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ABSTRACT: Iron speciation and trace metal proxies are commonly applied together in efforts to identify 21	  

anoxic settings marked by the presence of free sulfide (euxinia) or dissolved iron (ferruginous) in the 22	  

water column. Here, we use a literature compilation from modern localities to provide a new empirical 23	  

evaluation of coupled Fe speciation and Mo concentrations as a proxy for pore water sulfide accumulation 24	  

at non-euxinic localities. We also present new Fe speciation, Mo concentration, and S isotope data from 25	  

the Friends of Anoxic Mud (FOAM) site in Long Island Sound, which is marked by pore water sulfide 26	  

accumulation of up to 3 mM beneath oxygen-containing bottom waters. For the operationally defined Fe 27	  

speciation scheme, ‘highly reactive’ Fe (FeHR) is the sum of pyritized Fe (Fepy) and Fe dominantly present 28	  

in oxide phases that is available to react with pore water sulfide to form pyrite. Observations from FOAM 29	  

and elsewhere confirm that Fepy/FeHR from non-euxinic sites is a generally reliable indicator of pore fluid 30	  

redox, particularly the presence of pore water sulfide. Molybdenum (Mo) concentration data for anoxic 31	  

continental margin sediments underlying oxic waters but with sulfidic pore fluids typically show 32	  

authigenic Mo enrichments (2-25 ppm) that are elevated relative to the upper crust  (1-2 ppm).  However, 33	  

compilations of Mo concentrations comparing sediments with and without sulfidic pore fluids underlying 34	  
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oxic and low oxygen (non-euxinic) water columns expose non-unique ranges for each, exposing false 35	  

positives and false negatives. False positives are most frequently found in sediments from low oxygen 36	  

water columns (for example, Peru Margin), where Mo concentration ranges can also overlap with values 37	  

commonly found in modern euxinic settings. FOAM represents an example of a false negative, where, 38	  

despite elevated pore water sulfide concentrations and evidence for active Fe and Mn redox cycling in 39	  

FOAM sediments, sedimentary Mo concentrations show a homogenous vertical profile across 50 cm 40	  

depth at 1-2 ppm. A diagenetic model for Mo provides evidence that muted authigenic enrichments are 41	  

derived from elevated sedimentation rates. Consideration of a range of additional parameters, most 42	  

prominently pore water Mo concentration, can replicate the ranges of most sedimentary Mo 43	  

concentrations observed in modern non-euxinic settings. Together, the modern Mo and Fe data 44	  

compilations and diagenetic model provide a framework for identifying paleo-pore water sulfide 45	  

accumulation in ancient settings and linked processes regulating seawater Mo and sulfate concentrations 46	  

and delivery to sediments. Among other utilities, identifying ancient accumulation of sulfide in pore 47	  

waters, particularly beneath oxic bottom waters, constrains the likelihood that those settings could have 48	  

hosted organisms and ecosystems with thiotrophy at their foundations.  49	  

INTRODUCTION 50	  

Iron speciation and molybdenum concentrations have been well calibrated in modern settings for 51	  

recognizing end-member euxinic (anoxic and H2S-containing) and ferruginous (anoxic and iron-rich) 52	  

settings in the geologic record (Algeo and Lyons, 2006; Berner, 1970; Canfield and others, 1996; 53	  

Canfield and others, 1992; Lyons and Severmann, 2006; Poulton and Canfield, 2005, 2011; Raiswell and 54	  

others, 1988; Raiswell and Canfield, 1998; Raiswell and others, 2018). This past research has resulted in 55	  

extensive application of these proxies toward an improved understanding of water column redox 56	  

evolution and dynamics through time, including Phanerozoic ocean anoxic events (Gill and others, 2011; 57	  

März and others, 2008; März and others, 2012), the Proterozoic (Canfield and others, 2007; Johnston and 58	  

others, 2012; Li and others, 2010; Planavsky and others, 2011; Poulton and others, 2004; Scott and others, 59	  

2008; Sperling and others, 2015), and the Archean (Kendall and others, 2010; Reinhard and others, 2009; 60	  

Scott and others, 2011). Beyond the recognition of ancient euxinic and ferruginous water columns, more 61	  

recent research has provided a context for using Fe and Mo proxies to infer accumulation of sulfidic pore 62	  

waters in ancient sediments, including those deposited beneath water columns lacking dissolved sulfide 63	  

and Fe (Scott and Lyons, 2012; Sperling and others, 2015). Refined recognition of these conditions has 64	  

important implications for the evolution of the marine sulfate reservoir and for interpretation of the 65	  

geochemical impacts of sediment mixing induced by benthic infaunal communities through time 66	  
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(Canfield and Farquhar, 2009; Tarhan and others, 2015). Additionally, pore water sulfide has implications 67	  

for bottom water habitability and the evolution of thiotrophy and associated symbiotic relationships 68	  

among combined micro-/macrofaunal communities (Sperling and others, 2015; Tarhan and others, 2015). 69	  

However, although a broad framework currently exists for understanding the conditions leading to Mo 70	  

and Fe fixation in sulfidic sediments (see background), few studies have systematically evaluated proxy 71	  

expressions from modern sediments to assess their potential as uniquely pore fluid indicators of 72	  

paleoredox in ancient sediments. 73	  

Here, we specifically assess the paleoredox proxy potential of Fe speciation and Mo concentrations 74	  

to recognize the presence or absence of pore water sulfide accumulation during early diagenesis from 75	  

modern marine sediments underlying water columns without stable euxinia and a range of ambient 76	  

oxygen concentrations. This endeavor is grounded in a broad context provided by compilations of Fe 77	  

speciation and Mo concentrations from modern localities where water column and pore water redox 78	  

conditions are well characterized. In addition, we present an original case study with Fe-speciation, Mo 79	  

concentration, and S concentration and isotope data for sediments from the oxic FOAM (Friends of 80	  

Anoxic Mud) site in Long Island Sound (LIS), USA, where sedimentary pore fluids are well-known to 81	  

host elevated and persistent pore water sulfide concentrations. Previous studies of LIS, including the 82	  

FOAM site, have been fundamental to the initial development of the Fe paleoredox proxies and a range of 83	  

other sedimentary geochemical signatures (Aller, 1980a, b; Aller and Cochran, 1976; Benninger and 84	  

others, 1979; Benoit and others, 1979; Berner and Westrich, 1985; Canfield, 1989; Canfield and Berner, 85	  

1987; Canfield and others, 1992; Canfield and Thamdrup, 1994; Goldhaber and others, 1977; 86	  

Krishnaswami and others, 1980; Raiswell and others, 1994; Raiswell and Canfield, 1998; Westrich, 87	  

1983). We use a diagenetic model for Mo to provide constraints on the environmental factors that best 88	  

explain the observed modern sediment concentration ranges and provide a context for interpreting non-89	  

euxinia related drivers of changes in Mo concentrations from ancient sediments.	  	  90	  

BACKGROUND AND PROXY FRAMEWORK   91	  

The Iron Proxies 92	  

The utility of the Fe geochemical proxies is built on a foundation of extensive work on the   93	  

reactivity of Fe minerals with dissolved sulfide in sedimentary environments (Berner, 1970; Canfield and 94	  

others, 1996; Canfield and others, 1992; Poulton and Canfield, 2005; Raiswell and others, 1988; Raiswell 95	  

and others, 1994; Raiswell and Canfield, 1998) and a well-developed understanding of syngenetic (water 96	  

column) versus diagenetic pyrite formation (Anderson and Raiswell, 2004; Canfield and others, 1996; 97	  
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Lyons, 1997; Lyons and others, 2003; Raiswell and Anderson, 2005; Wijsman and others, 2001). The 98	  

refined sequential extraction scheme of Poulton and Canfield (2005) is designed to target Fe phases, 99	  

emphasizing carbonate-bound Fe, oxide Fe (dithionite extractable, Fedith), and magnetite Fe (oxalate 100	  

extractable, Femag), which all react with sulfide to form pyrite (Fepy) and Fe monosulfides (acid volatile 101	  

sulfur, FeAVS) on time scales relevant to early diagenesis (Canfield, 1989; Canfield and others, 1996; 102	  

Canfield and others, 1992). These iron phases, when summed with pyrite, comprise the operationally 103	  

defined ‘highly reactive’ Fe (FeHR) pool.  104	  

Inputs of detrital FeHR into sediments permit the production of pyrite when exposed to sulfide, but 105	  

typical lithogenic ratios of FeHR/FeT <0.38 and FeT/Al mass ratios ~0.5 are maintained when anoxic 106	  

(euxinic or ferruginous) conditions are not present in the water column (Lyons and Severmann, 2006; 107	  

Lyons and others, 2003; Raiswell and Canfield, 1998). In contrast, if anoxia develops and persists in the 108	  

water column, both FeHR/FeT and FeT/Al are elevated beyond these crustal baselines, and those 109	  

enrichments are often used to infer ancient anoxia. According to one model, soluble Fe(II) generated 110	  

during reductive dissolution of Fe-oxides along continental margins diffuses out of sediments, allowing 111	  

enhanced delivery of FeHR through an ‘Fe shuttle’ to the deep basin where it is captured as syngenetic 112	  

pyrite (Anderson and Raiswell, 2004; Canfield and others, 1996; Lyons, 1997; Lyons and Severmann, 113	  

2006; Raiswell and Anderson, 2005; Raiswell and Canfield, 1998; Scholz and others, 2014b; Severmann 114	  

and others, 2008; Severmann and others, 2010; Wijsman and others, 2001). This ‘extra’ Fe is decoupled 115	  

from the local delivery of silicate phases, including unreactive Fe fractions, with the net result of FeHR/FeT 116	  

>0.38 (Raiswell and Canfield, 1998) and FeT/Al >0.5. Under euxinic conditions, near complete reaction 117	  

of the FeHR to form pyrite leads to Fepy/FeHR ratios in excess of 0.7 to 0.8 (März and others, 2008; Poulton 118	  

and Canfield, 2011; Poulton and others, 2004).  119	  

In sulfidic sediments underlying non-euxinic or ferruginous water column conditions, hence 120	  

FeHR/FeT<0.38 and FeT/Al ~ 0.5, the Fepy/FeHR ratio is anticipated to be > 0.7. This prediction is based on 121	  

work from the Long Island Sound FOAM site (see FOAM background) where it was initially shown that 122	  

pore water sulfide accumulation is preceded by the consumption of ‘highly reactive’ Fe minerals via 123	  

reaction with sulfide to form pyrite (Canfield, 1989; Canfield and others, 1992). Sequential Fe extractions 124	  

and associated Fepy/FeHR of ancient shales have been applied previously to interpret pore water redox in 125	  

ancient sediments (Sperling and others, 2015), but no study has evaluated the potential of Fepy/FeHR from 126	  

modern non-euxinic settings to uniquely indicate pore water sulfide accumulation—hence this study. 127	  

 128	  
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 129	  

Molybdenum Geochemistry 130	  

Molybdenum is the most abundant transition metal in the modern ocean, with a near uniform 131	  

concentration of ~104 nM (Broecker and Peng, 1982; Emerson and Huested, 1991) and a relatively long 132	  

residence time of ~450 kyr (Miller and others, 2011). Molybdenum exists almost entirely as molybdate 133	  

(MoO4
-2

) under oxic conditions, delivered primarily from oxidative weathering of sulfide minerals (Miller 134	  

and others, 2011). Molybdate has a strong affinity for sorption to Mn and Fe oxides, which is a significant 135	  

pathway of Mo deposition in the modern, dominantly oxic ocean (Barling and Anbar, 2004; Shimmield 136	  

and Price, 1986). In the absence of free sulfide in the water column and sediments, Mo buried with oxides 137	  

will often diffuse back to the overlying water column following reductive dissolution of the oxides during 138	  

sediment diagenesis (Goldberg and others, 2012; Scott and Lyons, 2012; Shimmield and Price, 1986), 139	  

with the possibility of little to no authigenic sediment enrichment and thus concentrations near those 140	  

characteristic of average continental crust (~1-2 ppm).  141	  

Under sulfide-rich conditions, however, Mo is readily converted from MoO4
-2

 to particle reactive 142	  

thiomolybdate (MoO4-xSx
-2

; (Erickson and Helz, 2000; Helz and others, 1996; Zheng and others, 2000), 143	  

which is buried in association with organic matter and pyrite (Algeo and Lyons, 2006; Chappaz and 144	  

others, 2014; Dahl and others, 2017; Wagner and others, 2017). This relationship has particular 145	  

importance when considering settings with sulfide restricted to the sediment pore fluids versus euxinic 146	  

sites. In either case, if total dissolved sulfide concentrations exceed ~100 µM (with some sensitivity to 147	  

ambient pH), quantitative sulfidization of MoO4
-2

 to MoS4
-2

 is expected (Erickson and Helz, 2000; Helz 148	  

and others, 1996; Helz and others, 2011; Zheng and others, 2000). Molybdenum enrichments under 149	  

euxinic water column conditions typically exceed the average continental crust value of approximately 1-150	  

2 ppm (Taylor and McLennan, 1995) by a significant margin—with sediment concentrations of up to 151	  

hundreds of ppm (Scott and Lyons, 2012) and distinct relationships with the abundance of organic carbon 152	  

in the sediments (Algeo and Lyons, 2006). In modern sulfidic sediments accumulating beneath an oxic 153	  

water column, Mo delivered to the sediments—including that associated with oxide deposition and 154	  

subsequent dissolution—is retained upon oxide dissolution via reaction with dissolved sulfide, among 155	  

other possibilities (Scholz and others, 2017). Rather than diffusing back to the overlying water column, 156	  

this Mo is sequestered with organic matter and/or pyrite in the subsurface layers (Chappaz and others, 157	  

2014; Dahl and others, 2017; Erickson and Helz, 2000; Helz and others, 1996; Helz and others, 2011; 158	  

Wagner and others, 2017). A recent survey of Mo concentrations from non-euxinic settings with sulfidic 159	  
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pore fluids suggests that authigenic enrichments rarely exceed 25 ppm, with most of these settings having 160	  

enrichments below 10 ppm (Scott and Lyons, 2012). A new diagenetic model, the new FOAM data, and 161	  

the literature data compilation presented here is intended to extend the proxy potential of Mo 162	  

concentrations to differentiate settings with pore fluid sulfide accumulation from those lacking sulfide or 163	  

with sulfide also present in the water column. 164	  

FOAM—The Historical Context 165	  

Past studies of FOAM and several nearby locations in Long Island Sound must get credit for 166	  

giving rise to the Fe-based paleoredox proxies—specifically, degree of pyritization (DOP), FeHR/FeT, and 167	  

Fepy/FeHR. The water column is oxygenated at each of these localities (Lee and Lwiza, 2005; Lee and 168	  

Lwiza, 2008; Wallace and others, 2014), and sedimentary sulfide concentrations range from 2 to 6 mM at 169	  

FOAM and the adjacent study sites characterized by high rates of sulfate reduction (Canfield, 1989; 170	  

Canfield and others, 1992; Goldhaber and others, 1977; Westrich, 1983). Studies at FOAM demonstrate 171	  

that DOP data from sediments with sulfidic pore waters, but underlying oxic water columns, are clearly 172	  

distinguishable from those of euxinic water column settings. Specifically, DOP values from FOAM and 173	  

nearby LIS sediments do not exceed ~0.4 (Berner, 1970; Canfield and others, 1992; Raiswell and 174	  

Canfield, 1998), which are readily distinguished from the values of >0.7 found in sediments underlying 175	  

euxinic water columns (Raiswell and others, 1988). Similarly, comparisons of FeHR/FeT data from FOAM 176	  

and other modern oxic localities to sediments in modern euxinic basins established the FeHR/FeT threshold 177	  

of ~0.38 now used widely to identify ancient euxinic and ferruginous water columns (Raiswell and 178	  

Canfield, 1998). These same studies also demonstrated the reactivity of common Fe minerals—179	  

ferrihydrite, lepidocrocite, goethite, hematite, magnetite—towards sulfide to form pyrite. Concurrently 180	  

time, other Fe minerals (for example, sheet silicates) were found instead to react with sulfide on much 181	  

longer timescales well beyond those of early diagenesis (Canfield, 1989; Canfield and Berner, 1987; 182	  

Canfield and others, 1992; Raiswell and others, 1994).  183	  

The intermediate DOP values at FOAM, despite high and persistent levels of pore water sulfide, 184	  

set the stage of a deeper exploration of reactive iron (reviewed in Lyons and Severmann, 2006) and the 185	  

mechanistic underpinnings of the Fe-based paleoredox proxies—leading ultimately to the now widely 186	  

used sequential extraction protocol (Poulton and Canfield, 2005). This refined approach targets the 187	  

‘highly reactive’ Fe phases described above. Collectively, data from FOAM and the modern Black Sea 188	  

(Canfield and others, 1996) exposed the need for ‘extra’ highly reactive Fe in euxinic settings to explain 189	  

observations of elevated DOP and FeHR/FeT (Anderson and Raiswell, 2004; Canfield and others, 1996; 190	  
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Lyons, 1997; Lyons and Severmann, 2006; Raiswell and Anderson, 2005; Raiswell and Canfield, 1998; 191	  

Scholz and others, 2014b; Severmann and others, 2008; Severmann and others, 2010; Wijsman and 192	  

others, 2001). Our study, however, is the first report of FeHR/FeT data from FOAM using the expanded 193	  

suite of Fe extractions (Poulton and Canfield, 2005) and to specifically report Fepy/FeHR for this location. 194	  

Comparisons with previous studies are possible, however, since data for Fedith, Fepy, and FeAVS were 195	  

already available for the upper 12 cm of FOAM (Berner and Canfield, 1989; Raiswell and Canfield, 196	  

1998). Those studies yielded FeHR/FeT ratios of 0.2-0.3 and Fepy/FeHR values approaching 0.8 in the 197	  

presence of high concentrations of pore water sulfide. 198	  

Beyond Fe proxy development and calibration, the FOAM site has been the focus of numerous, 199	  

now classic studies on sulfate reduction and sulfur disproportionation (Canfield and Thamdrup, 1994; 200	  

Goldhaber and others, 1977; Westrich, 1983), bioturbation (Aller, 1980a, b; Berner and Westrich, 1985), 201	  

and sedimentation rates (Krishnaswami and others, 1984), among other topics (Aller and Cochran, 1976; 202	  

Benninger and others, 1979; Benoit and others, 1979; Krishnaswami and others, 1980).  203	  

Sedimentation rates at FOAM and adjacent study sites have been found to range from 0.03-0.3 204	  

cm/yr (Goldhaber and others, 1977; Krishnaswami and others, 1984). The presence of bioturbation and 205	  

infaunal irrigation to depths of 8-10 cm (Goldhaber and others, 1977) has left the upper 4 cm of the 206	  

sediment well mixed (Aller, 1980a; Krishnaswami and others, 1984). The activities of these burrowing 207	  

organisms have been documented to change on seasonal time scales (Aller, 1980a, b; Goldhaber and 208	  

others, 1977), thus enhancing infaunal irrigation of sulfate to the sediments in the summer compared to 209	  

winter and creating distinct differences in the depth of sulfide accumulation from winter to summer. 210	  

Bioturbation is the dominant transport mechanism in the summer, and diffusion dominates during the 211	  

winter (Goldhaber and others, 1977). Previous FOAM studies have suggested that diagenetic processes 212	  

are not in steady state in the upper ~10 cm, where active bioturbation and maximum seasonal temperature 213	  

variation occur, and are approximately at steady state at depth (Aller, 1980a, b; Boudreau and Canfield, 214	  

1988; Westrich, 1983). Occasional dredging of portions of the Sound may cause sediment reworking, but 215	  

no direct impacts of dredging have been observed at FOAM. 216	  

METHODS 217	  

Our FOAM core was collected in October 2010 using a modified piston-gravity corer (fig. 1). 218	  

The site is located at 41°14’26.82’’N, 72°44’44.78’’W at a water depth of approximately 10 m. Cores 219	  

were sectioned into 1-2 cm intervals within 2 hours of collection, and the sediment was transferred into 50 220	  

mL centrifuge tubes. Pore waters were extracted within an N2-flushed glove bag using rhizons within 221	  
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several hours of core retrieval (Seeberg‐Elverfeldt and others, 2005). Pore water subsamples for hydrogen 222	  

sulfide (ΣH2S) were fixed with zinc acetate, while subsamples for metal analysis were acidified with trace 223	  

metal grade HCl. Residual sediment samples were sealed and frozen immediately, minimizing oxidation.  224	  

Pore water ΣH2S concentrations were measured using the methylene blue method (Cline, 1969). 225	  

Sulfate concentrations were determined by suppressed ion chromatography with conductivity detection 226	  

(ICS-2000, AS11 column; Dionex) at the Stable Isotope Geobiology Laboratory at Harvard University. 227	  

Pore water concentrations of Mn, Fe, and Mo were measured via inductively coupled plasma-mass 228	  

spectrometry (ICP-MS; Agilent 7500ce) at the University of California Riverside. Sample replicates 229	  

yielded standard deviations <5% for Mn, Fe, and Mo.  230	  

Acid volatile sulfur (AVS) and chromium reducible sulfur (CRS) were determined sequentially 231	  

using freshly thawed frozen samples and quantified by iodometric titration (Canfield and others, 1986). 232	  

Recoveries of sulfur for pure pyrite standards averaged 86 ± 9.2% of the expected amount (n=8); 233	  

however, duplicate analyses of FOAM samples revealed better reproducibility. To determine the degree 234	  

of pyritization (DOP) for FOAM sediments, Fe was extracted using the boiling HCl method of Berner 235	  

(1970) and Raiswell and others (1988). Following from previous work (Berner, 1970; Raiswell and 236	  

others, 1988), DOP was calculated as Fepy/(Fepy + FeHCl).  237	  

Samples with the bulk of pore water previously extracted but still wet were thawed and weighed 238	  

for determination of Fe speciation using a modified version of the sequential Fe extraction of Poulton and 239	  

Canfield (2005). An ascorbate step targeting ferrihydrite (Ferdelman, 1988; Kostka and Luther, 1994; 240	  

Raiswell and others, 2010), or Feasc, was added and replaced a sodium acetate extraction that targets 241	  

carbonate-bound Fe given the unlikelihood of Fe carbonate precipitation in these sulfide-rich sediments. 242	  

To minimize oxidation of Fe sulfide phases during the extraction procedures. the solutions were bubbled 243	  

with N2 gas prior to extraction, and the headspace extraction vials were filled with N2 gas and sealed 244	  

throughout the extractions. Replicate samples yielded precisions of <7% for Feasc, Fedith, and Femag. All 245	  

iron phase values are reported on dry sediment basis corrected for water contents. Combined, Fepy, FeAVS, 246	  

Feasc, Fedith, and Femag represent the total ‘highly reactive’ Fe pool (FeHR).  247	  

FOAM sediment samples were dried and then homogenized via mortar and pestle after removal 248	  

of visible shell material. Total carbon was measured using an Eltra CS-500 carbon-sulfur analyzer. Total 249	  

inorganic carbon was determined by measuring CO2 liberated after addition of 2.5 N HCl. Total organic 250	  

carbon (TOC) was determined as the difference between total carbon and total inorganic carbon. 251	  
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Bulk concentrations of Fe, Mn, Al, and Mo were determined using a total digestion of ashed 252	  

samples (450° C) in trace metal grade HF:HNO3:HCl. Contents of Fe, Mn, Al, and Mo were measured 253	  

using an Agilent 7500ce ICP-MS at the University of California-Riverside. Repeated analyses of USGS 254	  

reference material SDO-1 were included to assess accuracy and precision, with all elements analyzed in 255	  

this study falling within the reported ranges. The SDO-1 standard contains elevated concentrations of 256	  

each of the elements of interest relative to FOAM samples and was therefore diluted during ICP-MS 257	  

analysis to mimic the concentration range observed at FOAM. Digestion and analysis of duplicate and 258	  

triplicate FOAM sediment samples revealed standard deviations (1σ) of <0.1 wt % for Al, Mn, and Fe 259	  

and <0.2 ppm for Mo.  260	  

For the sake of comparison to past studies, we also include previously unpublished S isotope data 261	  

from FOAM. The FOAM-1 core was collected in August 1974 and sectioned in 1-2 cm intervals under N2 262	  

in a glove bag within ~12 hours of collection. Pore waters were extracted by squeezing and filtered (Kalil 263	  

and Goldhaber, 1973). Additional details can be found in Aller (1980a,b).   264	  

To determine the isotopic composition of pore water sulfate in FOAM-1, pore water samples 265	  

were diluted with ~70 mL distilled water, acidified with HCl, and heated. BaSO4 was precipitated 266	  

following addition of BaCl2 (10% w/v). The acid volatile sulfur was extracted immediately following 267	  

sample collection by reaction with cold 12 N HCl and the resulting H2S was stripped with N2 and 268	  

precipitated as Ag2S in a AgNO3 trap (Aller, 1980a,b). BaSO4 and Ag2S were combusted to SO2 (Ag2S by 269	  

the cupric oxide method), and the sulfur isotope compositions were measured via a Nuclide 6-60 isotope 270	  

ratio mass spectrometer at Yale University. For both SO4
2- 

and AVS, the sulfur isotope data are presented 271	  

in conventional delta notation (δ
34

S) in permil (‰) relative to the Vienna Canyon Diablo Troilite (VCDT) 272	  

standard and Equation 1 below, which also applies to δ
33

S. Park City pyrite, a synthetic ZnS, and a 273	  

synthetic PbS were used as secondary standards. Standard deviations (1σ) for the analyses of secondary 274	  

standards and duplicate samples were less than 0.1‰. 275	  

δ
3x

S = [(
3x

S/
32

S)sample/(
3x

S/
32

S)standard – 1]×1000                  (Equation 1) 276	  

 For the 2010 FOAM core, sulfur isotope analyses were performed at the Stable Isotope 277	  

Geobiology Laboratory at Harvard University.  Minor isotopes were measured via fluorination of Ag2S, 278	  

as shown below in Equation 2.  For sulfate, the samples are first reduced to Ag2S with a mixture of 279	  

hydriodic acid (HI), hypophosphorous acid (H3PO4), and hydrochloric acid (HCl) at ~90°C for 3 hours 280	  

(Forrest and Newman, 1977; Johnston and others, 2007). Powdered Ag2S samples were fluorinated at 281	  
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300°C in an F2 atmosphere at 10×  stoichiometric excess. Product SF6 was cryogenically and 282	  

chromatographically purified and analyzed on a ThermoFinnigan 253 in Dual Inlet mode. Repeated 283	  

analyses of standards IAEA-S1, S2, S3 yielded a reproducibility of ±0.2‰ and ±0.006‰ for δ
34

S and 284	  

Δ
33

S, respectively. Samples are reported versus VCDT, which is calibrated from the long-term running 285	  

average of IAEA-S1 versus the working standard gas at Harvard University.      286	  

Δ
33

S = δ
33

S - [(δ
34

S/1000 + 1)
0.515

 – 1]×1000                 (Equation 2) 287	  

RESULTS  288	  

 We compiled literature data (fig. 2 and 3) that includes new data and earlier results from FOAM, 289	  

Fe speciation from diverse modern settings (n=1068), and Mo concentrations from modern non-euxinic 290	  

settings (n=1421). All citations are given in the respective figure captions. For both Fe speciation and Mo 291	  

concentrations, ‘oxic’ is defined as settings with >15 µM O2, and low oxygen conditions are defined as 292	  

having <15 µM O2 but without persistent sulfide accumulation in the water column. For Mo, data from 293	  

the Namibian Shelf are included in the low oxygen settings. In some cases, these low oxygen settings, 294	  

such as the Peru Margin, are reported to have transient water column sulfide plumes (Scholz and others, 295	  

2016). We distinguish between data associated with dissolved hydrogen sulfide in the pore waters and 296	  

pore waters with either dissolved sulfide below detection or appreciable dissolved Fe, which implies 297	  

negligible sulfide. When available, the compiled Fepy/FeHR data include iron associated with acid-volatile 298	  

sulfide (AVS or ‘FeS’, the iron monosulfide precursors to pyrite formation). In figure 3, intervals with 299	  

Mo associated with surface Mn enrichments (>2 wt. % Mn in most cases) are not included.  300	  

Our pore water sulfide concentrations at FOAM are near 3 mM, which are within the range of 301	  

concentrations previously observed (~6 mM; Goldhaber and others, 1977; Canfield and others, 1992), 302	  

with measureable sulfide accumulation limited to depths of approximately 8 cm and greater (fig. 4a). 303	  

Consistent with the down core increase in sulfide, pore water sulfate concentrations decrease with depth 304	  

(fig. 4a). The TOC content ranges from 0.5 to 2.0 wt.% (fig. 4b). Pyrite is observed at all depths (fig. 4c) 305	  

and is consistent with previously reported ranges at FOAM (Canfield, 1989; Canfield and others, 1992; 306	  

Raiswell and Canfield, 1998). AVS was not detected in this study. Because some AVS has been reported 307	  

from past FOAM studies (Aller, 1980b; Canfield, 1989; Canfield and others, 1992; Raiswell and 308	  

Canfield, 1998), it may be missing in our samples due to oxidation. Sulfur isotope data (
32

S, 
33

S, and 
34

S) 309	  

for pyrite, acid volatile sulfide, and sulfate are shown for both the FOAM-1 (1974) and FOAM 2010 310	  

cores (fig. 4d) and are remarkably similar despite collection separated by nearly 40 years. For the minor 311	  
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sulfur isotopes (fig. 4e), the data mimic previous observations from similar sites (Johnston and others, 312	  

2008), with sulfate showing increasing Δ
33

S in parallel with δ
34

S increases.  Sulfide Δ
33

S compositions are 313	  

also enriched (averaging 0.16‰). 314	  

Results for individual Fe fractions are shown in Table 1 and figure 5. Dissolved pore water Fe 315	  

concentrations peak in the upper 4 cm, rising from 4.24 µM at 0.5 cm to 6.29 µM at 2 cm, before 316	  

decreasing to 0.94 µM at 10 cm (fig. 5a). These dissolved Fe values are notably similar to autumn cores 317	  

from previous studies at FOAM (Aller, 1980b). Dithionite Fe is the most abundant measured highly 318	  

reactive Fe fraction in the upper 10 cm other than pyrite, peaking at 0.14 wt. % (fig. 5b), while other Fe 319	  

fractions are negligible (Table 1). Calculated values for DOP are mostly near 0.4, FeT/Al ratios are 320	  

approximately 0.5, and FeHR/FeT remains <0.38 (fig. 5c,d). Ratios of Fepy/FeHR ratios decline in the upper 321	  

5 cm of the core from 0.86 to 0.55 and are persistently >0.8 starting at 8 cm (fig. 5d). Our values for 322	  

FeT/Al, FeHR/FeT, Fepy/FeHR, and DOP are all similar to those reported or calculated from data published 323	  

in previous FOAM studies (Canfield, 1989; Canfield and others, 1992; Krishnaswami and others, 1984; 324	  

Raiswell and Canfield, 1998). 325	  

Solid-phase Mo concentrations at FOAM do not exceed 2 ppm (fig. 6a,b; Table 2). There is a 326	  

subsurface pore water Mo maximum of ~300 nM at 5-7 cm (fig. 6c). Sedimentary Mn concentrations are 327	  

in the same range as previous work (Aller, 1980b), which also show a homogenous distribution in the 328	  

upper 10 cm (fig. 6d). The range in pore water Mn (fig. 6e) is similar to that reported for autumn cores in 329	  

a previous FOAM study (Aller, 1980b). Pore water Mn accumulation overlies the depth of initial sulfide 330	  

accumulation and overlaps with pore water Mo concentrations elevated above those of seawater (fig. 6). 331	  

DISCUSSION 332	  

Fe	  speciation	  as	  a	  pore	  fluid	  paleoredox	  indicator	  333	  

 Iron speciation has been widely used to infer water column paleoredox conditions, but only 334	  

recently has this application been extended to recognize paleo-pore water sulfide accumulation (Sperling 335	  

and others, 2015). Applications toward recognizing ancient pore water sulfide accumulation are well 336	  

grounded in work from modern sites, such as FOAM, but no previous study has evaluated the ability of 337	  

Fe speciation to uniquely discern pore water sulfide in a diverse range of modern localities. Pore water 338	  

sulfide does not accumulate until the most ‘highly reactive’ Fe minerals—for example, ferrihydrite and 339	  

hematite—are quantitatively titrated in the sediments to form pyrite or other Fe sulfides (Canfield, 1989; 340	  
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Canfield and others, 1992; Raiswell and others, 1994), thus elevated Fepy/FeHR are anticipated for these 341	  

settings.  342	  

 In line with expectations, the Fe speciation data compilation in figure 2 provides broad evidence 343	  

that Fepy/FeHR values are <0.7 in modern sediments where sulfide is independently constrained to be 344	  

absent. Data from sulfidic pore water systems are less common but, with few exceptions (discussed next 345	  

paragraph), display Fepy/FeHR ratios >0.7. Examples of sites with sulfidic pore waters include the FOAM 346	  

site (this study; Canfield, 1989), Peru Margin (Böning and others, 2004; Scholz and others, 2011), Santa 347	  

Barbara Basin (Raven and others, 2016), and Argentine Margin (Riedinger and others, 2017). Our FOAM 348	  

data reveal up to 3 mM of pore water sulfide (fig. 4) and Fepy/FeHR >0.7 (fig. 5). Though the collective 349	  

data from sites without pore water sulfide have Fepy/FeHR <0.7, portions of the FOAM sediment profile 350	  

without pore water sulfide do have elevated Fepy/FeHR (fig. 5). In the upper 4 cm at FOAM, ratios of 351	  

Fepy/FeHR and DOP are elevated compared to the remainder of the upper ‘sulfide free’ zone in part 352	  

because of dissolution of Fe-oxides to produce dissolved Fe in the pore waters—a ‘highly reactive’ Fe 353	  

phase, not included in these proxy calculations. Factors leading to the presence of pyrite in the ‘sulfide 354	  

free’ zone may result from sediment mixing, terriginous input, as well as ongoing sulfate reduction 355	  

(Canfield and others, 1992; Riedinger and others, 2017). Regardless, the collective data support that 356	  

paleo-pore water sulfide accumulation can be recognized in the geologic record via Fepy/FeHR values >0.7, 357	  

FeHR/FeT ratios of <0.38, DOP <~0.4, and FeT/Al <0.5 (Lyons and others, 2003; Raiswell and others, 358	  

1988; Raiswell and Canfield, 1998), although threshold values should be applied with caution. 359	  

 The collective data from sites without stable euxinia suggest that Fepy/FeHR ratios of >0.7 are 360	  

generally a consistent indicator of pore water sulfide accumulation (fig. 2a), but lower values lower do not 361	  

necessarily imply a lack of pore water sulfide. Exceptions include sediments from the Santa Barbara 362	  

Basin and the Argentine Margin, where pore water sulfide concentrations approach mM levels, yet 363	  

Fepy/FeHR ratios are <0.7. The trends in the Argentine Margin are likely a combination of high 364	  

sedimentation rates and an abundance of magnetite and anomalously high levels of Fe-oxides that react 365	  

with sulfide to form pyrite (Riedinger and others, 2017). As was shown in a landmark study at the FOAM 366	  

site, dissolved sulfide reacts with ‘reactive’ Fe minerals such as Fe-(oxy)hydroxides and hematite prior to 367	  

dissolved sulfide accumulation, but the kinetics of the reaction with magnetite are up to seven orders of 368	  

magnitude slower, thus allowing for pore water sulfide accumulation despite the presence of ‘highly 369	  

reactive’ Fe as magnetite (Canfield and others, 1992). Sulfur isotope data at FOAM are consistent with 370	  

continued pyrite formation from magnetite well below the onset of sulfide accumulation (Canfield and 371	  

others, 1992). Along the Argentine Margin, sporadic and rapid sedimentation maintain non-steady state 372	  



	  

	  

	  

Page 13 of 42	  

	   	  

	  

geochemical conditions and decrease the residence time of sediments and ‘reactive’ Fe minerals, 373	  

including magnetite, in a thin zone of sulfide accumulation (Riedinger and others, 2017). In this zone, the 374	  

rate of sulfate reduction exceeds reaction rates between dissolved sulfide and the abundance of various 375	  

‘highly reactive’ Fe phases (Riedinger and others, 2017).   376	  

 To our knowledge, the Fe speciation data compilation in figure 2 is the first to consider both 377	  

FeHR/FeT and Fepy/FeHR from the full range of modern settings with available data. The original work of 378	  

Raiswell and Canfield (1998) did not consider Fepy/FeHR, but the data compilation presented here 379	  

generally reinforces their conclusions. Specifically, only sediments from the euxinic Black Sea, Cariaco 380	  

Basin, and Framvaren Fjord record clear indications of euxinia from the collective Fe speciation data. 381	  

Raiswell and Canfield (1998) made the same observation based on their FeHR/FeT compilation. Other 382	  

euxinic sites (for example, Orca Basin and Kau Bay) and low oxygen or ‘nitrogenous’ settings with and 383	  

without intermittent euxinia (for example, Peru Margin) have FeHR/FeT <0.38 and Fepy/FeHR values are not 384	  

consistently elevated. Other euxinic settings can fall in this group, particularly when marked by very rapid 385	  

sedimentation, such as along the Black Sea margin (Lyons and Kashgarian, 2005). For the sample set in 386	  

figure 2, the only low oxygen (in this case, seasonally anoxic), non-euxinic site to yield FeHR/FeT ratios of 387	  

>0.38 from multiple samples is the Santa Barbara Basin (Raven and others, 2016), where the Fe 388	  

speciation data are in a range typically interpreted as reflect of ferruginous conditions. Redox boundaries, 389	  

either temporal or spatial, have been suggested as necessary for elevated Fe-oxide delivery relative to 390	  

detrital values, and thus Fe speciation indications of ferruginous conditions (Hardisty and others, 2016a; 391	  

Scholz and others, 2014a; Scholz and others, 2014b), but such settings are seemingly rare in the modern 392	  

ocean. It is possible, however, that Fe speciation evidence for ferruginous conditions may be more 393	  

common than currently known in sediments from modern low oxygen settings lacking persistent water 394	  

column sulfide accumulation. To date, each of the modern low oxygen or euxinic localities measured for 395	  

Fe speciation only include Fepy and Fedith as part of the ‘highly reactive’ Fe pool (Raiswell and Canfield, 396	  

1998; Raven and others, 2016; Scholz and others, 2014b). Consideration of FeHR/FeT and Fepy/FeHR 397	  

without Femag and Fecarb specifically makes ferruginous settings more difficult to identify (Raiswell and 398	  

others, 2018). 399	  

 Lastly, some oxic localities—specifically nearshore deltaic and fjordic sites characterized by 400	  

rapid sediment reworking and high FeHR/FeT in the source sediments—yield Fe speciation values also 401	  

consistent with ferruginous conditions (Aller and others, 2004; März and others, 2012; Poulton and 402	  

Raiswell, 2002). Similar trends can be found in FeT/Al for some of these localities, with mass ratios 403	  

exceeding the ~0.5 typical of sediments underlying oxic waters. Such observations stress the necessity to 404	  
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consider local FeHR/FeT and FeT/Al detrital baselines, the sedimentary context, and independent 405	  

paleoredox proxies when interpreting Fe geochemistry from ancient settings (Cole and others, 2017; 406	  

Raiswell and others, 2018). 407	  

 408	  

Mo	  concentrations	  as	  a	  pore	  fluid	  paleoredox	  indicator	  409	  

Concentrations of Mo and Fe speciation are commonly used to infer the presence of ancient water 410	  

column sulfide and some recent studies provide evidence that unique ranges exist for Mo concentrations 411	  

beneath modern non-euxinic water columns containing pore water sulfide (Scott and Lyons, 2012). Our 412	  

compilation of Mo concentrations from oxic settings with and without pore water sulfide support these 413	  

applications and past studies (fig. 3). Specifically, sedimentary Mo concentrations above crustal values 414	  

but <40 ppm—but mostly <10 ppm—and with independent constraints of oxic water column conditions 415	  

can generally be attributed to the presence of pore water sulfide (fig. 3a). The authigenic Mo enrichments 416	  

in oxic settings with sulfidic pore fluids is largely a function of a Mn or Fe oxide shuttle that delivers Mo 417	  

to the sediments, and then fixation with sulfide following reductive dissolution of the oxides (Scott and 418	  

Lyons, 2012; Zheng and others, 2000). Indeed, the range in Mo concentrations from oxic settings with 419	  

sulfidic pore fluids is largely derived from settings with a clear enrichment in Mn and Mo at the surface 420	  

(omitted from compilation in fig. 3) and a secondary enrichment in Mo following a decrease in Mn 421	  

concentrations below the zone of sulfide accumulation (Scott and Lyons, 2012). For example, this 422	  

relationship is observed from sediment at Loch Etive, Scotland (Malcolm, 1985), and an estuary in British 423	  

Columbia (Pedersen, 1985). These observations can be clearly contrasted by environments with surficial 424	  

Mn enrichments that lack an adjacent subsurface zone of sulfide accumulation, such as some hemipelagic 425	  

sediments (Shimmield and Price, 1986). In hemipelagic sediments, large Mo enrichments—in some cases 426	  

100s of ppm—can occur in Mn,Fe-crusts in the upper sediment zone, but decrease to near-detrital values 427	  

upon Mn and Fe dissolution, and thus elevated concentrations are not preserved in the geologic record. 428	  

Importantly, we acknowledge that Mo concentrations from low oxygen settings with intermittent 429	  

water column and pore water sulfide have concentrations similar to many stable euxinic settings and oxic 430	  

settings with pore water sulfide (fig. 3b). This is important for the proxy perspective presented here, as the 431	  

current FeHR/FeT data from low oxygen and intermittently euxinic localities overlap with that of oxic 432	  

settings (fig. 2), indicating a need for further proxies for distinction. Additional redox proxies which can 433	  

discriminate low oxygen settings from oxic settings include U concentrations (Algeo and Tribovillard, 434	  

2009; McManus and others, 2006; Scholz and others, 2011; Sundby and others, 2004), Mo isotopes 435	  
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(Hardisty and others, 2016b; Poulson Brucker and others, 2009; Scholz and others, 2017), nitrogen 436	  

isotopes (Scholz and others, 2017), and iodine contents (Owens and others, 2017; Zhou and others, 2017). 437	  

In addition, a relationship between TOC and Mo concentrations like that from the Peruvian (Böning and 438	  

others, 2004; Scholz and others, 2011; Scholz and others, 2017) and Namibian (Algeo and Lyons, 2006; 439	  

Calvert and Price, 1983) oxygen minimum zones (OMZs) is not observed in oxic settings (Algeo and 440	  

Lyons, 2006). 441	  

 One possible explanation of the elevated Mo concentrations in these mostly ‘nitrogenous’ 442	  

localities is the intermittent accumulation of low water column hydrogen sulfide; however, 443	  

thermodynamic considerations and observations from weakly sulfidic plumes (<15 µM) in the Peru OMZ 444	  

have been suggested as inconsistent with Mo scavenging in these waters (Scholz and others, 2016; Scholz 445	  

and others, 2017). We point out that multiple field and theoretical studies indicate a requirement of 446	  

significant dissolved sulfide accumulation (>100 µM) prior to authigenic Mo accumulation (Chappaz and 447	  

others, 2014; Dahl and others, 2017; Erickson and Helz, 2000; Helz and others, 1996; Helz and others, 448	  

2011; Wagner and others, 2017; Zheng and others, 2000). In addition, a distinct relationship between Mo 449	  

and TOC, like that observed in the Peruvian (Böning and others, 2004; Scholz and others, 2011; Scholz 450	  

and others, 2017) and Namibian (Algeo and Lyons, 2006; Calvert and Price, 1983) upwelling zones, is 451	  

otherwise uniquely attributed to settings with at least intermittent water column sulfide accumulation 452	  

(Algeo and Lyons, 2006). Additional mechanisms of authigenic Mo enrichments from low oxygen 453	  

localities include sedimentary delivery via oxides during episodic bottom water oxygenation and Mo 454	  

fixation following reaction with pore water sulfide (Algeo and Tribovillard, 2009; Scholz and others, 455	  

2011; Scholz and others, 2017). In our data compilation, Mo concentrations from low oxygen settings 456	  

with and without pore water sulfide present during sampling are not distinguishable (fig. 3c). This 457	  

observation likely stems from intermittent or past pore water and water column sulfide accumulation not 458	  

captured or recognized during sampling.  459	  

Lastly, even with elevated pore water sulfide concentrations, a number of factors in oxic localities 460	  

can lead to a lack of Mo enrichments beyond detrital values. This is evident from figure 3, which shows 461	  

that there is an overlap in the Mo concentration range from oxic settings with and without pore water 462	  

sulfide accumulation. In the next section, we provide a case study from the FOAM site, where we observe 463	  

elevated pore water sulfide, but sedimentary Mo concentrations are near detrital values. Ultimately, oxic 464	  

settings with and without pore water sulfide accumulation can be discerned via Fepy/FeHR values (fig. 2). 465	  

However, as discussed below, the lack of authigenic Mo enrichments from sediments with Fepy/FeHR >0.8 466	  

may provide additional insights to early diagenetic processes in ancient settings, including sedimentation 467	  
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rates and seasonal oxidative processes. A diagenetic model is used to demonstrate the conditions leading 468	  

to the range of authigenic Mo enrichments observed in figure 3.   469	  

Foam Case Study and Diagenetic Model 470	  

Previous studies have not measured Mo at FOAM, but localities with water column redox and 471	  

diagenetic regimes similar to FOAM, such as an adjacent site in New Haven Harbor and Boston Harbor, 472	  

MA, USA, have reported sedimentary Mo enrichments up to 8 ppm. These Mo concentrations are easily 473	  

distinguished from detrital values (1-2 ppm) and are well below Mo concentrations typical of sediments 474	  

underlying euxinic water columns (Scott and Lyons, 2012). The up to 3 mM sulfide levels at FOAM are 475	  

well above the 100 µM ‘action point’ for total dissolved sulfide concentration that favors the 476	  

transformation of molybdate to tetrathiomolybdate, which can then be efficiently, often quantitatively, 477	  

scavenged (Helz and others, 1996; Zheng and others, 2000). In sulfidic sediments, following Mn and Fe 478	  

oxide dissolution, near-complete authigenic Mo removal from pore waters typically occurs at the 479	  

transition zone to sulfide accumulation, forming a deeper second solid-phase Mo peak (Scott and Lyons, 480	  

2012). Sedimentary Mo peaks are not observed at all at FOAM despite pore water Mo levels greater than 481	  

those of the overlying seawater and a clear indication of subsurface Mn and Fe oxide reduction seen in 482	  

both pore water and sediment data (figs. 5 and 6). Below we consider sediment mass balance and a 483	  

diagenetic model for Mo to determine the factors that influence authigenic Mo enrichments at FOAM and 484	  

other non-euxinic localities. 485	  

We use estimates of the lithogenic Mo (Molith) input relative to the observed bulk Mo 486	  

concentrations (Mobulk) to determine the contribution, if any, from authigenic Mo (Moauth): 487	  

        Mobulk = Molith + Moauth     (Equation 3) 488	  

Although constraints on the lithogenic input of Mo to sediments in Long Island Sound are 489	  

lacking, we can estimate this component using a bulk average value of Mo/Al for granite- and sandstone-490	  

derived lithogenic material of 8-18x10
-6 

(McLennan, 2001; Poulson Brucker and others, 2009; Turekian 491	  

and Wedepohl, 1961). Both rock types are common regionally near FOAM. This lithogenic Mo range 492	  

also overlaps with baseline Mo concentrations found in Buzzards Bay and Boston Harbor, MA (Morford 493	  

and others, 2009; Morford and others, 2007), which have similar weathering source rocks. Considering an 494	  

average sedimentary Al concentration of 6.0 wt.% at FOAM (Table 1), we calculate a lithologic Mo input 495	  

of 0.36-1.4 ppm. This contribution is negligible for sediments with large authigenic Mo enrichments, but 496	  

considering an average Mo concentration for FOAM sediments of 1.02 ppm, Molith has the potential to 497	  
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make up anywhere from 35-100% of the bulk Mo concentrations. If authigenic Mo is accumulating at 498	  

FOAM, it is clearly at very low concentrations.  499	  

 The total authigenic consumption flux of dissolved Mo within marine sediments can be 500	  

quantitatively estimated using an early diagenetic model (Equ. 4). The model tracks solid (organic matter 501	  

accumulation and authigenic tetrathiomolybdate formation) and dissolved phases (Mo, H2S, O2) in 502	  

diffusional exchange with seawater, within the upper 200 cm of the sediment column.  503	  
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 Parameters and associated citations are given in Table 5. The sum reaction of the time rate of 505	  

change of dissolved species in pore waters can be described as the sum of the diffusion term (𝐷
!
!
!

!!!
 ), the 506	  

advection term (𝜔
! !"

!"
), and the reaction term (rxn). The variable D is the diffusion coefficient, 𝜔 is the 507	  

sedimentation rate, and z the depth away from the sediment-water interface (Boudreau, 1997). The 508	  

consumption of oxygen through aerobic respiration of organic matter was parameterized as 509	  

𝑘!"#[𝑜𝑟𝑔]
[!!]

!! !!!!

, where korg is the reaction rate constant and kO2 the limiting concentration for O2. The 510	  

term 
! !"   

!"
 considers the gradient in pore water Mo concentrations from the depth of O2 consumption—511	  

and hence the onset of oxide dissolution and associated release of sorbed Mo—to the depth where Mo 512	  

concentrations decrease to stable values within the zone of pore water sulfide accumulation. The reaction 513	  

term for tetrathiomolybdate is expressed as kth [H2S] [Mo], where kth is the reaction rate constant. The korg 514	  

and kth were determined by calibrating the model to pore water Mo and sulfide data derived from the 515	  

FOAM site (Table 5). Dissolved sulfide levels were set at a constant value under conditions where 516	  

oxygen has been quantitatively consumed through respiration. Further, if  [O2] is greater than zero, [H2S] 517	  

is assumed to be zero.  518	  

 Next, we explore the sensitivity of authigenic Mo enrichments within marine sediments over a 519	  

wide range of parameter space considered in figure 3 and the associated discussions—but using FOAM 520	  

site values as a baseline (fig. 7; Table 5). At the most basic level, the delivery of organic carbon and the 521	  

associated accumulation of pore water sulfide through sulfate reduction is a requirement from the model 522	  

in order to achieve even muted authigenic Mo enrichments (fig. 7d,e). The model is sensitive to pore 523	  

water Mo concentrations at the depth of O2 consumption (fig. 7a), which implies that higher delivery of 524	  

Mo to the sediments via oxides and burial and diffusion of seawater will increase authigenic enrichments 525	  

upon reaction of the dissolved Mo with appreciable pore water sulfide. As in similar previous models 526	  



	  

	  

	  

Page 18 of 42	  

	   	  

	  

(Morford and others, 2009), we find authigenic Mo enrichment to be most highly sensitive to 527	  

sedimentation rates (fig. 7a,c). For example, sedimentation of >0.2 cm yr
-1

 can severely mute authigenic 528	  

enrichments in marginal settings such as FOAM, explaining the observed sediment Mo concentration 529	  

values (fig. 6). Muted Mo concentrations have even been observed from euxinic portions of the Black Sea 530	  

where sedimentation rates are elevated (Lyons and Kashgarian, 2005). Conversely, particularly low 531	  

sedimentation rates in combination with elevated pore water Mo at the depth of O2 consumption can 532	  

allow for relatively elevated authigenic Mo concentrations (fig. 7a,c). These conditions replicate the 533	  

ranges of Mo concentrations observed from other oxic sites with pore water sulfide and elevated 534	  

authigenic enrichments (fig. 3). In addition, if we consider a sensitivity analysis that integrates the most 535	  

extreme 
! !"   

!"
 and 𝜔 from Peru Margin Sites with available data (~350 nM and ~0.025 cm yr

-1
, 536	  

respectively; Scholz and others, 2011), the model provides evidence that sedimentary Mo concentration 537	  

of up to ~70 ppm are possible (fig. 7a,c)—a range which explains the bulk of the existing sedimentary Mo 538	  

data from low oxygen environments (fig. 3). However, under no relevant conditions can the model 539	  

replicate the >100 ppm Mo found in some of these low oxygen environments (Böning and others, 2004; 540	  

Brongersma-Sanders and others, 1980; Calvert and Price, 1983; Scholz and others, 2011; Scholz and 541	  

others, 2017). Such a result provides evidence that water column sulfide accumulation, or additional 542	  

sedimentary Mo delivery parameters not considered in our model are likely necessary to explain the 543	  

extreme elevated Mo enrichments from these low oxygen settings (fig. 3; Scholz and others, 2017).  544	  

Lastly, though sedimentation rates and sedimentary Mo delivery can explain the ranges of authigenic 545	  

Mo accumulation from oxic settings, seasonal variations in sediment chemistry not considered in our 546	  

model are all likely to contribute to muted authigenic Mo formation. Previous studies have shown that 547	  

sediments with seasonal variations in redox state, metabolic rates, or biogenic mixing of particles between 548	  

redox zones of the sediments, like FOAM (Aller, 1980a, b; Goldhaber and others, 1977), minimize 549	  

retention of authigenic Mo phases (Morford and others, 2009; Wang and others, 2011). At FOAM, a 550	  

range of previous work provides evidence that bioturbation, pore water redox, and organic matter 551	  

remineralization rates all vary seasonally within the upper few cm of the sediment pile (Aller, 1980a, b; 552	  

Goldhaber and others, 1977). Specifically, lower temperatures during the winter months decrease infaunal 553	  

activity and metabolic rates. Together, these processes result in relatively more oxidizing conditions near 554	  

the sediment water interface during the winter relative to summer through decreased upward mixing of 555	  

reduced sediments and decreased rates of sulfate reduction, with the consequence of net oxidation of 556	  

reduced sedimentary phases such as pyrite (Aller, 1980a, b; Goldhaber and others, 1977; Green and Aller, 557	  

1998, 2001; Westrich and Berner, 1988). However, despite these known dynamics, data generated for this 558	  
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study that overlap with that of previous FOAM works (S isotopes (fig. 4d); dissolved Fe and Mn, and 559	  

sulfide; sedimentary Fe speciation, Mn, and S concentrations) are remarkably comparable despite, in 560	  

some cases, nearly 40 years difference in the time of our sampling (see Results section for details). 561	  

Indeed, despite temperature, metabolic, and faunal seasonal dynamics which induce non-steady state 562	  

sedimentary and geochemical conditions in the upper ~10 cm, previous seasonal observations have also 563	  

proven a consistency of dissolved and sedimentary geochemical characteristics for a given season from 564	  

year to year (Aller, 1980a,b). Considerations of non-steady state factors should be considered in future 565	  

models, but previous studies and ours provide evidence that FOAM may be best characterized as a 566	  

‘dynamic steady state’. 567	  

 568	  

 CONCLUSIONS 569	  

Based on observations from modern settings, we provide constraints on the use of sedimentary Fe 570	  

speciation and Mo concentrations as paleoredox proxies to uniquely identify the presence/absence of pore 571	  

water sulfide accumulation during early diagenesis in ancient non-euxinic water column settings. To this 572	  

end, we compare ratios of pyrite-to-‘highly reactive’ Fe (Fepy/FeHR) and Mo concentrations from modern 573	  

non-euxinic settings with and without observations of sedimentary pore water sulfide accumulation. We 574	  

also provide original Fe speciation, sedimentary Mo, and S isotope date from the FOAM site in Long 575	  

Island Sound, where pore water sulfide concentrations are in excess of 3 mM. The FOAM site has played 576	  

an essential role in our understanding of Fe reactivity toward sulfide and the development of a commonly 577	  

applied Fe speciation scheme (Berner and Canfield, 1989; Canfield and Berner, 1987; Canfield and 578	  

others, 1992; Raiswell and Canfield, 1998) and the earlier DOP approach (Berner, 1970; Canfield and 579	  

others, 1992; Raiswell and others, 1988)—in large part through proximity to Yale University and the 580	  

research group of Bob Berner. Given previous observations at FOAM and other similar localities with 581	  

pore water sulfide, we expected FeHR/FeT values of <0.38 (Raiswell and Canfield, 1998), FeT/Al ratios of 582	  

~0.5, (Krishnaswami and others, 1984), Fepy/FeHR >0.8, and Mo concentrations 2-25 ppm (Scott and 583	  

Lyons, 2012). Deviations from these predictions are explored in the context of the broader data 584	  

compilation and sensitivity analyses of an authigenic Mo model. 585	  

Iron speciation data from the literature and our new FOAM results fit the predicted ranges, with 586	  

most of the ‘highly reactive’ Fe pool reacted with ΣH2S to form pyrite and resulting, with few exceptions, 587	  

in Fepy/FeHR values as a generally confident indicator of the presence/absence of pore water sulfide 588	  

accumulation during early diagenesis. Molybdenum concentrations at FOAM, by contrast, did not fall 589	  
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within the typical range for sulfidic pore fluids (Scott and Lyons, 2012). Oxic settings with pore water 590	  

sulfide accumulation, including FOAM, commonly display Mo concentrations similar to detrital values, 591	  

hence overlapping with that observed in oxic settings lacking pore water sulfide. A diagenetic model that 592	  

considers pore water dissolved Mo, bottom water O2, pore water sulfide, sedimentation rate, and organic 593	  

rain rates provides evidence that there is indeed an authigenic Mo flux to the sediments at FOAM, but that 594	  

episodic and generally high sedimentation rates likely prevent expression beyond typical lithologic 595	  

values. In addition, low oxygen (but non-euxinic) water column environments—most prominently the 596	  

Peru Margin—have the potential for a large range of Mo concentrations, regardless of pore water redox, 597	  

overlapping with both euxinic settings and oxic environments with pore water sulfide. The additional 598	  

application of Fe speciation differentiates euxinic and low oxygen (non-euxinic) settings, but other 599	  

paleoredox proxies (for example, U concentrations, N isotopes, Mo isotopes, iodine contents) are 600	  

necessary to discern low oxygen environments from oxic settings. If paleoredox indicators beyond Fe 601	  

speciation and Mo concentrations provide independent constraints on oxic water column conditions, Mo 602	  

concentrations are a generally reliable indicator of the presence pore water sulfide accumulation. 603	  

Overall, our results confirm that Fe speciation applications to identify ancient pore water sulfide 604	  

accumulation are reasonable, similar to applications of Sperling and others (2015), but point to the 605	  

requirement of more nuanced considerations for similar applications of Mo concentrations. When Fe 606	  

speciation and Mo concentrations are applied together to ancient sediments, the modern framework and 607	  

authigenic Mo model combined here may be used to constrain trends in pore water sulfide accumulation 608	  

and modes and ranges of Mo delivery to non-euxinic sediments. These constraints provide a context for 609	  

tracking evolutionary trends in benthic habitation as well as controls on seawater sulfate and Mo 610	  

concentrations through time. 611	  

 612	  
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Table captions 628	  

Table 1. Results for Fe speciation, degree of pyritization (DOP), and bulk sedimentary Fe and Al 629	  

concentrations. The data are presented in figure 5. 630	  

Table 2. Sedimentary and pore water Mo and Mn concentrations. These data are presented in figure 6. 631	  

Table 3. Sulfur isotope values for pore water sulfate and AVS for samples from FOAM. The data are 632	  

presented in figure 4. 633	  

Table 4. Multiple sulfur isotope data from the 2010 FOAM core. The data are presented in figure 4. 634	  

Table 5. Variables and values used for model calibration and sensitivity tests in figure 7. 635	  

Figure Captions 636	  

Figure 1. Map showing FOAM location. Image is taken from Google Earth. 637	  

Figure 2. Compilation of Fe speciation data from modern sediments. (A) non-euxinic water columns with 638	  

(Canfield, 1989; Raven and others, 2016; Riedinger and others, 2017; Scholz and others, 2014b) and 639	  

without (Aller and others, 2004; Canfield, 1989; Goldberg and others, 2012; Henkel and others, 2016; 640	  

Riedinger and others, 2017; Scholz and others, 2014b; Wehrmann and others, 2014; Wijsman and others, 641	  

2001) pore water sulfide in the host sediments. (B) Euxinic (Lyons and others, 2003; Raiswell and 642	  

Canfield, 1998; Wijsman and others, 2001), low oxygen (Raiswell and Canfield, 1998; Raven and others, 643	  

2016; Scholz and others, 2014b), and oxic water columns (Aller and others, 2004; Aquilina and others, 644	  

2014; Canfield, 1989; Goldberg and others, 2012; Henkel and others, 2016; März and others, 2012; Peketi 645	  

and others, 2015; Raiswell and Canfield, 1998; Riedinger and others, 2017; Scholz and others, 2014b; 646	  

Wehrmann and others, 2014; Zhu and others, 2012; Zhu and others, 2015). Low oxygen is defined as <15 647	  

µM O2 but lacking detected sulfide. Notably, the ‘highly reactive’ Fe is determined differently between 648	  

the publications, including the sequential extraction of Poulton and Canfield (2005), its predecessors (for 649	  

example, Raiswell and Canfield, 1998; Aller and others, 2004), and other modifications (for example, 650	  

Raven and others, 2016). When available, Fepy/FeHR includes iron from the acid volatile S extraction in 651	  

the numerator. The horizontal line represents the suggested boundary for oxic water column conditions 652	  

for modern sediments, 0.38 (Canfield and Raiswell, 1998). The vertical line represents the Fepy/FeHR 653	  

boundary for indication of sulfide accumulation of 0.7, which is discussed in the main text. The solid bars 654	  

represent ±1σ of the respective data. 655	  

Figure 3. Box and whisker plots comparing sedimentary Mo concentrations from: (A) Oxic water column 656	  

settings with (Malcolm, 1985; Morford and others, 2007; Pedersen, 1985; Poulson Brucker and others, 657	  

2009) and without (Böning and others, 2004; Goldberg and others, 2012; Morford and others, 2009; 658	  

Poulson Brucker and others, 2009; Scholz and others, 2011; Zheng and others, 2000) appreciable pore 659	  

water sulfide concentrations. Intervals where Mo is associated with Mn enrichments (>2 wt. % Mn in 660	  

most cases) are not included. Note the difference in scale in part A relative to B and C. (B) Oxic (Böning 661	  

and others, 2004; Goldberg and others, 2012; Malcolm, 1985; McManus and others, 2006; Morford and 662	  

Emerson, 1999; Morford and others, 2009; Morford and others, 2007; Pedersen, 1985; Poulson Brucker 663	  

and others, 2009; Poulson and others, 2006; Scholz and others, 2011; Shimmield and Price, 1986; Sundby 664	  

and others, 2004; Zheng and others, 2000) and low oxygen water columns (Böning and others, 2004; 665	  

Brongersma-Sanders and others, 1980; Calvert and Price, 1983; McManus and others, 2006; Morford and 666	  
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Emerson, 1999; Nameroff and others, 2002; Poulson Brucker and others, 2009; Poulson and others, 2006; 667	  

Scholz and others, 2011; Zheng and others, 2000)—defined as <15 µM O2 but lacking dissolved sulfide. 668	  

(C) Low oxygen water column sites with (Böning and others, 2004; Poulson Brucker and others, 2009; 669	  

Scholz and others, 2011; Zheng and others, 2000) and without (Nameroff and others, 2002; Scholz and 670	  

others, 2011; Zheng and others, 2000) appreciable sulfide concentrations in the pore waters. A lack of 671	  

appreciable sulfide is defined by sulfide measured but <100 µM, sulfide measured but below detection, or 672	  

sulfide not measured but with elevated dissolved Fe concentrations.  673	  

	  674	  

Figure 4. FOAM concentration profiles for (A) pore water sulfate and hydrogen sulfide, (B) total organic 675	  

carbon (TOC), and (C) weight percent sulfur in pyrite. Also included are isotope compositions of (D) 
34

S 676	  

(δ
34

S) of sulfate and dissolved sulfide and (E) 
33

S (Δ
33

S) for sulfate and dissolved sulfide. In part D, data 677	  

are shown from both the cores utilized for measurement in A, B, C, E of this figure (2010 core) and 678	  

previously unpublished data from core FOAM-1 (Aller 1980a, b). 679	  

 680	  

Figure 5. (A) Dissolved pore water Fe concentrations, (B) dithionite Fe to total Fe ratios (Fedith/FeT), (C) 681	  

degree of pyritization (DOP), and (D) ratios of highly reactive Fe to total Fe concentrations (FeHR/FeT), 682	  

total Fe to Al ratios (FeT/AlT), and pyritized Fe over highly reactive Fe (Fepy/FeHR). The vertical bar 683	  

represents the range of DOP previously measured at FOAM from Canfield and others (1992). 684	  

Figure 6. Sedimentary (A) Mo concentrations, (B) Mo/Al mass ratios, (C) pore water Mo concentrations, 685	  

(D) sedimentary Mn concentrations, and (E) pore water Mn concentrations. Horizontal dashed lines 686	  

represent the depth of significant sulfide accumulation. Shaded areas represent Mo/Al average shale 687	  

values from Turekian and Wedepohl (1961). 688	  

 689	  

Figure 7. Diagenetic model results. Baseline values (red dot) are parameters determined from the FOAM 690	  

site and are presented in Table 5. Unless otherwise indicated, the model sensitivity analyses use the 691	  

FOAM values for relevant parameters. We explore the sensitivity of marine authigenic Mo enrichments to 692	  

dissolved seawater Mo and O2, sedimentation rates, organic matter rain flux and porewater H2S levels 693	  

over a wide range of parameter space relevant to that considered in figure 3.694	  
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Figure 2. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7. 
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Table 1.  

Depth 

(cm) 

Feasc  

(wt %) 

Fedith 

 (wt %) 

Femag 

(wt %) 

Fepy 

(wt %) 

FeHCl 

(wt %) 

FeT  

(wt %) 

AlT 

(wt %) 

FeHR/FeT Fepy/FeHR FeT/Al DOP TOC 

(wt %) 

0.5 0.02 < D.L. 0.09 0.68 1.37 3.18 5.82 0.25 0.86 0.55 0.33 1.75 

2 <D.L. 0.11 0.06 0.65 1.14 3.44 6.61 0.24 0.79 0.52 0.36 1.85 

4 0.06 0.13 0.05 0.31 1.18 3.16 6.43 0.18 0.55 0.49 0.21 1.20 

6 0.03 0.10 0.06 0.36 1.33 2.96 5.67 0.19 0.65 0.52 0.22 1.22 

8 0.01 0.04 0.02 0.35 1.05 3.13 6.45 0.14 0.84 0.48 0.25 1.31 

10 0.01 0.03 0.02 0.60 0.94 2.72 5.51 0.24 0.91 0.49 0.39 1.01 

12 0.01 0.02 0.06 0.66 1.02 2.77 5.71 0.27 0.86 0.48 0.39 2.50 

14 < D.L. < D.L. 0.01 0.74 1.16 3.03 6.03 0.25 0.98 0.50 0.39 1.21 

16 0.01 0.02 0.01 0.65 0.94 3.11 6.19 0.22 0.94 0.50 0.41 0.71 

18 0.02 0.03 0.03 0.69 1.00 2.53 4.95 0.31 0.89 0.51 0.41 1.04 

20 0.05 0.04 0.07 0.71 1.25 3.21 6.04 0.27 0.82 0.53 0.36 1.32 

22 < D.L. < D.L. 0.06 0.93 0.92 3.32 6.67 0.30 0.94 0.50 0.50 1.42 

24 0.01 < D.L. 0.05 1.06 1.24 3.12 4.85 0.36 0.95 0.64 0.46 1.52 

26 < D.L. < D.L. 0.07 0.83 1.12 3.69 7.38 0.24 0.93 0.50 0.43 1.65 

28 < D.L. < D.L. 0.04 0.93 1.51 3.45 7.01 0.28 0.96 0.49 0.38 1.24 

30 < D.L. < D.L. 0.02 0.86 0.97 3.03 5.69 0.28 0.99 0.53 0.47 1.45 

32 0.04 0.02 0.08 0.68 1.21 3.17 6.12 0.26 0.83 0.52 0.36 1.41 

34 0.03 0.01 0.08 0.59 1.24 2.79 5.89 0.26 0.83 0.47 0.32 0.87 

36 < D.L. < D.L. 0.03 0.70 1.10 3.19 6.09 0.23 0.96 0.52 0.39 1.54 

38 < D.L. 0.01 0.07 0.69 1.20 3.06 5.87 0.25 0.90 0.52 0.36 1.91 

40 0.03 0.03 0.08 0.66 1.17 3.00 5.73 0.27 0.83 0.52 0.36 1.00 

42 0.02 0.01 0.06 0.55 1.14 3.28 6.47 0.19 0.87 0.51 0.33 1.47 

44 0.02 0.01 0.07 0.71 1.13 3.04 5.70 0.27 0.88 0.53 0.39 1.64 

46 0.01 < D.L. 0.09 0.81 0.99 3.31 6.48 0.27 0.89 0.51 0.45 1.49 

48 0.02 0.01 0.06 0.60 0.77 3.16 5.84 0.22 0.86 0.54 0.44 1.42 

50 < D.L. < D.L. 0.02 0.85 0.84 2.84 5.22 0.31 0.97 0.54 0.50 1.27 

D.L. = Detection limit  
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Table 2.  

Depth 

(cm) 

Pore water 

 Mo (nM) 

Bulk Mo 

(ppm) 

0.5 157.4 1.1 

2 139.8 1.1 

4  1.1 

6 296.5 1.0 

8  1.0 

10 79.9 1.0 

12  1.2 

14 115.1 1.0 

16  1.3 

18 35.9 1.1 

20  0.9 

22 3.0  

24  0.9 

26 4.5  

28  1.0 

30 13.9 1.0 

32  0.9 

34   

36  1.0 

38 34.2 0.9 

40  1.1 

42 14.4 1.0 

44  1.0 

46 14.8 1.1 

48  1.0 

50 8.4 1.2 
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Table 3 

 

Core Depth (cm) δ
34

S sulfate (‰) 
δ

34
S AVS 

(‰) 
δ

34
S pyrite (‰) 

FOAM-1 0 20.5  	  

FOAM-1 0.5 23.4 

 

-20.1 

FOAM-1 1.5 25.1 -18.4 

 FOAM-1 2.5 24.7 -21.1 -23.0 

FOAM-1 3.5 26.2 -20.3 -23.2 

FOAM-1 4.5 25.8 -19.9 -23.4 

FOAM-1 5.5 26.8 -20.7 -22.9 

FOAM-1 6.5 28.2 -22.7 

 FOAM-1 7.5 28.6 

 

-23.1 

FOAM-1 10.5 30.9 
 

 FOAM-1 11.5 30.9 
 

 FOAM-1 12.5 32 
 -23.2 

FOAM-1 13.5 33.3 
 -22.1 

FOAM-1 14.5 

  

-21.8 

FOAM-1 14.5 

  

-21.7 

FOAM-1 15.5 33.8 
 -21.6 

FOAM-1 16.5 33.5 
 -21.1 

FOAM-1 17.5 34.3 
 

 FOAM-1 18.5 34.6   -19.1 
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Table 4 

 sulfate sulfide 

Depth δ
 34

S (‰) Δ 33
S (‰) δ

 34
S (‰) Δ  

33
S (‰) 

0 (bw) 20.85 0.040   

2 21.87 0.032   

4 21.44 0.041   

8 23.98 0.036   

12 37.35 0.113 -18.95 0.149 

16 36.00 0.104 -19.48 0.155 

20 37.97 0.122 -17.80 0.159 

24 42.16 0.115 -17.07 0.179 

28 43.63 0.117   

32 44.28 0.119   

36 43.65 0.102   

40 43.80 0.116   
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Table 5 

Parameters Values Units Sources 

Dissolved seawater [Mo] 150 nM (this study – FOAM) 

Dissolved seawater [O2] 150 µM  

Mo Diffusion coefficient (DMo) 391 cm
2
 yr

-1
 (Malinovsky and others, 2007) 

O2 Diffusion coefficient (DO2) 621 cm
2
 yr

-1
 (Ferrell and Himmelblau, 1967; Hayduk 

and Laudie, 1974) 

Sedimentation rate (w) 0.2 cm yr
-1

 (Goldhaber and others, 1977; 

Krishnaswami and others, 1984) 

Sediment porosity (φ) 0.8 - (Boudreau, 1997) 

Organic rate constant (korg) 4.0×10
-3

 yr
-1

 (Arndt and others, 2009) (this study – 

FOAM) 

Thiomolybdate rate constant 

(kth) 

1×10
3
 mmol cm

-2
 yr

-1
 (this study – FOAM) 

Limiting concentration for O2 

(KO2) 

20×10
-6

 mmol cm
-3

 (Reed and others, 2011) 

Organic rain flux (Forg) 0.3 mmol cm
-2

 yr
-1

 (this study – FOAM) 
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