is the absolute SBFL performance?

This research question examines the absolute bug localization performance of pure SBFL techniques, i.e., their usefulness
for human developers, in a sense. Section 5.1.1 and Section 5.1.2 examine the general performance of many existing SBFL
metrics on the ASPECTJ and DEFECTS4J benchmarks with the absolute wasted effort and the Hit@X metric, respectively, while
Section 5.1.3 examines the performance of selected state of the art SBFL metrics in more detail.

5.1.1 Absolute Wasted Effort
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(a) Localization performance of all 88 examined bugs in ASPECTJ.
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(b) Localization performance of all 370 examined bugs in DEFECTS4J.

FIGURE 2 Absolute bug localization performance within
the first 1000 ranked elements for both benchmarks.

Fig. 2 shows the percentage of bugs found in the ASPECTJ and
DEFECTS4J benchmarks using the Tarantula ranking metric after
examining 1000 lines of code. We consider a bug to be found by
a developer as soon as the first line related to the bug is encoun-
tered in the line ranking. Arguably, this is a rather unreasonable
assumption to make, as, e.g., found by Parnin and Orso29. It attri-
butes a perfect understanding of the code to the developer, such
that (s)he is able to recognize the bug after seeing the first bug rela-
ted line. Note that this is the best case scenario which usually does
not reflect reality.

We can see that the respective plot for ASPECTJ in Fig. 2a shows
a significantly lower localization performance than the plot for
DEFECTS4J in Fig. 2b. For ASPECTJ, we only encounter slightly
more than 10% bugs within the first 1000 ranked elements, whe-
reas we are able to find approximately 70% of bugs already in the
first 100 ranked elements and around 90% of bugs in the first 1000
ranked elements for the DEFECTS4J benchmark.

This shows that SBFL’s (here, in particular: Tarantula’s) fault
localization capability is strongly tied to the buggy programs under
consideration. For ASPECTJ, we usually have multiple tests that
fail, but some are not actually related to the bug under considera-
tion, i.e., after fixing the bug, some (and sometimes even all) of the failing tests continue to fail. In the DEFECTS4J benchmark,
only failing test cases related to the respective bug are included, i.e., after fixing the bug, all tests succeed. This is the biggest
cause of the existing differences in bug localization performance that we observe. For the ASPECTJ benchmark, failing test cases
that are unrelated to the respective bug generally mislead the SBFL techniques and negatively distort the results.

We also strengthen our results from our previous studies27 that the performance of SBFL metrics is not tied to the amount of
test cases, since the bugs in the ASPECTJ benchmark have an average number of ∼1, 500 test cases each, with ∼134 failing test
cases, while the bugs in the DEFECTS4J benchmark only contain an average number of ∼ 735 test cases and ∼ 3.4 failing test
cases. A big test suite is not enough to ascertain good SBFL performance. Rather, it is test case quality that matters.

A second but less important difference is the different ranking sizes. Meaning that, on average, there are significantly more
elements in the SBFL rankings for the entities in ASPECTJ than there are for DEFECTS4J. For the ASPECTJ benchmark, the
ranking sizes range from around 15,000 elements to around 210,000 elements. The mean ranking size is ∼126, 000 elements and
the median ranking size is ∼187, 000 elements. For the DEFECTS4J benchmark, the size of the examined rankings differs from
around 2,000 elements to around 55,000 elements based on the projects and the specific bugs themselves. The mean ranking
size is ∼28, 000 elements and the median ranking size is ∼31, 500 elements.

The ASPECTJ benchmark is not very suited to successfully perform SBFL techniques on. The rankings are very large (up to
210,000 elements), and noise is introduced by failing test cases that are not related to the bugs that are examined. Only ∼10%

of the bugs are localized within the first 1,000 ranked elements. For the DEFECTS4J benchmark, on the other hand, we are able
to localize ∼90% of the bugs within the first 1,000 ranked elements.
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(a) Number of bugs found after examining 1 ranked line for DEFECTS4J.
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(b) Number of bugs found after examining 3 ranked lines for DEFECTS4J.
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(c) Number of bugs found after examining 5 ranked lines for DEFECTS4J.
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(d) Number of bugs found after examining 10 ranked lines for DEFECTS4J.

FIGURE 3 Hit@1∕3∕5∕10 metric for all SBFL techniques for DEFECTS4J.

5.1.2 Hit@X
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FIGURE 4 Hit@1∕3∕5∕10 metric for all SBFL techni-
ques for ASPECTJ.

Fig. 3 and 4 show the Hit@1∕3∕5∕10 metric (Eq. 17 and 18) for
all examined SBFL ranking metrics.

In each plot, the vertical axis represents the number of
bugs found after examining the first 1∕3∕5∕10 ranked elements,
respectively, produced by each SBFL ranking metric, and each plot
marks the best-, average-, and worst-case for each ranking metric.
Fig. 4 shows the plot for the ASPECTJ benchmark, and Fig. 3 shows
the respective plots for DEFECTS4J. For ASPECTJ, the plots for the
four Hit@X metrics were identical, so that it made sense to com-
bine them into a single plot. Note that the plots for ASPECTJ and
DEFECTS4J are not directly comparable, since the number of exa-
mined bugs in the benchmarks is very different from each other (88
bugs for ASPECTJ, 370 bugs for DEFECTS4J).

The plots show that all examined SBFL techniques deliver better results on the DEFECTS4J benchmark with most of them
being able to find ∼150 bugs (∼40%) on average within the first 10 ranked elements (Fig. 3d). For ASPECTJ, finding a bug in the
first 10 lines is impossible with most of the SBFL techniques and depends on sheer luck for the remaining ones. At most 3 out
of 88 bugs (∼3.4%) may be found in the best case using the Overlap metric. On the other hand, for DEFECTS4J, even when only
examining the first ranked element for each bug in the benchmark (Fig. 3a), the decently performing SBFL metric Ochiai2 finds
13 out of 370 bugs (∼3.5%) in the worst case, i.e., independent of the ordering of elements with identical suspiciousness scores.
The Fleiss metric even ranks 18 bugs (∼ 4.9%) within the first ranked line in the worst case. In comparison to the ASPECTJ
benchmark, the Overlap metric locates 321 out of 370 DEFECTS4J bugs (∼ 86.8%) to the first line of the ranking in the best
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(a) Number of bugs found after examining 100 ranked lines for ASPECTJ.
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(b) Number of bugs found after examining 100 ranked lines for DEFECTS4J.
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(c) Number of bugs found after examining 1000 ranked lines for ASPECTJ.
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(d) Number of bugs found after examining 1000 ranked lines for DEFECTS4J.

FIGURE 5 Hit@100∕1000 metric for all SBFL techniques for ASPECTJ and DEFECTS4J.

case. This, however, depends on sheer luck, once again. In practice, the Overlap metric is simply too unreliable to be used by
developers (cf. Section 5.2).

Fig. 5 shows the Hit@100 and Hit@1000 metrics for all examined SBFL ranking metrics for both ASPECTJ and DEFECTS4J.
For the DEFECTS4J benchmark, the group of best performing metrics are able to reliably find close to 300 out of 370 bugs, i.e.,
∼80% of the bugs within the first 100 lines and close to 350 bugs (∼95%) within the first 1000 lines. While for the ASPECTJ
benchmark, even finding more than 10 out of 88 bugs within the first 1000 lines is only achieved by the Tarantula metric in the
best case. Note that looking at 1000 or even just 100 ranked elements will usually not even be feasible for a human developer29.

For the DEFECTS4J benchmark and based on the plots (specifically Fig. 5b, Fig. 5d and additionally Fig. 3), the examined
SBFL techniques can be roughly grouped into 4 similarly performing groups in terms of bug localization performance. The
best performing group includes well-known and established ranking metrics like Tarantula, Jaccard, Ochiai and Op2. All of
these metrics perform approximately equally well and it cannot be reasonably decided whether one is significantly better than
the other based on their usefulness for the developer. Out of all the examined metrics, DStar (cf. Section 5.1.3) performs best
overall, but the difference to the other metrics in the group is hardly noticeable. The second group of metrics contains the three
ranking metrics Wong1, RussellRao, and Overlap. For group three, which includes the ranking metrics Rogot1, Fleiss, and Scott
we actuallally see a shift in performance between the Hit@100 and Hit@1000 results. For Hit@100 they outperform group 2
and for Hit@1000 they are worse. All remaining ranking metrics, starting with the ranking metric Wong3, belong to group four.
Fig. 6 shows plots of four metrics that can be considered representative for each group, based on the rough shape of their plots.
As the plots look very similar for metrics in the same group, we decided to only show the ones for Ochiai, Overlap, Scott and
RogersTanimoto, as an example.

Even with the addition of new, supposedly superior SBFL metrics, the results for the ASPECTJ benchmark do not improve
over the results found in our previous studies27. The results for the DEFECTS4J benchmark are more promising with most of
the examined SBFL metrics being able to find ∼40% of the bugs in the first 10 ranked elements and ∼80% of the bugs within
the first 100 ranked elements. Within the first 1000 ranked elements, even ∼90% of the bugs can be localized.
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(a) Bug localization performance for the Ochiai ranking metric.
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(b) Bug localization performance for the Overlap ranking metric.
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(c) Bug localization performance for the Scott ranking metric.
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(d) Bug localization performance for the RogersTanimoto ranking metric.

FIGURE 6 Absolute bug localization performance in the DEFECTS4J benchmark for different SBFL techniques.
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(a) Absolute bug localization performance for the Op2 SBFL metric.

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.0

0.2

0.4

0.6

0.8

1.0 DStar

P
er

ce
n

ta
g

e 
o

f 
B

u
g

s 
F

o
u

n
d

Lines of Code Examined

Best Case
Worst Case ABC(1000): 4.48%

(b) Absolute bug localization performance for the DStar SBFL metric.
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(c) Absolute bug localization performance for the GP13 SBFL metric.
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(d) Absolute bug localization performance for the Hyperbolic SBFL metric.

FIGURE 7 Absolute bug localization performance for chosen metrics on 370 applicable bugs in the DEFECTS4J benchmark
within the first 1000 lines.

5.1.3 Performance of specific state of the art SBFL metrics

In this section, we examine the absolute bug localization performance of 4 selected, pure SBFL metrics (cf. Section 2.3) that
were not included in our previous work27. These metrics were designed in an effort to find SBFL metrics that outperform other,
already existing pure SBFL metrics. This section aims to examine the practical value of these metrics for human developers and
to measure the gained improvements, if any.
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(a) Absolute bug localization performance for the Op2 SBFL metric.
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(b) Absolute bug localization performance for the DStar SBFL metric.
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(c) Absolute bug localization performance for the GP13 SBFL metric.
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(d) Absolute bug localization performance for the Hyperbolic SBFL metric.

FIGURE 8 Absolute bug localization performance for chosen metrics on 88 applicable bugs in the ASPECTJ benchmark within
the first 10,000 lines.

Naish2 (Op2)

The Op2 metric was designed to be single-bug optimal. The plots in Fig. 3 and Fig. 5 show that the Op2 metric is in the best
performing group for the DEFECTS4J benchmark. For the ASPECTJ benchmark, however, it does not perform that well, finding
no bugs at all in the first 100 ranked elements and finding only 3 bugs in the first 1000 ranked elements, while, e.g., Tarantula
is able to locate at least 10 bugs within the first 1000 ranked elements. Fig. 7a shows the absolute bug localization performance
in the first 1000 ranking elements for the DEFECTS4J benchmark using the Op2 metric. Fig. 8a shows the bug localization
performance of the Op2 metric for the ASPECTJ benchmark within the first 10, 000 lines. Note that we increase the range to
10, 000 ranked elements for the plots for the ASPECTJ benchmark, since the percentage of localized bugs in the first 1, 000
ranked elements is very low and, thus, plots within this range are very hard to read and to compare.

DStar (D∗)

The DStar (D∗) metric is a modification of the Kulczynski coefficient and was shown to be a very effective fault localization
metric. For the DEFECTS4J benchmark, the plots in Fig. 3, Fig. 5b and Fig. 5d confirm this, as the DStar metric locates the most
bugs in the first 10 lines and the first 100 lines, and it locates the second most bugs in the first 1000 lines. But we can also see that
the differences to the other metrics in the first group are quite negligible. For our experiments, we applied the commonly used
parameter ∗ = 2. Fig. 7b shows the absolute bug localization performance in the first 1000 ranking elements for the DEFECTS4J
benchmark using the D∗ metric.

For the ASPECTJ benchmark, however, D∗ is one of the worst performing metrics, locating no bugs at all within the first 100
lines and only locating 2 bugs within the first 1000 lines. This may be due to the ASPECTJ benchmark not being very suitable
for SBFL in general, as we can see that multiple well-known and well-performing SBFL metrics are performing very poorly.
Fig. 8b shows the bug localization performance of the D∗ metric for the ASPECTJ benchmark within the first 10, 000 lines.

GP13

GP13 is the result of synthesizing an SBFL metric using an evolutionary algorithm. It was shown to be similarly effective to
Op2 by Yoo12. Fig. 7c shows the absolute bug localization performance in the first 1000 ranking elements for the DEFECTS4J
benchmark using the GP13 metric.

GP13 also performs comparable to Op2 for the ASPECTJ benchmark, being not able to locate a single bug within the first 100
ranked elements and only being able to locate 3 bugs within the first 1, 000 ranked elements. Fig. 8c shows the bug localization
performance of the GP13 metric for the ASPECTJ benchmark within the first 10, 000 lines.
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Hyperbolic

Recently, Neelofar et al.31 proposed to use parameterized hyperbolic functions to localize bugs. It was shown to be at least
equally as effective as the other examined SBFL metrics, including Op2 and GP13, among others. The parameters, i.e., K1, K2

and K3 were determined using an evolutionary algorithm or simulated annealing on a training set of bugs, using ten-fold cross
validation.

Since the study31 proposes no concrete values for the parameters, we decided to use the coefficients K1 = 0.375, K2 = 0.768

and K3 = 0.711 which the authors supplied us with. The coefficients were taken from results of a ten-fold cross validation done
on the Siemens Test Suite benchmark, as we were told. To avoid any bias, we simply use the coefficients that were generated for
the first training set. Note that these coefficients may not be optimal, since they were found using an entirely different benchmark.
Though, the plots in Fig. 3, Fig. 5b and Fig. 5d show that the Hyperbolic metric is still among the group of metrics that perform
best for the DEFECTS4J benchmark. Fig. 7d shows the absolute bug localization performance in the first 1, 000 ranking elements
for the DEFECTS4J benchmark using the Hyperbolic metric with the aforementioned coefficients.

For the ASPECTJ benchmark, the Hyperbolic metric performs comparable to both Op2 and GP13, locating no bugs within the
first 100 ranked elements and only locating 3 bugs within the first 1, 000 ranked elements. Fig. 8d shows the bug localization
performance of the Hyperbolic metric for the ASPECTJ benchmark within the first 10, 000 lines.

We decided to additionally replicate the methodology used by Neelofar et al.31 on the DEFECTS4J benchmark, and we per-
formed a ten-fold cross validation using an evolutionary algorithm to determine appropriate coefficients K1, K2 and K3. We
randomly distributed the entities in the DEFECTS4J benchmark into 10 sets from which we use one set in each run as the training

set to determine the coefficients. We then used these coefficients for the Hyperbolic metric and applied it to the respective test

set, i.e., the set containing all entities in the remaining nine sets. The results are shown in Table 4. For each examined metric
and for the Hyperbolic metric with the respective shown coefficients, we compute the median average rankings of bugs in the
respective test sets. The table shows that the Hyperbolic metric is performing similarly good to the other better metrics, but it is
also never able to actually perform best for any of the ten test sets.

All four additionally examined metrics perform comparably well for both benchmarks. They perform very good on the
DEFECTS4J benchmark with D∗ being the overall best performing metric, and they perform badly on the ASPECTJ benchmark,
with D∗ being one of the worst metrics. We could not exactly replicate the very good performance of the Hyperbolic metric
found by Neelofar et al.31, although it is still among the best performing SBFL metrics for the DEFECTS4J benchmark in our
experiments. Same as the Op2 and GP13 metrics that performed quite similarly to each other.

5.2 RQ
2
:What is the uncertainty in the assigned suspiciousness scores?

As in our previous studies27, we use the Area Between Curves (ABC) metric (see Section 3.3.1) to evaluate the decidedness of
SBFL metrics. In Fig. 2, 6, 7, 8 and Fig. 9, the area between the two curves is highlighted. The smaller this area (i.e., the ABC

metric) is, the less random a ranking is and, thus, more reliable for the developer. A value of 100% would represent a completely
random ranking (i.e., low decidedness; all ranked elements have the same suspiciousness), whereas a value close to 0% (i.e.,
high decidedness; all bugs have unique suspiciousness) represents a deterministic ranking.

5.2.1 Impact of Different Ranking Metrics

Especially in the top ranks, SBFL metrics should rank elements with high confidence and decidedness to be trustworthy for
developers. We therefore concentrate only on the first 1, 000 lines of the rankings in our experiments. In Fig. 9, we show the
absolute bug localization performance of the Tarantula and the Overlap metric for the ASPECTJ and DEFECTS4J benchmarks
within the first 1, 000 ranked elements. We can see that the Overlap metric is more indecisive for both benchmarks than the
Tarantula metric. The ABC value for the DEFECTS4J benchmark is 46.36% for the Overlap metric and only 4.45% for the
Tarantula metric. For the ASPECTJ benchmark, the ABC value for the Overlap metric is 55.09% and 14.04% for the Tarantula
metric. Note that the ABC metric values can only reasonably be compared within the same benchmark. Comparisons between
the two benchmarks can not really be made, since the the ABC metric is tied to the amount and the type of bugs found in the
specified range of ranked elements.

Examining the growth of the best- and worst-case rankings for the first 1, 000 lines of code for the Overlap ranking metric
in Fig. 9a and Fig. 9b, it is evident that the guidance for a developer is not very clear for both examined benchmarks. For
ASPECTJ, a developer may find up to ∼ 17% of the bugs after examining 1, 000 lines of code, or (s)he might find only ∼ 2%
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TABLE 4 Results of ten-fold cross validation with hyperbolic function coefficients determined by an evolutionary algorithm on
the respective training sets.

SBFL metric median avg bug localization ranks (absolute wasted effort) for each of the 10 test sets

Ample 75.5 73 73 74.75 79 79 75.5 88 83 73
Anderberg 47.75 46 45.75 47.75 46 50 41 56.5 43.25 39.75
ArithmeticMean 50.25 50.25 49.75 50.75 50 53 49.5 58 49.5 45.75
Cohen 50.25 50.25 49.75 50.75 50 53 49.5 58.5 49.5 45.75
Dice 49.5 47.75 45.75 49.5 46 50 41 56.5 43.25 39.75
Euclid 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
Fleiss 137.5 94.5 91.75 107.5 93.5 134.5 104.5 136.5 104.75 91.75
GeometricMean 49.5 49 49.5 49.75 49.5 51 46 52 47.75 45.75
Goodman 49.5 47.75 45.75 49.5 46 50 41 56.5 43.25 39.75
Hamann 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
Hamming 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
HarmonicMean 49.5 45.75 49.5 47.75 49.5 50.5 49.5 52 49.5 44.75
Jaccard 49.5 47.75 45.75 49.5 46 50 41 56.5 43.25 39.75
Kulczynski1 47.75 46 45.75 47.75 46 50 41 56.5 43.25 39.75
Kulczynski2 49.25 45.75 49.25 46 46 50 49 52 46 42.25
M1 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
M2 48.5 49.5 50.25 49.5 50 51 50 50.5 50 47.5
Ochiai 47.25 46 45.75 47.25 46 48.5 40.5 51 42.75 39.75
Ochiai2 49.75 49.75 49.5 50 49.5 51 48.5 52 49.5 45.75
Overlap 308.5 251.5 293.5 292.5 285 285 300 306 293 243.75
RogersTanimoto 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
Rogot1 142 97.5 95.5 106.75 95.5 136.5 109.5 143 110.75 95.5
Rogot2 49.5 42.25 46 45.75 46 49.5 46 50.5 46 40.25
RussellRao 321.75 264.5 308.5 308.5 306 301 308 308 307.5 264.5
Scott 142 97.5 95.5 106.75 95.5 136.5 109.5 143 110.75 95.5
SimpleMatching 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
Sokal 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
SorensenDice 49.5 47.75 45.75 49.5 46 50 41 56.5 43.25 39.75
Tarantula 49.5 47.5 45.75 49.25 46 49.5 40.5 54 42.75 39.25

Wong1 321.75 264.5 308.5 308.5 306 301 308 308 307.5 264.5
Wong2 15133.75 14505.75 15309.25 15253.5 15189.5 14845.5 15572 14845.5 15500.5 14961.75
Wong3 10174.75 10137.75 10429.5 10349.5 9843 10407.5 10291.5 10291.5 10741.5 10285
Zoltar 47.25 44.75 49.25 47.5 45.5 49.5 49 50.5 45.75 42.25

Op2 49.5 49.75 50.25 49.75 50 51 50 50.5 50 49.25
DStar 45.75 43.25 46 45.75 45.5 48.5 40.5 50 43.25 40
GP13 49.25 49.5 50.25 49.75 50 51 50 50.5 50 48

Hyperbolic 48.75 50 51.5 50 50.5 53.5 53 57 50.5 68.75

K1 8.093 1.726 3.928 0.253 15.630 26.324 16.009 18.856 6.688 5.112
K2 20.008 4.423 16.963 3.521 36.928 69.183 25.115 56.850 17.206 54.097
K3 1.368 0.243 0.479 0.361 1.839 1.845 1.508 1.704 1.089 0.094

in the worst case. For DEFECTS4J, a developer is theoretically able to find ∼90% of the bugs within the first few lines if (s)he
is very lucky, while in the worst case, (s)he would not find more than ∼70% of the bugs after examining the first 1, 000 lines.
Overlap has a very high ABC value in the first 1, 000 lines of code for both examined benchmarks.

Looking at the plots for the Tarantula metric in Fig. 9c and Fig. 9d, we see that, for ASPECTJ, a developer may also find up
to ∼17% of the bugs after examining 1, 000 lines of code, but in the worst case, (s)he is still able to find nearly as much bugs as
in the best case. For DEFECTS4J, we see that Tarantula is much more decided than the Overlap metric, while still finding more
than 90% of the bugs within the first 1, 000 lines in the worst case.

As found in our previous studies27, we confirm the result that if multiple elements share the same suspiciousness, SBFL
reaches its limitations. We also see that if the conditions for SBFL are better – as in the case of the DEFECTS4J benchmark,
the best performing SBFL metrics usually also have lower ABC values (cf. Section 5.5). The decreased performance in the
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(b) Growth of the ranking curves of Overlap for Defects4J.
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(c) Growth of the ranking curves of Tarantula for AspectJ.
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FIGURE 9 The fault localization decidedness in the first 1,000 lines of examined code.

ASPECTJ benchmark can be explained by the noise that is often introduced by the existence of failing test cases in the test suites
that are not at all related to the bugs under consideration.

We confirm the results found in our previous study27. Though, we see a general trend that the metrics that perform better on
the DEFECTS4J benchmark also have a lower ABC metric value than metrics that perform worse.

5.3 RQ
3
: What is the number of files inspected when following SBFL techniques?

The Number of Files Investigated (NFI) metric (cf. Section 3.3.2) counts the files a developer has to look at until (s)he finds the
prominent bug.

As done in our previous studies27, Fig. 10 plots the average number of files a developer has to investigate prior to finding
the file containing the prominent bug for all buggy versions contained in the respective benchmarks. In Fig. 10, the vertical
axes contain entries for each of the examined 37 metrics, and the horizontal axes represent the number of files a developer has
to investigate, plotted on a logarithmic scale. The minor ticks mark the arithmetic mean between the next lower and higher
major ticks. Each line in the plot represents the average number of files that need to be investigated for a specific bug using the
respective SBFL ranking metric, and a longer line represents multiple bugs being found within the same number of files. The
thick green line represents the median of the number of investigated files for all bugs examined for each SBFL metric, while the
thin dotted line in the background marks the median of the medians of all examined ranking metrics. The density of localized
bugs is represented by the shaded area, where larger shaded areas implicate a larger number of prominent bugs found within the
respective range. Sorting of SBFL metrics is done based on their medians in ascending order.

The first general result is that the number of files that have to be touched is much smaller for the DEFECTS4J benchmark than
for the ASPECTJ benchmark. Half of the examined bugs in the DEFECTS4J benchmark can be found by looking at less than 5
files using most of the SBFL metrics. The best metrics have a median nfi value of 2.5. Multiple bugs are even found within the
first examined file for each of the examined SBFL metrics, while a developer has to investigate more than 10 files on average for
the ASPECTJ benchmark. In order to find 50% of the bugs, a developer even has to investigate more than 150 files on average.

We see that both Op2 and GP13 perform better for both benchmarks in terms of the NFI metric. For the DEFECTS4J
benchmark, the Hyperbolic and D∗ metrics also perform well, while they perform worse for the ASPECTJ benchmark.



Heiden ET AL 19

Number of Files Investigated

Cohen
ArithmeticMean

Euclid
Hamann

Hamming
M1

RogersTanimoto
SimpleMatching

Sokal
Wong2

Fleiss
Rogot1

Scott
Hyperbolic

DStar
Anderberg

Dice
Goodman

Jaccard
Kulczynski1

SorensenDice
GeometricMean

Ample
Ochiai
Zoltar

HarmonicMean
Rogot2

Ochiai2
Kulczynski2

Tarantula
Wong3

Overlap
M2

RussellRao
Wong1

GP13
Op2

10 20 50 100 200 400 800 1600 3200

(a) NFI for AspectJ.

Number of Files Investigated

Euclid
Hamann

Hamming
M1

RogersTanimoto
SimpleMatching

Sokal
Wong2
Wong3

RussellRao
Wong1

Overlap
Ample

ArithmeticMean
Cohen
Fleiss

GeometricMean
HarmonicMean

Ochiai2
Rogot1
Rogot2

Scott
Tarantula

Zoltar
Anderberg

Dice
Goodman

Jaccard
Kulczynski1
Kulczynski2

SorensenDice
DStar
GP13

Hyperbolic
M2

Ochiai
Op2

1 10 20 50 100 200 400 800

(b) NFI for Defects4J.

FIGURE 10 Average number of files investigated in order to find all prominent bugs.

While the number of files that has to be investigated is much smaller for the DEFECTS4J benchmark, for some bugs, a developer
would still have to look at ∼500 files, independently from the used metric, which is still infeasible. The additional four SBFL
metrics that are examined in this study are also not able to improve over the other metrics. This is another implication that the
information used by pure SBFL metrics is not enough to improve the bug localization performance beyond a certain point.

50% of the bugs in the DEFECTS4J benchmark can be localized within less than 5 files for most of the examined SBFL metrics.
The additional SBFL metrics are not able to significantly improve the results for the ASPECTJ benchmark.

5.4 RQ
4
: What is the relation between the number of related and unrelated failing test cases and

SBFL’s accuracy?

We answer RQ
4

only based on the ASPECTJ benchmark, since we are interested in the effect of realistic test suites with related
and unrelated failing test cases. An evaluation on the DEFECTS4J benchmark would not present a realistic picture, since the
benchmark is curated in a way that each DEFECTS4J bug is exposed by a limited number of directly related failing tests. As a
result, we cannot see the effect of unrelated failing test cases.

Fig. 11 shows the relation between the number of failing test cases and the minimum wasted effort in scatter plots for Tarantula
and Ochiai. Please note that a lower wasted effort indicates a higher SBFL accuracy. A manual inspection of Fig. 11a and 11c
reveals that there is no particular relation between the two variables. This can be explained with the same argument as provided
in Section 5.1 that failing test cases that do not involve the target bug provide limited information to localize the bug. An
investigation of the theoretical case with only failing test cases that involve the bug (in Fig. 11b and 11d) hints at a trend that
more involved failing test cases improve the accuracy of SBFL techniques.

For a formal analysis of the relationship, we analyze the correlation between number of test cases and minimum wasted
effort. Based on the data, as given in (Fig. 11a-11d), non-parametric correlation coefficients need to be computed. The resulting
Spearman correlation coefficients are -0.026 (p-value>0.05) and -0.313 (p-value<0.05) for Tarantula and Ochiai, respectively.
For all 33 SBFL metrics8, the median correlation coefficient is -0.036 with a variance of 0.098. This indicates that there is
no correlation. However, the analysis is rather inconclusive due to the high variance of the correlation coefficients due to the
inclusion of basic and weaker SBFL Metrics (please compare8) and some high p-values for the smaller correlation coefficients.



20 Heiden ET AL

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tarantula

Number of Failing Test Cases

M
in

im
u

m
 W

as
te

d
 E

ff
o

rt

(a) Tarantula: WE vs, #failing test cases.
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(b) Tarantula: WE vs. #involved failing test cases.
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(c) Ochiai: WE vs. #failing test cases.
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FIGURE 11 The relation between the number of [involved] failing test cases and SBFL’s accuracy.

The second data set considers only involved failing test cases (Fig. 11b and 11d) and the correlation coefficients are -0.182 (p-
value>0.05) and -0.750 (p-value<0.05) for Tarantula and Ochiai. Thus, the correlations are higher than for the data that considers
all failing test case. This supports the previous observations that test case quality matters, and this gives the community a hint
that more high quality test cases which actually execute the bugs improve SBFL’s fault localizing capabilities.

The data suggests but does not confirm that there is no correlation between the number of failing test cases and the wasted
effort metric. Furthermore, there is an indication that more involved test cases can improve SBFL’s accuracy.

5.5 Effectiveness Metrics in Comparison

Table 5 shows selected effectiveness metrics (cf. Section 3) for all examined SBFL ranking metrics for both examined ben-
chmarks. All columns but the last column are percentage values rounded to two digits. If existing, the best value of each
effectiveness metric is printed in bold font.

For the {min, max}_wemean metrics, the wasted effort metric of all bugs has been aggregated using the arithmetic mean.
The {min, max}_pbl{10,1000} metrics show the minimum and maximum percentage of located bugs within the first 10 or 1, 000
ranked elements for each examined SBFL metric. We chose to show the values for the first 10 ranked elements, since this is the
most important range for human developers, while the first 1, 000 ranked elements may still be relevant to automated program
repair tools, for example. ABC(1000) (Eq. 19) refers to the Area Between Two Curves within the first 1, 000 ranked elements
as defined in Section 3.3.1. The last column shows the median number of files investigated (Section 3.3.2) metric. The last row
of the table contains the arithmetic mean of each effectiveness metric for all ranking metrics.

We see that employing the additional examined metrics is not able to significantly improve the performance of SBFL on the
ASPECTJ benchmark. As we have seen in Section 5.1, the additionally examined metrics even tend to perform worse on the
ASPECTJ benchmark. This implies again that the ASPECTJ benchmark does not offer suitable conditions for SBFL to function
satisfyingly for a developer. With a benchmark that is much more suited for SBFL, like DEFECTS4J in this case, we are able to
confirm the strength of the additionally examined SBFL metrics.

SBFL techniques work significantly better on the DEFECTS4J benchmark than on the ASPECTJ benchmark. Still, only ∼30%

of the bugs can be found reliably within the first 10 ranked elements.
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TABLE 5 Various SBFL effectiveness metrics for the different ranking metrics for the ASPECTJ benchmark (left) and the
DEFECTS4J benchmark (right).
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Ample 22.78 47.42 0.00 0.00 4.55 4.55 19.83 390.75
Anderberg 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
ArithmeticMean 26.02 55.25 0.00 0.00 10.23 10.23 2.21 506.25
Cohen 25.97 55.20 0.00 0.00 10.23 10.23 2.21 528.75
Dice 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
Euclid 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
Fleiss 26.89 56.02 0.00 0.00 9.09 9.09 2.45 531.50
GeometricMean 20.67 45.36 0.00 0.00 11.36 11.36 2.67 462.25
Goodman 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
Hamann 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
Hamming 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
HarmonicMean 20.83 45.51 0.00 0.00 11.36 11.36 2.67 473.00
Jaccard 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
Kulczynski1 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
Kulczynski2 21.44 47.50 0.00 0.00 4.55 4.55 17.30 238.50

M1 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
M2 19.00 56.37 0.00 0.00 2.27 2.27 34.00 254.50
Ochiai 21.36 47.43 0.00 0.00 5.68 5.68 13.54 404.75
Ochiai2 20.56 46.67 0.00 0.00 6.82 9.09 2.59 430.50
Overlap 14.43 59.68 0.00 3.41 2.27 12.50 55.09 258.75
RogersTanimoto 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
Rogot1 25.98 55.11 0.00 0.00 10.23 11.36 2.19 506.50
Rogot2 20.83 45.51 0.00 0.00 11.36 11.36 2.67 473.00
RussellRao 18.50 56.99 0.00 1.14 0.00 10.23 84.81 246.25
Scott 25.98 55.11 0.00 0.00 10.23 11.36 2.19 506.50
SimpleMatching 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
Sokal 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
SorensenDice 17.83 55.21 0.00 0.00 5.68 6.82 6.06 420.00
Tarantula 19.87 45.93 0.00 2.27 11.36 12.50 14.04 358.00
Wong1 18.50 56.99 0.00 1.14 0.00 10.23 84.81 246.25
Wong2 36.10 66.55 0.00 0.00 3.41 21.59 51.81 841.75
Wong3 24.14 50.66 0.00 0.00 2.27 4.55 20.20 246.25
Zoltar 21.40 47.46 0.00 0.00 3.41 4.55 19.26 343.50

Op2 25.93 52.61 0.00 0.00 3.53 3.53 26.40 338.50
DStar 19.23 56.81 0.00 0.00 2.35 2.35 31.05 408.50
GP13 19.27 56.83 0.00 0.00 3.53 3.53 26.40 338.50
Hyperbolic 35.29 62.84 0.00 0.00 3.53 3.53 26.40 868.75

Mean value 24.61 55.92 0.0 0.22 5.45 10.64 25.56 503.08
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Ample 1.95 3.27 27.03 41.89 88.65 90.00 3.24 3.00
Anderberg 0.64 5.20 32.16 49.73 91.89 95.14 4.36 2.75
ArithmeticMean 4.29 6.13 32.16 49.19 90.27 92.43 3.42 3.00
Cohen 4.30 6.16 31.89 49.46 90.27 92.16 3.28 3.00
Dice 0.65 5.20 32.16 49.73 91.89 95.14 4.35 2.75
Euclid 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
Fleiss 24.33 26.16 31.08 46.76 70.27 72.16 3.91 3.00
GeometricMean 4.29 6.12 32.43 49.46 90.27 92.16 3.28 3.00
Goodman 0.65 5.20 32.16 49.73 91.89 95.14 4.35 2.75
Hamann 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
Hamming 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
HarmonicMean 4.28 6.11 31.89 49.19 90.27 92.16 3.29 3.00
Jaccard 0.65 5.20 32.16 49.73 91.89 95.14 4.35 2.75
Kulczynski1 0.65 5.20 32.16 49.73 91.89 95.14 4.35 2.75
Kulczynski2 0.75 5.31 31.08 48.11 91.08 94.32 4.52 2.75
M1 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
M2 0.78 5.35 27.84 48.92 91.08 94.59 4.75 2.50

Ochiai 0.60 5.16 32.43 49.73 92.16 95.41 4.48 2.50

Ochiai2 0.65 6.78 32.43 49.73 90.54 95.14 5.52 3.00
Overlap 0.34 8.15 2.70 90.54 68.65 97.30 46.36 11.75
RogersTanimoto 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
Rogot1 23.95 25.53 30.27 45.95 70.81 72.43 3.63 3.00
Rogot2 4.78 5.36 32.43 48.92 91.08 91.89 2.14 3.00
RussellRao 0.44 8.16 2.70 87.30 68.65 96.49 45.14 12.00
Scott 23.95 25.53 30.27 45.95 70.81 72.43 3.63 3.00
SimpleMatching 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
Sokal 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
SorensenDice 0.65 5.20 32.16 49.73 91.89 95.14 4.35 2.75
Tarantula 0.65 5.22 30.81 49.46 92.16 95.41 4.45 3.00
Wong1 0.44 8.16 2.70 87.30 68.65 96.49 45.14 12.00
Wong2 54.98 64.70 10.54 25.14 20.27 31.08 36.78 217.50
Wong3 41.59 50.07 12.70 26.22 31.62 41.62 24.85 131.00
Zoltar 0.73 5.30 30.54 47.57 91.35 94.59 4.45 3.00

Op2 4.22 4.54 30.00 47.57 90.54 91.08 2.11 2.50

DStar 0.59 5.15 32.70 49.19 92.16 95.41 4.48 2.50

GP13 0.82 5.38 30.00 47.84 90.54 93.78 4.40 2.50

Hyperbolic 3.16 5.28 29.46 47.57 90.54 91.35 3.00 2.50

Mean value 16.1 21.28 23.91 46.04 70.7 77.3 14.97 53.43

5.6 Threats to Validity

The original study27 had two main potential threats to validity for this work. First, SBFL approaches and the proposed metrics
(ABC and NFI) have been evaluated on ASPECTJ only. Specifically, there was a threat to external validity that the results
obtained from the ASPECTJ benchmark cannot be generalized to other large scale software systems. In this paper, we mitigate
the threat by including another benchmark, namely DEFECTS4J, into the experiments. By cross analysis of the results, we could
identify where the benchmarks are similar and where the results diverge. As a result, we provide a stronger confidence in the
generalizability of the results.

A second potential threat to validity of the original study27 was in the manual classification of the bug locations by the
authors. This classification was done very conservative, and only bugs were considered where the authors had high confidence.
Furthermore, all arguments supporting the classification were documented and we made the commented code versions for the
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bug set of ASPECTJ available at44 to be checked for future investigations. By adding DEFECTS4J as a second benchmark, we
also mitigated the risk of a bias classification, since the bugs were collected and classified by the curators of the DEFECTS4J
benchmark26.

6 CONCLUSIONS & LESSONS LEARNED

6.1 Main conclusion

Pure Spectrum-Based Fault Localization is an automated fault localization technique aiming at localizing and ranking a set of
suspicious elements likely to be the cause of a failing test case7. Several SBFL approaches have been evaluated only on small
and medium-size benchmarks and under the unrealistic assumption of a developer sequentially examining elements in the ranked
list of suspects29.

In this paper, we empirically evaluated 37 pure SBFL approaches, including Naish2 (Op2)8, D∗ 30, the GP-evolved ranking
metric GP1312, and the family of SBFL metrics based on hyperbolic functions31 for the debugging of a large-scale project. For
this empirical evaluation, we used two large-scale benchmarks, namely ASPECTJ via the iBugs28 repository and DEFECTS4J 26.
To compare the different SBFL approaches, we used both a set of established metrics (e.g., the absolute we and Hit@X) and
two additional ones that we defined, namely the number of files investigated (nfi) as well as the area between curves (ABC)
metric, which try to better approximate more realistic assumptions about developers’ behavior.

Even with the additionally examined SBFL metrics, at most 11 out of 88 bugs can be found after examining the 1000 top
ranking suspicious lines for the ASPECTJ benchmark, requiring on average an inspection of about 250 files to discover any bug.
These results are identical with our previous study27. For the DEFECTS4J benchmark, at most 353 out of 370 bugs can be found
within the first 1000 top ranking suspicious lines with many of the examined metrics requiring the investigation of less than 5
files, on average, to discover a bug. If we only look at the first 10 suspicious lines in the rankings, which is more realistic for a
human developer, only ∼ 40% and ∼ 33% of the bugs can be localized in the average case and the worst case, respectively. In
order to reliably localize 90% of the bugs with D∗, ∼450 lines have to be inspected by the developer in the worst case. These
results provide an indication that pure SBFL approaches are not suitable for human developers.

6.2 Additional Lessons Learned

In addition to the main conclusions of the paper, we learn the following additional lessons from the empirical evaluation:
Lesson 1. The performance of pure SBFL metrics heavily depends on the selected program used for investigation.
Lesson 2. Many of the examined SBFL metrics performed similarly well on the DEFECTS4J benchmark, and the practical impact

of using one of the metrics over another is not significant for a human developer.
Lesson 3. We confirm our results27 that the number of lines and files that need to be inspected based on SBFL rankings can be

reduced by (higher quality) test cases that execute the bug.
Lesson 4. Using a more tailored benchmark like DEFECTS4J, the randomness in the SBFL rankings decreases overall, and better

performing SBFL metrics generally contain less randomness.

6.3 Beyond Pure SBFL

Our results highlight that pure SBFL – which computes suspicious scores from raw program spectra collected by running a test
suite, is not fully effective in identifying faulty code. It would be interesting to explore hybrid and extended SBFL methods, as
well as other related fault localization (FL) methods which may hold more promise. In the literature, several directions beyond
pure SBFL have been explored:

1. Several past studies have merged or replaced SBFL with other dynamic analysis techniques. For example, Alves et al.45,
Mao et al.46, and Wen47 have combined SBFL with dynamic program slicing. Dynamic program slicing is used to exclude
uninteresting program elements; the remaining program elements are then ranked using SBFL. Several studies employ
machine learning to analyze execution traces: Le et al.48 performed dynamic invariant mining and use the mined invariants
to differentiate faulty and non-faulty program elements using a learning to rank method; Cellier et al.49 employed both
association rule mining and formal concept analysis to identify faulty program elements from a collection of correct and
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faulty execution traces; Zhang et al.50 boosted SBFL by employing an approach based on the PageRank algorithm to
differentiate tests based on their likely importance; Wang et al.51, Lucia et al.52 and Xuan et al.39 combined multiple
SBFL solutions using a genetic algorithm, data fusion methods, and a classification algorithm, respectively. The idea of
combining SBFL metrics is also being empirically evaluated by Zou et al.53.

2. A different direction is the composition of static and dynamic analysis for fault localization. Two works in this direction
include those by Jiang et al.54 and Zhao et al.55 that statically extract control flow graphs and use it to improve SBFL. The
work by Feyzi and Parsa56 uses a static fault-proneness analysis. De Souza et al.57 use Code Hierarchy (CH) and Inte-
gration Coverage-based Debugging (ICD) techniques to provide better ranking of methods to be inspected. The approach
by Sohn and Yoo58 combines code and change metrics with SBFL techniques. Another work by Ren and Ryder59 iden-
tifies methods that are likely to cause a test failure by analyzing a statically constructed call graph for the failed test, and
counting the number of ancestors and descendants of methods in the graph. Finally, the approach of Neelofar et al.60 com-
bines SBFL with a static analysis techniques which categorizes individual program statements, for example, into control
statements, assignment statements, return statements, etc.

3. Another direction is the composition of dynamic and text analysis for effective FL. For example, Le et al.61 merged
information retrieval (IR) based fault localization (IRFL) and SBFL for a more effective fault localisation. Their proposed
solution analyzes two types of debugging hints: (1) test cases and their outcomes, along with (2) textual contents in
associated bug reports.

4. Yet another direction is mutation based fault localization62,63,24,64,65,66,67. Program mutants are generated and used to
detect faulty program elements. The intuition is that mutants killed by failing test cases are likely to indicate locations of
the faults.

5. A final direction is to use SBFL in an interactive, feedback-driven process similar to the work on interactive68,69, feedback-
based70 or whyline debugging71. Here we have to mention the work on Enlightened Debugging72 which, based on the
SBFL results, selects failing test cases and identifies spurious method invocations. For these method invocations, the
approach generates a debugging query based on the methods’ input-output relations and consults the user. The user inspects
the input-output relations and acts as an oracle for correctness of the method invocations. As a result, the user guides a
search process to better localize faults.

Future research may want to assess effectiveness of these methods more comprehensively (following a similar methodology
that is done in this work) as well as extend or combine them to achieve a high-enough accuracy for fault localization (FL) to be
adopted in practice – c.f.,40,73.

Another promising direction is to improve the quality of test cases that are used as input to SBFL techniques. A number of
specialized test (case/suite) generation74,75, prioritization76,77, reduction78,79, purification and cleaning80,81, and assessment74,82

methods have been proposed in the literature to improve fault localization. One difficulty in generating new test cases for
improved SBFL is the unavailability of test oracles. Interestingly, several studies have proposed methods that can perform fault
localization without the need of test case oracles – c.f.,21,83.
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