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Abstract

Background: It is long known within the mathematical literature that the coefficient of determination R2 is an 

inadequate measure for the goodness of fit in nonlinear models. Nevertheless, it is still frequently used within 

pharmacological and biochemical literature for the analysis and interpretation of nonlinear fitting to data.

Results: The intensive simulation approach undermines previous observations and emphasizes the extremely low 

performance of R2 as a basis for model validity and performance when applied to pharmacological/biochemical 

nonlinear data. In fact, with the 'true' model having up to 500 times more strength of evidence based on Akaike 

weights, this was only reflected in the third to fifth decimal place of R2. In addition, even the bias-corrected R2
adj 

exhibited an extreme bias to higher parametrized models. The bias-corrected AICc and also BIC performed significantly 

better in this respect.

Conclusion: Researchers and reviewers should be aware that R2 is inappropriate when used for demonstrating the 

performance or validity of a certain nonlinear model. It should ideally be removed from scientific literature dealing with 

nonlinear model fitting or at least be supplemented with other methods such as AIC or BIC or used in context to other 

models in question.

Background
Fitting nonlinear models to data is frequently applied

within all fields of pharmaceutical and biochemical assay

quantification. A plethora of nonlinear models exist, and

chosing the right model for the data at hand is a mixture

of experience, knowledge about the underlying process

and statistical interpretation of the fitting outcome.

While the former are of somewhat individual nature,

there is a need in quantifying the validity of a fit by some

measure which discriminates a 'good' from a 'bad' fit. The

most common measure is the coefficient of determina-

tion R2 used in linear regression when conducting cali-

bration experiments for samples to be quantified [1]. In

the linear context, this measure is very intuitive as values

between 0 and 1 give a quick interpretation of how much

of the variance in the data is explained by the fit.

Although it is known now for some time that R2 is an

inadequate measure for nonlinear regression, many sci-

entists and also reviewers insist on it being supplied in

papers dealing with nonlinear data analysis. Several initial

and older descriptions for R2 being of no avail in nonlin-

ear fitting had pointed out this issue but have probably

fallen into oblivion [2-8]. This observation might be due

to differences in the mathematical background of trained

statisticians and biochemists/pharmacologists who often

apply statistical methods but lack detailed statistical

insight.

We made the observation that R2 is still frequently

being used in the context of performance or validity of a

certain model when fit to nonlinear data. R2 is not an

optimal choice in a nonlinear regime as the the total sum-

of-squares (TSS) is not equal to the regression sum-of-

squares (REGSS) plus the residual sum-of-squares (RSS),

as is the case in linear regression, and hence it lacks the

above interpretation (see Additional File 1, paragraphs 1

& 2). To our observation, there is still a high occurrence

in the present literature of all biomedical fields where the
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validity of nonlinear models is based solely on R2 values,

which might be a result of authors or reviewers not being

aware of this fallacy. Additionally, almost all of the com-

mercially available statistical software packages (i.e.

Prism, Origin, Matlab, SPSS, SAS) calculate R2 values for

nonlinear fits, which is bound to unintentionally corrobo-

rate its frequent use. A further example is the

TableCurve2 D software (Systat, USA) which can fit hun-

dreds of nonlinear models to a given dataset automati-

cally and then rank these by means of R2. Noted 25 years

ago by Kvalseth [8], the user is usually not able to identify

which of the eight different definitions of R2 that are com-

monly being used in the literature is chosen for the analy-

sis output in statistical software (see Additional File 1,

Remark 4).

We thus aimed to point out the low performance of R2

and its inappropriateness for nonlinear data analysis by

basing our analysis on an extensive Monte Carlo simula-

tion approach. This approach has fundamental advan-

tages in the analysis of nonlinear data analysis [9] and can

reveal tendencies within statistical methods by supplying

the models and measures in question with thousands of

generated datasets.

Methods
Creation of the 'true' model

In a first step, we fitted a three-parameter log-logistic

model (L3, see Formula 3 below) by nonlinear least-

squares to sigmoidal data that was taken from quantita-

tive real-time polymerase chain reaction (qPCR). This

yielded a sigmoidal model with the parameters b = -9.90,

d = 11.07 and e = 24.75. We used the fitted values of this

model and x-values from 10-35 as the 'true' model with

sample size n = 26 for the following Monte Carlo simula-

tion. This essentially gave a sigmoidal curve that can be

encountered in many different areas of pharmacological/

biochemical analysis. Specific to qPCR data, the x-values

("Cycles") are equidistant and not on a log-scale, as often

encountered in dose-response analysis. For mathematical

details, see Remark 7 in Additional File 1.

Perturbation of data (Monte Carlo Simulation)

Using the fitted values as above, all datapoints were per-

turbed 2000 times by adding six different magnitudes

(very low to high) of homoscedastic noise from a gaussian

distribution with mean = 0 and standard deviations =

0.01, 0.02, 0.05, 0.1, 0.2 or 0.4. The noise of the data was

therefore between 0.1% and 4% of the data range. This

way, for each of six different settings (determined by dif-

ferent standard deviations), we obtained 2000 new data

sets of sample size n = 26 with true model L3. For each of

these data sets, nine different sigmoidal models differing

in model type and number of parameters (Formulas 1-9)

were fit. For mathematical details, see Remark 7 in Addi-

tional File 1.

Formula 1: Five parameter log-logistic model (L5):

Formula 2: Four-parameter log-logistic model (L4):

Formula 3: Three-parameter log-logistic model (L3):

Formula 4: Five parameter logistic model (B5):

Formula 5: Four-parameter logistic model (B4):

Formula 6: Three-parameter logistic model (B3):

Formula 7: Four-parameter Weibull model (W4):

Formula 8: Three-parameter Weibull model (W3):

Formula 9: Five-parameter baroreflex model (baro5):
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Calculation of measures for goodness-of-fit

For each simulation, we calculated the following mea-

sures for goodness-of-fit:

R2, using the most general definition [5,8]:

Formula 10:

with RSS = residual sum-of-squares, TSS = total sum-

of-squares, y = response values,  = fitted values and  =

the mean of response values. For a more detailed descrip-

tion see Remarks 1-6 in Additional File 1.

We chose to use the adjusted R2 to compensate for pos-

sible bias due to different number of parameters:

Formula 11:

with n = sample size and p = number of parameters.

The Akaike Information Criterion (AIC, [10-12]), a

measure that is widely accepted for measuring the valid-

ity within a cohort of nonlinear models and frequently

used for model selection [13].

Formula 12:

with p = number of parameters and ln(L) = maximum

log-likelihood of the estimated model. The latter, in the

case of a nonlinear fit with normally distributed errors

[13], is calculated by

Formula 13:

with x1, ..., xn = the residuals from the nonlinear least-

squares fit and N = their number.

To provide a fair playing ground, we employed an AIC

variant that corrects for small sample sizes, the bias-cor-

rected AIC (AICc):

Formula 14:

with n = sample size and p = number of parameters.

In order to obtain values for the validity of a fit, we used

Akaike weights which calculate the weight of evidence for

each model within a cohort of models in question [12-

14]:

Formula 15:

with i, k = model numbers, Δi(AIC) = the difference in

AIC of each model in comparison to the model with the

lowest AIC, subsequently normalized to their sum

(denominator).

Also here, we used the bias-corrected AICc for calcu-

lating the Akaike weights.

We also chose to employ the Bayesian Information Cri-

terion (BIC), which gives a higher penalty on the number

of parameters [15]:

Formula 16:

with p = number of parameters, n = sample size and L =

maximum likelihood of the estimated model.

Furthermore, the residual variance as the part of the

variance that cannot be accounted for by the model:

Formula 17:

with RSS = residual sum-of-squares, n = sample size

and p = number of parameters.

The variance of a least-squares fit is also characterized

by the chi-square statistic defined as Formula 18:

where yi = response values, f(xi) = the fitted values and

 = the uncertainty in the individual measurements yi.

We further define the reduced chi-square as a useful

measure [16] by

Formula 19:
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with ν = n - p (degrees of freedom). If the fitting func-

tion is a good approximation to the parent function, then

the variances of both should agree well, and the reduced

chi-square should be approximately unity. If the reduced

chi-square is much larger than 1 (i.e. 10 or 100), it means

that one is either overly optimistic about the measure-

ment errors or that one selected an inappropriate fitting

function. If reduced chi-square is too small (i.e. 0.1 or

0.01) it may mean that one has been too pessimistic about

measurement errors. For this work, models were selected

based on reduced chi-square by being closest to 1.

Analysis of the simulation data

Two different approaches were pursued within the Monte

Carlo simulated data. To reveal general tendencies, we

averaged the values of R2
adj, AICc, BIC, residual variance

and reduced chi-square from all 2000 simulated data sets

(for each noise magnitude and each of the 9 models). To

permit a more detailed insight for each simulation and to

compare the measures on the single model level, we

selected the best model in each iteration based on the

highest R2
adj, lowest AICc, lowest BIC, lowest residual

variance and smallest difference to unity for reduced chi-

square. For the latter, we used as the measurement uncer-

tainty  the a priori known squared standard deviation

from the homoscedastic noise that was applied to pro-

duce the random data of the Monte Carlo simulations.

Finally, we calculated the percentage of selecting the

'true' model L3 in all iterations.

Code for the simulations

All simulations were conducted using R, a well reputed

and open-source statistical programming language [17].

Nonlinear curve fitting was done by using functionality

from the R package qpcR [18]. The commented code for

the simulations can be obtained from Additional File 2.

Results and Discussion
Figure 1 illustrates the simulated data that was used as the

basis of our analysis. Starting from the fitted values of a

three-parameter log-logistic model (L3), different

amounts of homoscedastic gaussian noise were added to

the fitted values resulting in the point clouds as shown.

We analyzed six different magnitudes of gaussian noise in

total, from low noise (s.d. = 0.01, 0.02), medium noise

(s.d. = 0.05, 0.1) to high noise (s.d. = 0.2, 0.4; see Figure 1)

with a total of 2000 simulations per noise setup.

Fitting all nine different sigmoidal models to the fitted

values of the 'true' model (L3) is depicted in Figure 2A,

demonstrating the differences against this model when

noise is completely lacking. All logistic models fit well in

this context, which tallies with the observation of five-

parameter models exhibiting increased performance due

to accomodating asymmetrical structures [19]. Visualized

also by a residuals plot that delivers higher resolution of

the residuals (Figure 2B), the log-logistic models (L3, L4,

L5) provide very small residual values, the logistic models

(B3, B4, B5) have higher residual values and the Weibull

models (W3, W4) are significantly inferior. This is evi-

dent especially in the upper and lower region from the

point of inflection.

AICc and adjusted R2
adj were compared by averaging

the output of all 2000 simulations and for three different

magnitudes (low, middle, high) of homoscedastic gauss-

ian noise (Figure 3). Not surprisingly, the R2
adj values

decrease and the AICc values increase with higher noise

(left to right). But the major problem in the use of R2 is

clearly evident within the simulation setup: the AIC dif-

ferences (delta-AIC) between some models can be 78

(compare L3 and B3 models at s.d. = 0.02), which when

transferred to Akaike weights result in a weight of evi-

dence 16 (!) orders of magnitude in favor of L3. One might

be inclined to say that this is major evidence for the first

model being in favor of the second one, but in respect to

the corresponding R2
adj values, only the fourth decimal

place is affected. This tendency is also found for higher

noise, despite AICc values increasing and R2
adj values

s i
2

Figure 1 Graph illustrating the noise model used for the simula-

tions. 2000 simulations of random gaussian noise with mean = 0 and 

s.d. = 0.4 were added to the fitted values of a three-parameter log-lo-

gistic model (L3) fit to real-time quantitative PCR data. This resulted in 

the point cloud (black dots) of response values and the band of red 

lines reflecting the fitted curves of all simulations with the same model 

L3 applied.
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Figure 2 Performance of the nine different sigmoidal models on the fitted values from a three-parameter log-logistic model. (A) The nine 

different sigmoidal models were fit by nonlinear least-squares to the fitted data from the L3 model. (B) Residual plot depicting the performance of 

each of the nine models in respect to fitting to the data from the L3 model. As expected, model L3 (light green, reference curve) has zero residual 

value as having been fit to the data obtained from the same model. Several other models also fit the data exceptionally well (L5, L4, baro5) and are 

not visible due to being overlayed by the L3 curve. Descriptions for the abbreviated models can be found under Formulas 1-9.
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Table 1: Summary of the Monte-Carlo simulation study.

s.d = 0.01 Model R2
adj AICc Akaike weights BIC resVar red. Chi2

L5 0.99999471 -156.22 0.0818 -156.35 0.00009933 0.9924

L4 0.99999471 -158.36 0.2389 -158.33 0.00009935 0.9930

L3 0.99999470 -160.20 0.5969 -160.33 0.00009959 0.9927

B5 0.99999258 -147.31 0.0010 -147.44 0.00013945 1.4739

B4 0.99975702 -57.72 0.0000 -57.69 0.00456696 42.5939

B3 0.99959911 -47.29 0.0000 -47.42 0.00734455 63.5805

W4 0.99853046 -10.89 0.0000 -10.85 0.02762048 282.3939

W3 0.99829856 -7.91 0.0000 -8.04 0.03336157 334.1353

baro5 0.99999471 -156.21 0.0814 -156.34 0.00009936 0.9927

s.d = 0.02 L5 0.99997869 -119.98 0.0774 -120.11 0.00040059 0.9946

L4 0.99997868 -122.13 0.2273 -122.10 0.00040068 0.9959

L3 0.99997871 -124.06 0.5954 -124.19 0.00040007 0.9957

B5 0.99997653 -117.49 0.0224 -117.62 0.00044108 1.1135

B4 0.99974038 -56.14 0.0000 -56.11 0.00487955 11.4098

B3 0.99958227 -46.30 0.0000 -46.43 0.0076527 16.6958

W4 0.99851513 -10.64 0.0000 -10.61 0.02790803 71.2971

W3 0.99828395 -7.71 0.0000 -7.84 0.03364791 84.1649

baro5 0.99997869 -119.98 0.0775 -120.11 0.00040044 0.9956

s.d. = 0.05 L5 0.99986676 -72.33 0.0765 -72.46 0.00250459 0.9897

L4 0.99986656 -74.44 0.2194 -74.41 0.00250829 0.9904

L3 0.99986662 -76.34 0.5674 -76.47 0.00250720 0.9882

B5 0.99986439 -71.87 0.0608 -72.00 0.00254924 1.0096

B4 0.99962966 -47.44 0.0000 -47.40 0.00696139 2.6343

B3 0.99946832 -40.44 0.0000 -40.57 0.00973888 3.4859

W4 0.99839915 -8.85 0.0000 -8.81 0.03009194 12.3020

W3 0.99817327 -6.21 0.0000 -6.34 0.03582530 14.3447

baro5 0.99986669 -72.32 0.0759 -72.45 0.00250592 0.9902

s.d. = 0.1 L5 0.99947371 -36.57 0.0742 -36.70 0.00989448 0.9984

L4 0.99947362 -38.73 0.2180 -38.70 0.00989607 0.9972

L3 0.99947374 -40.62 0.5618 -40.75 0.00989674 0.9972

B5 0.99947135 -36.46 0.0701 -36.59 0.00993888 1.0037

B4 0.99923746 -29.03 0.0017 -28.99 0.01433573 1.4052

B3 0.99907025 -26.35 0.0004 -26.48 0.01703305 1.6200

W4 0.99800791 -3.50 0.0000 -3.47 0.03745226 3.8282

W3 0.99779177 -1.55 0.0000 -1.68 0.04333951 4.3370

baro5 0.99947355 -36.56 0.0737 -36.69 0.00989740 0.9982

s.d. = 0.2 L5 0.99786138 -0.07 0.0675 -0.20 0.04025347 0.9948

L4 0.99785879 -2.18 0.1942 -2.15 0.04030142 0.9940

L3 0.99785563 -4.04 0.4930 -4.17 0.04035658 0.9928

B5 0.99785959 -0.05 0.0668 -0.18 0.04028754 0.9960
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decreasing. Even in the presence of relatively high noise

(s.d. = 0.4), at least for the simulation setup in this work,

R2
adj would hardly drop below 0.99. Comparing the

Akaike weight of the models with the R2
adj values in Table

1 shows the strong discrepancy in scale changes of these

two measures when comparing a cohort of different

models.

However, differences in scale changes would be unim-

portant if the direction of change is always reciprocally

(i.e. a lower AICc always corresponding with a higher

R2adj). As can be deduced from Table 1, this is not always

the case. Using the averaged measures from the simula-

tions, R2adj and AICc did not always behave reciprocally.

For instance, at s.d. = 0.05, 0.2 and 0.4 the 'true' model L3

has a lower AICc than L5 (and ~ 8 times more weight of

evidence by Akaike weights), but R2adj values are also

lower in the fifth to eighth decimal place. Using R2adj for

model selection would therefore have resulted in a model

which is clearly not in favor based on Akaike weights.

On the averaged values, BIC essentially shows the same

characteristics as AICc. Interestingly, the residual vari-

ance is higher in the 'true' model L3 than L5 for most

noise regimes (although also only in the third to eighth

decimal place), indicating this to be a relatively unfavor-

able measure. Likewise, the reduced chi-square exhibited

a tendency to be closest to unity for higher parameter

models (L4, L5, B5) with increasing noise, here also only

affected in the third decimal place.

To acquire more detailed insight into the performance

of the different measures in respect to the selection of the

best model and in dependence of different noise magni-

tudes, we selected the best model of each iteration by

each of the measures. This approach can reveal features

that are not evident when calculating the averaged mea-

sures of all simulations. We summarized the outcome of

this analysis as a heatmap display in Figure 4 and as

'model selection frequency' in Table 2. Within each image

plot, the selected models are shown with the same colour

coding as in Figures 1, 2 and 3. For the low (s.d. = 0.02)

and medium (s.d. = 0.1) setup, R2
adj, residual variance

(resVar) and reduced chi-square performed not opti-

mally, selecting the true model L3 only in 28-43% of the

iterations. Both measures exhibited a severe bias in the

selection of models with a higher number of parameters

(L4, L5, B5, baro5). It is interesting to note that although

R2
adj and the residual variance 'correct' against the num-

ber of parameters, there is no positive effect on the ability

to select the 'true' model. This may be due largely to the

setup in this work which features a relatively high sample

size (n = 26) compared to the number of parameters (p =

3-5) and leaves the denominator n - p in both measures

relatively unaffected. In contrast, both AICc and BIC per-

formed superior in the selection of the 'true' model L3 at

these magnitudes of noise with over 80% of all iterations,

but with a slight bias to models with a lower number of

parameters at medium noise. At high noise (s.d. = 0.4,

corresponding to 4% noise of the data range) the perfor-

mance of all measures decreased markedly, most proba-

bly from the effect of the simulated data losing the

structural features typical of the L3 model when high

B4 0.99762513 0.49 0.0512 0.52 0.04470201 1.1027

B3 0.99740761 0.20 0.0592 0.06 0.04751535 1.1543

W4 0.99640798 11.41 0.0002 11.44 0.06760434 1.6764

W3 0.99625943 11.71 0.0002 11.58 0.07350697 1.8059

baro5 0.99786149 -0.07 0.0676 -0.20 0.04025146 0.9941

s.d. = 0.4 L5 0.99160836 35.58 0.0490 35.45 0.15887711 0.9987

L4 0.99157911 33.50 0.1387 33.53 0.15941969 0.9981

L3 0.99158878 31.58 0.3613 31.45 0.15928956 0.9980

B5 0.99154493 35.68 0.0466 35.55 0.15991031 1.0001

B4 0.99135309 34.16 0.0996 34.19 0.16370200 1.0242

B3 0.99098926 32.68 0.2084 32.55 0.16621846 1.0372

W4 0.99017401 37.58 0.0180 37.61 0.18602148 1.1663

W3 0.99028174 36.53 0.0305 36.40 0.19208006 1.1995

baro5 0.99159379 35.62 0.0480 35.49 0.15915529 0.9989

Six different magnitudes of gaussian noise (low: s.d. = 0.01, 0.02; medium: s.d. = 0.05, 0.1; high: s.d. = 0.2, 0.4) were added to the fitted data of 

a three-parameter log-logistic model (L3). Nine different sigmoidal models were fit by nonlinear least-squares to the perturbed data and 

different measures for the goodness of fit (see Materials & Methods) averaged after all 2000 iterations. From the AICc values, Akaike weights 

were calculated in order to obtain the weight of evidence of the models.

Table 1: Summary of the Monte-Carlo simulation study. (Continued)
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noise is added. Despite this negative trend, AICc and BIC

displayed increased performance even at high noise. The

two measures selected also a significant number of itera-

tions (about 40%) of other models with the same number

of parameters (B3, W3), which might be an indication for

a small bias to lower parametrized models. Consequently,

and based on the analysis of a sigmoidal nonlinear setup

as described here, we feel compelled to give the following

summary:

1) The use of highly inferior nonlinear models is

reflected only in the third or fourth decimal place of R2

and thus the description of single models when using R2

is not meaningful, as this measure tends to be uniformly

high when a set of models is inspected. This has also been

noted by others [20]. Additionally, R2 and even its 'bias-

corrected' counterpart R2adj are severely biased in favor

of models with more parameters when it comes to model

selection. The same accounts for the residual variance,

which is also commonly used. AICc and BIC do not

exhibit this bias and provide a much clearer picture and

improved performance when it comes to selecting the

'true' model. The Akaike weights are especially useful in

obtaining an overview of the weight of evidence of one

model over the other, which is impossible with the per se

high R2 values. This approach requires anyhow that it is

mandatory to supply several models in question.

2) In a background of low and medium experimental

noise, R2
adj and AICc selected different models with AICc

selecting the 'true model' twice as often (82.2% versus

43%). This finding emphasizes the importance of this

measure in nonlinear model selection. At a high noise

level rarely encountered in the modelling of pharmaco-

logical/biochemical data (4% of data range), AICc still

performed superior to R2
adj. These results tempt us to

conclude that the degree of freedom term n - p in the

denominator of the residual variance and R2
adj is not suffi-

cient alone to compensate the effect of the number of

increasing parameters. The same seems to be the case for

the reduced chi-square, which is also frequently used for

model selection purposes.

In this work we show that R2 is an inappropriate mea-

sure when used in the field of nonlinear fitting. Efforts

have been made to develop R2-like measures for the most

common nonlinear regression models [21], but here we

focused on the inadequateness of its use by using a data

perturbation approach and comparing its performance in

Figure 3 Analysis of adjusted R2 and corrected AIC of nine different sigmoidal models on fitted data from a three-parameter log-logistic 

model (L3). Three different magnitudes of homoscedastic gaussian noise (low: 0.02; medium: 0.1; high: 0.4) were added to the fitted data (2000 sim-

ulations), each of the nine sigmoidal model fit by nonlinear least-squares and the two measures collected for each simulation. Finally, the measures 

were averaged and displayed as point graphs. Upper panel: AICc, lower panel: R2
adj. Descriptions for the abbreviated models can be found under For-

mulas 1-9. Coefficients of variation for all simulations were below 5% and hence omitted. More detailed data for the measures can be found in Table 1.

AI
Cc

R2
ad

j

lownoise(0.02) mediumnoise(0.1) highnoise(0.4)

-140

-120

-100

-80

-60

-40

-20

0

0.9980

0.9985

0.9990

0.9995

1.0000

-50

-40

-30

-20

-10

0

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

30

32

34

36

38

40

0.9900

0.9905

0.9910

0.9915

0.9920

L5 L4 L3 B5 B4 B3 W4 W3 baro5



Spiess and Neumeyer BMC Pharmacology 2010, 10:6

http://www.biomedcentral.com/1471-2210/10/6

Page 9 of 11

comparison to AICc, BIC, residual variance and reduced

chi-square. Model selection in nonlinear statistical litera-

ture is usually divided into the frequentist methods, for

example F-tests on the residual variance that are

restricted to nested models [13], or measures from infor-

mation theory such as AIC which are often used to com-

pare non-nested models. Indeed, it has been shown that

the latter approach can often perform better than F-tests

[22]. In the field of biochemical and pharmacological lit-

erature there is a reasonably high occurrence in the use of

R2 as the basis of arguing against or in favor of a certain

model. As a result from this work, we would like to advo-

cate that R2 should not be reported or demanded in

phamacological/biochemical literature when discussing

nonlinear data analysis. Authors as well as reviewers

should be aware that demonstrating the validity of single

nonlinear models by using solely R2 is not state-of-the-art

and should be replaced or supplemented by AIC/AICc/

BIC values (or their corresponding weights of evidence) of

several possible models that are in question. The latter

Table 2: Model selection frequency for the different measures of goodness-of-fit.

Model R2adj AICc BIC resVar red. Chi2

s.d. = 0.02 L5 228 40 41 231 227

L4 341 170 154 347 261

L3 867 1648 1660 857 567

B5 305 90 91 304 689

B4

B3

W4

W3

baro5 259 52 54 261 256

L3 [%] 43.4 82.4 83.0 42.9 28.4

s.d. = 0.1 L5 124 10 10 122 118

L4 349 161 145 365 288

L3 958 1668 1684 939 576

B5 279 30 30 283 308

B4 35 53 51 34 361

B3 5 43 44 6 144

W4

W3

baro5 250 35 36 251 205

L3 [%] 47.9 83.4 84.2 47.0 28.8

s.d. = 0.4 L5 42 5 6 43 69

L4 234 72 65 243 187

L3 698 982 989 667 374

B5 55 3 3 61 67

B4 257 81 76 194 208

B3 303 575 582 406 335

W4 51 46 43 89 305

W3 221 226 226 145 357

baro5 139 10 10 152 98

L3 [%] 34.9 49.1 49.5 33.4 18.7

Same setup as in Table 1 but summarizing the model selection for each iteration and each measure by selection frequency. A percentage of 

selecting the 'true' model L3 is given as a summary.
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will give the dedicated reader the possibility to obtain

information about how much a certain model is in favor

over others, a feature that will not be evident by minor

changes in R2 which tends to be uniformly high and is

rarely affected more than in the third or fourth decimal

place.

Conclusions
Although frequently being used in the present pharmoco-

logical/biochemical literature for describing the validity

of a nonlinear fit, R2 is an unfavorable measure that is

rarely affected more than in the third or fourth decimal

place, even in scenarios with highly inferior models. Our

Monte Carlo simulations have shown that AIC, AICc or

BIC perform significantly better in this respect so that

authors as well as reviewers should be aware of this issue

and refrain from using or asking for R2 values when non-

linear models are under investigation.
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Figure 4 Analysis of model selection bias between for different measures of goodness-of-fit. Three different magnitudes of homoscedastic 

gaussian noise (0.02%; 0.1%; 0.4%) were added to the fitted data of model L3. The nine different sigmoidal models were fit and the different measures 

for goodness-of-fit collected at each iteration. The best model was selected for each measure and displayed for all iterations as a coloured selection 

heatmap. Light green reflects the 'true' model L3.

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Iterations

L5 L4 L3 B5 B4 B3 W4 W3 baro5

s.d.=0.02

s.d.=0.1

s.d.=0.4

R2.adj

AICc

BIC

resVar

red.Chi2

R2.adj

AICc

BIC

resVar

red.Chi2

R2.adj

AICc

BIC

resVar

red.Chi2

http://www.biomedcentral.com/content/supplementary/1471-2210-10-6-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2210-10-6-S2.ZIP
http://www.biomedcentral.com/1471-2210/10/6
http://creativecommons.org/licenses/by/2.0


Spiess and Neumeyer BMC Pharmacology 2010, 10:6

http://www.biomedcentral.com/1471-2210/10/6

Page 11 of 11

References

1. Montgomery DC, Peck EA, Vining GG: Introduction to Linear Regression 

Analysis.  Wiley & Sons, Hoboken; 2006. 

2. Juliano SA, Williams FM: A comparison of methods for estimating the 

functional response parameters of the random predator equation.  J 

Anim Ecol 1987, 56:641-653.

3. Miaou SP, Lu A, Lum HS: Pitfalls of using r-squared to evaluate goodness 

of fit of accident prediction models.  Transportation Research Record 

#1542 1996:6-13.

4. Willet JB, Singer JD: Another cautionary note about R-square: Its use in 

weighted least-squares regression analysis.  Amer Stat 1988, 42:236-238.

5. Anderson-Sprecher R: Model comparisons and R-square.  Amer Stat 

1994, 48:113-117.

6. Nagelkerke NJD: A note on a general definition of the coefficient of 

determination.  Biometrika 1991, 78:691-692.

7. Magee L: R2 measures based on Wald and likelihood ratio joint 

singnificance tests.  Amer Stat 1990, 44:250-253.

8. Kvalseth TO: Cautionary note about R2.  Amer Stat 1985, 39:279-285.

9. Bates DM, Watts DG: Nonlinear regression analysis and its applications.  

1st edition. New York, John Wiley & Sons; 1988. 

10. Akaike H: Information theory and an extension of the maximum 

likelihood principle.  Proc 2nd Inter Symposium on Information Theory 

1973:267-281.

11. Akaike H: A new look at the statistical model identification.  IEEE 

Transaction on Automatic Control 1974, 19:716-723.

12. Akaike H: On the likelihood of a time series model.  The Statistician 1978, 

27:217-235.

13. Burnham KP, Anderson DR: Model selection and inference: a practical 

information-theoretic approach 2nd edition. Springer Verlag, New York, 

USA; 2003. 

14. Wagenmakers EJ, Farrell S: AIC model selection using Akaike weights.  

Psych Bull & Review 2004, 11:192-196.

15. Schwarz G: Estimating the dimension of a model.  Ann Stat 1978, 

6:461-464.

16. Bevington PR, Robinson DK: Data Reduction and Error Analysis for the 

Physical Sciences.  Volume Chapter 11. 3rd edition. McGraw-Hill, New 

York; 2003. 

17. The R project homepage   [http://www.r-project.org]

18. Ritz C, Spiess AN: qpcR: an R package for sigmoidal model selection in 

quantitative real-time polymerase chain reaction analysis.  

Bioinformatics 2008, 24:1549-1551.

19. Gottschalk PG, Dunn JR: The five-parameter logistic: A characterization 

and comparison with the four-parameter logistic.  Anal Biochem 2005, 

343:54-65.

20. Zeng QC, Zhang E, Tellinghuisen J: Univariate calibration by reversed 

regression of heteroscedastic data: a case study.  The Analyst 2008, 

133:1649-1655.

21. Cameron AC, Windmeijer FAG: An R-squared measure of goodness of fit 

for some common nonlinear regression models.  J Econometrics 1997, 

77:329-342.

22. Glatting G, Kletting P, Reske SN, Hohl K, Ring C: Choosing the optimal fit 

function: comparison of the Akaike Information Criterion and the f-

test.  Med Phys 2007, 34:4285-4292.

doi: 10.1186/1471-2210-10-6

Cite this article as: Spiess and Neumeyer, An evaluation of R2 as an inade-

quate measure for nonlinear models in pharmacological and biochemical 

research: a Monte Carlo approach BMC Pharmacology 2010, 10:6

http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18482995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15953581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19082066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18072493

	Abstract
	Background
	Methods
	Creation of the 'true' model
	Perturbation of data (Monte Carlo Simulation)
	Calculation of measures for goodness-of-fit
	Analysis of the simulation data
	Code for the simulations

	Results and Discussion
	Conclusions
	Additional material
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

