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Abstract It is important to consider variations in material
parameters in the design of automotive structures in order to
obtain a robust and reliable design. However, expensive tests
are required to gain complete knowledge of the material be-
havior and its associated variation. Consequently, due to time
and cost constraints, simplifiedmaterial scatter modeling tech-
niques based on scatter data of typical material properties pro-
vided by the material suppliers are used at early design stages
in simulation-based robustness studies. The aim of this paper
is to study the accuracy of the simplified scatter modeling
methods in representing the real material variation. The sim-
plified scatter modeling methods are evaluated by comparing
the material scatter obtained by them to the scatter obtained by
complete tensile tests, which are obtained after detailed time-
consuming experimental investigations. Furthermore, an ac-
curacy assessment is carried out based on selected responses
from an axially-crushed, square tube made from DP600 steel.

Keywords Material scatter . Tensile test . Flow curve .
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1 Introduction

Scatter in material properties is one of the main sources of
uncertainty, which needs to be accounted for in stochastic
design optimization of automotive body structures. During
the early design phases of automotive body structures, differ-
ent materials are considered for the design. Due to time con-
straints, designers do not have access to detailed material scat-
ter data. The only data available are material specifications
which are stated in material standards and basic mechanical
properties provided by material suppliers. Consequently, at
these stages only approximative scatter modeling techniques
are used for robustness studies. However, due to lack of ex-
perimental data these approximative modeling methods have
also been used in later stages of the design process. For exam-
ple in (Lönn et al. 2009; Aspenberg et al. 2013; Chen and Koç
2007; Del Prete et al. 2010) variations in material properties
are incorporated by simple scaling of the nominal stress–strain
curve, where the scaling factor often is based on variation of
either the yield stress, Rp0.2 or the ultimate stress, Rm. Another
commonly used simplified approach is to incorporate material
scatter by varying the parameters in an analytical material
hardening relation (Ledoux et al. 2007; Marretta and Di
Lorenzo 2010; Jansson et al. 2008; Müllerschön et al. 2007;
Li et al. 2009; Quetting et al. 2012). The above approxima-
tions are based on scatter data of a limited number of material
properties and may not represent the true characteristics of the
material scatter. However, approximation techniques are nec-
essary when there is no access to the actual experimental data,
especially at early design phases.

Recently, there have been studies focusing on developing
new simple approaches to material scatter representation in FE
simulations, Even and Reichert (2010) proposed two ap-
proaches to generate stochastic flow curves using scatter data
of the material parameters Rp0.2, Rm and the elongation at
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fracture A80 provided by the material supplier. In the first
approach, new material curves were generated by reposi-
tioning the nominal tensile test curve to match Rp0.2 and Rm
of each scatter data set. In the second approach, the authors
developed a predictive model having Rp0.2, Rm and uniform
elongation, Ag as inputs to generate stochastic flow curves. Ag

is evaluated using A80 distribution and the Ag/A80 ratio obtain-
ed from the tensile test curve.

Although different approximating approaches to in-
corporating scatter in material properties in FEA have
been used in the literature, rather less attention has been
paid to benchmarking these approximating methods in
representing real material behavior and its associated
variation. In Even and Reichert (2010), the authors have
benchmarked their method by comparing the stress–
strain curves obtained with the curves generated by
physical tests. However, none of the above studies have
investigated the accuracy of the approximative scatter
modeling approaches to response variations as compared
to detailed scatter modeling.

The main purpose of this work is to assess the sim-
plified material scatter modeling approaches in
representing the physical behavior of a material and its
associated variation. The accuracy assessment is carried
out by comparing the approximated material scatter data
to detailed experimental scatter data. In addition, the
accuracy is assessed also on a structural level by
predicting the variation of the response of an axially
crushed, thin-walled square tube made of dual phase
steel DP600. In this study the focus is given to an
impact load case, since the impact load case is one of
the most critical load cases in vehicle body structure
development.

The article is organized as follows: First, a detailed anal-
ysis of the experimental data is performed. Then the mate-
rial scatter modeling methods are briefly explained. The
application example and the results obtained are presented
in Section 4 and Section 5 respectively. Finally, a discus-
sion part is presented before conclusions are drawn.

2 Statistical analysis of experimental data

In this study, tensile test results from 102 samples of
virgin DP600 material have been used in order to gen-
erate representative material scatter data, which will be
used in this study as a reference data set. All test spec-
imens are from different coils from the same material
supplier and test data concerning the material rolling
direction is considered for this study. The nominal
thickness of the sheets studied is 1.45 mm and the sam-
ple thicknesses are in the range of 1.36-1.55 mm. Dual
phase (DP) steels are high strength steels, which con-
sists of two phases namely ferrite and martensite. They
are produced by controlled cooling from the austenite
phase. Their high strength combined with excellent
drawability make them suitable for many automotive
structural applications.

2.1 Mechanical properties

Variations of important mechanical properties of DP600
obtained from the tensile tests are listed in Table 1 to-
gether with the material specifications according to the
VDA 239–100 standard (VDA 2011). For the current
sample size 95 % confidence interval of the mean and
standard deviation estimates have also been evaluated.
See e.g. (Haldar and Mahadevan 2000) for more details.
Five mechanical properties, namely proof stress at
0.2 % plastic strain, Rp0.2, ultimate stress, Rm, strain at
rupture with 80 mm gauge length, A80, uniform elonga-
tion, Ag, and strain hardening exponent , n, are present-
ed in Table 1. As can be seen, experimentally-observed
variations in material properties are within the specified
tolerances of the standard. The mean Rp0.2 nearly
matches the median of the specified tolerance for Rp0.2

by the standard, whereas the mean of Rm differs slightly
from the median of the specified tolerance for Rm. The
mean and standard deviation of the material parameters
are evaluated, assuming a normal distribution.

Table 1 Stochastic mechanical properties of DP600 obtained from tensile tests

Rp0.2

[MPa]
Rm

[MPa]
A80

[%]
Ag

[%]
n10 − 15

[−]

Standard specifications 330 - 430 590 - 700 ≥ 20 >0.14

Mean value 377.41 631.80 26.02 17.27 0.1894

95 % Confidence
interval

[374.70-380.11] [628.98-634.63] [25.78-26.27] [17.15-17.40] [0.1879-0.1909]

Standard deviation 13.77 14.38 1.23 0.63 0.008

95 % Confidence
interval

[12.11-15.97] [12.64-16.68] [1.09-1.43] [0.55-0.73] [0.007-0.009]

Minimum value 340.39 596.61 22.77 15.42 0.17

Maximum value 421.28 671.76 28.48 18.74 0.202
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2.2 Normality test

Normality of the Rp0.2 and Rm data distributions has been eval-
uated by the Anderson-Darling test (Anderson and Darling
1952). The test accepts normality for both properties.
Furthermore, a check of the data distribution of Rp0.2 and Rm
has been performed by comparing the empirical distribution of
the samples with the fitted theoretical normal distribution, see
Figs. 1 and 2. As can be seen in Fig. 1, there is a good agree-
ment between the data distribution and the fitted normal density
function. The cumulative plots also confirm this, see Fig. 2.

2.3 Correlation matrix

Correlation betweenmaterial properties has previously been used
in some studies to model material scatter efficiently (Even 2010;
Wiebenga et al. 2014). Consequently, the correlation between
important material parameters has been studied in this section.
The correlation coefficients between the material parameters

Rp0.2, Rm, A80, n and the thickness of the sheet are presented in
Fig. 3. The Pearson’s correlation coefficient is utilized in order to
represent the interdependency of the material parameters. The
Pearson’s correlation coefficient indicates the degree of linear
relationship between two variables and it is defined as

ρxy ¼
Cov X ; Yð Þ

σxσy

ð1Þ

where Cov(X,Y) is the covariance between X and Y, σx, and σy
are the standard deviations of X and Y, respectively. Cohen’s
standard (Cohen 1988) is used in order to determine the
strength of the relationship based on the correlation coeffi-
cient. As can be seen Rp0.2 has a medium positive correlation
with Rm and a medium negative correlation with A80. A strong
negative correlation is found between Rp0.2 and n. The thick-
ness is weakly correlated to all other parameters. A80 has a
medium negative correlation with Rm and a strong positive
correlation with n.
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Fig. 2 Cumulative plot of sample distribution and theoretical normal distribution for a Rp0.2 and b Rm

Fig. 1 Rp0.2,Rm distribution and fitted Gaussian curves for a Rp0.2 and b Rm
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3 Material scatter modeling methods

In this study, seven simple material scatter modeling ap-
proaches have been evaluated. The performance of these
methods is compared with that of the Direct method, which
is based on the actual stress–strain curves obtained by the
tensile tests and which here is assumed to represent the true
scatter. A set of stochastic flow curves is generated using the
methods presented in order to represent the material scatter.

3.1 Direct method

In this method stochastic strain hardening curves are generat-
ed using the actual stress–strain curves from uniaxial tensile
tests. The engineering stress–strain curves from the tensile
tests are presented in Fig. 4.

Standard tensile tests can only capture stress–strain rela-
tions accurately during uniform elongation and the stress–
strain relation beyond necking can be obtained either by

performing additional tests, e.g. shear tests, or by inverse anal-
ysis of the tensile tests. Numerous analytical material harden-
ing relations have been published which can be used to ex-
trapolate the data. Apart from extrapolation, analytical ap-
proximation also reduce the noise found in experimental data.
Two analytical functions, the extended Voce and the
Hollomon relations, are here combined in order to describe
the plastic strain hardening, as in Larsson et al. (2011). The
reason for using the Hollomon hardening function beyond the
necking point is that the Voce hardening function yields a
good fit up to necking but for higher plastic strains the func-
tion saturates and experimental data shows that DP steels ex-
hibit sustained hardening behavior beyond necking (Lee et al.
2005). The combined analytical function is given as

σy εp

� �

¼
σ0 þ Q1 1−e−C1εp

� �

εp≤ε
t
p

A þ B εp

� �n
ε
t
p ≤ εp

(

ð2Þ

where σ0, Q1, C1, A, B and n are material parameters and
εp
t is the plastic strain at the transition between Voce and
Hollomon hardening. A plastic strain close to the diffuse
necking point is selected as the transition strain, cf.
(Larsson et al. 2011).The parameters of the Voce function
for each test curve are fitted using optimization, where the
parameters are found by minimizing the error between the
Voce fitted curve and the test curve. In order to maintain
the smooth transition between the Voce and Hollomon
hardening, A, B and n need to satisfy C1 continuity. Thus,

Aþ B ε
t
p

� �n

¼ σ0 þ Q1 1−e−C1ε
t
p

� �

n B ε
t
p

� �n−1
¼ C1Q1e

−C1ε
t
p

ð3Þ

Furthermore, the flow stress σ100 at 100 % plastic strain is
introduced in order to evaluate the hardening parameters A, BFig. 4 Engineering stress–strain curves from experiments

Fig. 3 Correlation matrix
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and n in Eq. (3), which yields that the condition A+B= σ100

must be fulfilled. For additional details, see Larsson et al.
(2011). Inverse analysis based optimization is carried out in
order to determine the optimum value of σ100. The parameters
Q1,C1,σ0 and the initial value of σ100 is passed to a Matlab
routine within the optimization loop. For each plastic harden-
ing curve, the parameters A, B and n are determined by min-
imizing the mean square error between the experimental
force-displacement curve and the force-displacement curve
obtained by an FE simulation of the tensile test in LS-
DYNA code (Hallquist 2006). A flow chart of the optimiza-
tion process is presented in Fig. 5. The optimization formula-
tion is given by

Findσ100

Minimize e ¼
X

nd

i

Fsim
−Fexp

� �

Subject toσ100≥σ0 þ Q1 1−e−C1
� �

C1≤1 ð4Þ

where Fsim and Fexp are the forces obtained from the FE
simulation and experiments, respectively. The forces are
evaluated at a finite number of displacements nd. The
stress–strain curve which approximately represents the
average of the fitted set of curves is considered as the
nominal stress–strain curve.

3.2 Approximate methods

In this section, five commonly used simple approximate scat-
ter modeling methods are described. These methods are based
on scatter data of a limited number of standard material prop-
erties and can thus be used even with basic data from any
supplier. Furthermore, two additional approximate methods
are introduced in this section. These two methods are pro-
posed for modeling the material scatter data, when the nomi-
nal tensile test curve is unavailable. In the first four methods,
i.e. Method 1a, Method 1b, Method 2a and Method 2b, scatter
data is generated by simple scaling of the nominal stress–
strain curve. In the first two methods the nominal stress–strain
curve is generated using material standard data, whereas the
latter two methods utilize the nominal stress–strain curve from
the tensile-test. In Method 3, scatter data is generated by al-
tering the paramters of the analytical material hardening rela-
tion. In Method 4 scatter data is generated by interpolation
between min and max hardening curves. The correlation be-
tween materials parameters has been considered in Method 5
while modeling the material scatter.

3.2.1 Method 1a

The idea behind this approach is to generate stochastic flow
curves using the material specifications found inmaterial stan-
dards, see Table 1. Thus no additional experimental data is
required. In this method stochastic flow curves are generated
by scaling the nominal stress–strain curve, c.f. (Lönn et al.
2009; Aspenberg et al. 2013; Chen and Koç 2007; Del Prete
et al. 2010). The nominal stress–strain curve is generated
using the power law hardening relation

σ ¼ Kεn ð5Þ

In the above equation, the value of the strength coeffi-
cient K is found from the average value of Rm, for cold
rolled DP600 in the VDA 239–100 standard (VDA 2011),
while ε and n are kept constant during this evaluation.
The true strain at the onset of necking is considered to
be equal to the strain hardening exponent. The values of ε
and n are set to 0.14, i.e. the lowest n value from the
standard specification (VDA 2011). This will yield a con-
servative estimate of the strain hardening. The mean true
Rm is evaluated using the mean engineering Rm from the
standard specifications and it is found to be 735 MPa. The
nominal plastic hardening curve is then generated by re-
moving the elastic part of the above nominal curve.

The stochastic curves are generated by scaling the
nominal stress–strain curves, based on the Rp0.2 scatter
as used in many previous studies. In this work, the Rp0.2

values are assumed to be normally distributed between the
specified tolerance 330–430 MPa, see Table 1. Based onFig. 5 Flow chart of the optimization process to find σ100

An evaluation of simple techniques to model the variation 949



this data, the mean and standard deviation of the scaling
factors are computed. Figure 6 shows the fitted nominal
curve in this method along with the nominal stress–strain
curve from the Direct method. The nominal curve is fitted
using Eq. (5). Figure 7 shows the scaled curves with
maximum and minimum scaling factors together with
the stochastic flow curves from the Direct method.
These scaled curves are generated by scaling the nominal
curve using the minimum and maximum scaling factor.

3.2.2 Method 1b

This method uses the same approach as Method 1a except
that the scaling factors are based on the scatter in Rm. The
mean and the standard deviation of the scaling factor are
found using the standard data, see Table 1. The scaled
curves with maximum and minimum scaling factor ob-
tained using Method 1b are shown in Fig. 8.

3.2.3 Method 2a

In this method stochastic flow curves are generated by scaling
the nominal stress–strain curve as in Method 1a. The only
difference is that the nominal stress–strain curve is based on
the complete hardening curve from a tensile test. The average
stress–strain curve which approximately represents the aver-
age of the fitted set of curves in the Direct method is consid-
ered as the nominal stress–strain curve. Thus, this method
requires the nominal stress–strain curve based on a tensile test
apart from standard material data. Here, the scaling factors are
based on the scatter inRp0.2. The scaled curves with maximum
and minimum scaling factors evaluated using Method 2a are
presented in Fig. 9. These scaled curves are generated by
scaling the nominal curve from the Direct method using the
minimum and maximum scaling factor.

3.2.4 Method 2b

Method 2b is similar to Method 2a, however the scaling fac-
tors are based on the Rm scatter. The scaled curves with max-
imum and minimum scaling factors evaluated using Method
2b are presented in Fig. 10.

3.2.5 Method 3

In several previously-published studies, material scatter is in-
corporated by independently varying the parameters in a mate-
rial hardening description. In (Marretta and Di Lorenzo 2010)
the authors have varied the parameters of the power law hard-
ening relation independently to generate stochastic flow curves.
These authors have also considered the variations in the anisot-
ropy coefficients and Young’s modulus. Whereas, in
(Müllerschön et al. 2007) stochastic flow curves are generated
by varying the hardening exponent,n, and strength coefficient,
K, in the Swift hardening relation. Voce equation is used in (Li

Fig. 8 Scaled curves based on the Rm scatter using Method 1b

Fig. 7 Scaled curves based on the Rp0.2 scatter using Method 1a
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Fig. 6 Nominal stress-train curve using the Direct method and Method 1a
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et al. 2009) to fit a nominal tensile test curve, and stochastic
curves are created by varying one parameter and keeping the
other parameters constant. Quetting et al. (2012) proposed two
approaches to incorporate material scatter in which stochastic
flow curves are generated by varying four material parameters
Rp0.2, Rm,n and Ag in the hardening relations. The authors’ of
(Quetting et al. 2012) have used two hardening relations, which
are based on the Ghosh and Hocket-Sherby formulations, re-
spectively. In Sigvant and Carleer (2006), the nominal stress–
strain curve is approximated with an equation and stochastic
flow curves are generated by independently varying the values
of Rm and Rp0.2 in the fitted equation.

The presented method in this section is similar to those used
in the above studies. In this method stochastic hardening curves
are generated by independently varying the hardening exponent,
n, and the strength coefficient, K, of the power law hardening
function, cf. Eq. (5). Since the scatter in the hardening exponent,
n, is not listed in the standard material specifications, this data is
obtained from the material supplier. The mean and standard

deviation of the hardening exponent, n, is computed based on
the n scatter data obtained and it is assumed that the variation of
n is normally distributed. The mean value of n for the present
material is found to be 0.20 and the standard deviation is 0.008.
The mean and standard deviation of K are evaluated from
Eq. (5) using the mean and standard deviation of Rm, while ε

and n both are kept constant at 0.20 during this evaluation. The
mean true Rm is evaluated using the strain at ultimate strength
and the mean engineering Rm from standard data. Themean true
Rm is found to be 774 MPa and this leads to K=1067 MPa for
n=0.20. The standard deviation of Rm = 18.33MPa leads to the
standard deviation of K=25.29 MPa. The plastic hardening
curves are generated by removing the elastic part of the stochas-
tic stress–strain curves generated. The nominal stress–strain
curve is generated using Eq. (5) and it is shown in Fig. 11.

3.2.6 Method 4

In this method stochastic hardening curves are generated
by interpolation between two curves which represent the
upper and lower bounds of the hardening curve spectrum
from the experiments, see Fig. 12. The representative
curves are created using the Swift hardening relation.

σ ¼ K ε0 þ εp

� �n
ð6Þ

where K, ε0,n are material parameters and εp is the effective
plastic strain. The material parameters of the Swift
curve are evaluated using the actual stress–strain curves,
which represent the upper and lower bounds of the test
curve spectrum. These parameters are found by mini-
mizing the error between the fitted Swift curve and
the actual test curve. The nominal stress–strain curve
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Fig. 10 Scaled curves based on the Rm scatter using Method 2b
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Fig. 9 Scaled curves based on the Rp0.2 scatter using Method 2a
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Fig. 11 Nominal stress-train curve using the Direct method and Method 3
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from the Direct method and the average curve generated
using Method 4 are presented in Fig. 13.

3.2.7 Method 5

The correlation observed between the material parameters has
been used in some of the previously-published studies in order
to improve the efficiency of material scatter modeling, e.g.
(Even 2010; Wiebenga et al. 2014). In the method presented
by Even and Reichert (2010), they utilized the correlation be-
tween Rp0.2 and Rm to model Rm as a linear function of Rp0.2.
Since only a moderate correlation between Rp0.2 and Rm is
observed, in this study a Gaussian Copula-based (Embrechts
et al. 2001) approach is used in order tomodel the dependencies
between these two parameters. A Copula is a function that
connects a multivariate distribution to its univariate marginals.

The Gaussian copula for a bivariate case is given by

CN u:vð Þ ¼

Z Φ−1 uð Þ

−∞

Z Φ−1 vð Þ

−∞

1

2π 1−R2
12

� �1

.

2

exp −
s2−2R12st þ t2

2 1− R2
12

� �

( )

dsdt

ð7Þ

where Φ− 1 denotes the inverse of the standard univariate nor-
mal distribution, u (0, 1) is the uniformly distributed marginal
and R12 is the linear correlation coefficient between the
two random variables. In this study, the distribution of
Rm given Rp0.2 is generated by a conditional distribution
of the bivariate Gaussian copula using Cholesky decom-
position, see (Embrechts et al. 2001) for more details.
The Rm distribution is converted to original scale using

Rm ¼ u2*std Rp0:2

� �

þ mean Rmð Þ ð8Þ

Once the Rm distribution is known, the stochastic hardening
curves are generated using the power law hardening relation
as in Method 3. The only difference is that only the value of
the strength coefficient, K, is varied and the hardening expo-
nent n is kept constant in Eq. (5). The mean and standard
deviation of K are evaluated from Eq. (5) using the mean
and standard deviation of Rm. The value of n is set to 0.20 as
in Method 3. The mean and standard deviation of the engi-
neering Rm is determined using the Rm distribution obtained
by Eq. (8). The mean engineering Rm was found to be
633.3 MPa and the standard deviation 15.06 MPa. The true
mean Rm was found to be 759.91 MPa and this leads to
K= 1048.5 MPa and the standard deviation of K= 15.06.
The nominal curve generated by Method 5 is shown in
Fig. 14.

Fig. 12 Experimental stress–strain curves and binding analytical curves
using Method 4
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Fig. 13 Nominal stress-train curve using the Direct method and the
average stress–strain curve using Method 4
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Fig. 14 Nominal stress-train curve using the Direct method and Method 5
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4 Application example

Thin-walled tube structures subjected to axial buckling have
been widely used as energy absorbers in automotive structures
and represent an important type of structural members. In this
work, scatter modeling approaches are compared based on the
selected responses of an axially-crushed, thin-walled square
tube made from DP600 steel. The structural responses consid-
ered in this work are the absorbed energy, AE, the peak force,
Fpeak, the maximum displacement of the impactor, Dmax, and
the average force, Favg, between 0 and 10 ms. The length of
the square tube is 250 mm, the width is 50 mm and the nom-
inal thickness is 1.45 mm, see Fig. 15. The impactor mass is
100 kg and the impact velocity is 8 m/s.

Two triggers are created near the impact end of the tube in
order to control the initial bucking deformation. Similar trig-
gers are used in Abedrabbo et al. (2009). The other end of the
tube is fixed. The tube is modeled using quadratic Belytschko-
Tsay shell elements with 1.5 mm side length. The interface
between the impactor and the tube is modeled with the nodes-
to-surface contact type and the Coulomb friction coefficient is
set to 0.25 to prevent sliding. Self-contact of the tube is con-
sidered with the Coulomb friction coefficient set to 0.1 to
prevent penetration but allow sliding between the folds. The
material is modeled using the piece-wise linear hardening J2

plasticity material model in LS-DYNA (Hallquist 2006). In
this study, the effect of strain rate of the material is not
considered.

The nominal crush behavior of the axially-loaded
square tube is presented in Figs. 16 and 17. The unde-
formed and deformed shapes of the tube specimen are
shown in Fig. 16, whereas Fig. 17 shows the crushing
force-displacement curve. The nominal response values
are presented in Table 4.

Stochastic analysis of the tube is performed using com-
plete set of fitted hardening curves from the tensile tests.
Since this analysis is based on the stress–strain curves
from the physical tensile tests, the results obtained by this
method are considered as the basis for the comparison of
the subsequent approximation techniques described.

Fig. 15 a Schematic side view of
square tube b top view and c iso-
view showing trigger

Fig. 16 a Undeformed b Deformed shape of the tube
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5 Results

In this work, the accuracy of the previously presented
seven approximative scatter modeling approaches has
been evaluated. Firstly, the approximation methods are
evaluated by comparing the approximated scatter of im-
portant material properties with the actual scatter obtain-
ed from the tensile tests. Secondly, the approximation
methods are compared to the Direct method, considered
to be the true result, using selected responses from an
axially-crushed, square tube.

5.1 Material parameter variation

The estimates of variation in the material properties Rp0.2

and Rm by the approximation methods are presented in
Table 2. The normalized absolute errors E1(μ)) and

E1 (σ) are used as the error indicators for the mean and
standard deviation respectively, where

E1 μð Þ ¼
abs μy−μy ̂

� �

μy

ð9Þ

E1 σð Þ ¼
abs σy−σy ̂

� �

σy

ð10Þ

where μy and σy are the mean or the standard deviation of the
material properties observed in the experiments, whereas μŷ

and σy ̂ are the estimates obtained by the approximating meth-

od. The estimated errors are presented in Table 3.

5.2 Response variation

The scatter in the structural responses obtained by using the
methods studied is presented in Fig. 18. The mean and the
standard deviation of each distribution are summarized in
Table 4. The estimation errors for each of the approximation
methods, am, as compared to the Direct method, dm, are eval-
uated using Eq. (11), which is assumed to illustrate a balanced
total error. The errors computed are presented in Table 5.

E2 ¼
1

4
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6 Discussion

This study evaluates the performance of some simple approx-
imating material scatter modelingmethods used to incorporate
material scatter in stochastic simulations and stochastic design

Table 2 Material scatter data generated using approximation methods
and as a reference the Direct method

Rp0.2 [MPa]
(true stress)

Rm [MPa]
(true stress)

μ σ μ σ

Direct method 378.94 13.77 743.75 15.98

Method 1a 461 20.20 735.1 32.22

Method 1b 461 13.08 735.1 20.87

Method 2a 379.8 16.65 741.5 32.50

Method 2b 379.8 10.78 741.5 21.05

Method 3 346.34 18.55 770.01 16.08

Method 4 327.54 12.48 NA NA

Method 5 378.94 13.77 759.91 15.06

Table 3 Error measurement for the approximation models’ material
scatter estimation

Method Estimation error [Normalized absolute error]

Rp0.2 Rm

μ σ μ σ

Method 1a 0.217 0.47 0.012 1.02

Method 1b 0.217 0.05 0.012 0.31

Method 2a 0.002 0.21 0.003 1.03

Method 2b 0.002 0.22 0.003 0.32

Method 3 0.086 0.35 0.035 0.01

Method 4 0.136 0.09 NA NA

Method 5 0 0 0.019 0.58
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optimizations at early product design stages. The evaluation is
performed based on the variation of selected responses from
an axially-crushed, thin-walled square tube. The results indi-
cate that some of the approximate methods studied estimate
the material scatter and the scatter in the responses reasonably

well. As can be seen from Table 2 and Table 3, Method 1b has
the lowest estimation error for the standard deviation of Rp0.2.
However the estimate of the mean Rp0.2 using this method is
poor. The estimate of the standard deviation of Rm provided by
Method 3 is better than the other methods. The overall error
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Fig. 18 Probability density function of the responses a Maximum displacement b Peak force c average force d Absorbed energy

Table 4 Stochastic analysis
results Max displacement

[mm]

Peak Force

[kN]

Average Force

[kN]

Absorbed Energy

[J]

Method μ σ μ σ μ σ μ σ

Nominal 84.57 117.92 38.39 3781.89

Direct method 85.19 2.62 117.3 3.42 38.18 0.98 3182.2 1.53

Method 1a 81.93 4.31 135.7 4.87 40.76 1.95 3181.0 3.02

Method 1b 81.66 2.86 135.8 3.17 40.77 1.27 3181.2 2.22

Method 2a 85.17 4.83 119.7 4.13 38.42 1.83 3182.0 2.46

Method 2b 84.82 3.14 119.9 2.60 38.44 1.61 3182.3 1.78

Method 3 84.08 3.39 112.4 3.94 38.84 1.43 3181.4 1.76

Method 4 80.83 1.57 114.5 2.46 40.19 0.82 3179.4 0.89

Method 5 85.18 1.84 111.15 1.30 38.23 0.70 3182.2 1.08
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measurement for material scatter estimation indicates that
Method 2b and Method 3 perform better than the other
methods. Since it is not possible to locate Rm for each
stress–strain curve in Method 4, the Rm scatter estimates for
this method are not presented in the table. InMethod 5, the Rm
scatter is generated using Rp0.2 distribution from the test data.
Therefore in Table 3 the estimation error is zero for the Rp0.2
estimation.

Table 5 shows that Method 2b, Method 3, Method 4 and
Method 5 perform reasonably well in estimating the response
variation collectively as compared to the other methods.
Table 4 shows that Method 5 is poor in estimating the varia-
tion in peak force and Method 4 gave poor estimation of the
max displacement variation.

The overall results indicate that Method 2b, Method
3, Method 4 and Method 5 provide reasonable estimates
of the mean and variation of the responses, see Table 4
and Fig. 18. Method 2b and Method 3 also provide
better estimates of the scatter in material properties
compared to the other methods, cf. Table 2. Although
the performance of the methods in estimating response
variations is not directly related to their performance in
estimating the scatter in the material properties Rm and
Rp0.2, the methods that have performed better in estimat-
ing response variations have also performed well in es-
timating the scatter in the material properties Rm and
Rp0.2. The type and amount of scatter data required by
these methods varies. Method 4 and Method 5 are ex-
pensive compared to the other two methods since they
require a significant amount of experimental data,
whereas, Method 2b and Method 3 require a minimal
amount of experimental data. Method 2b requires the
nominal stress–strain curve based on a tensile test in
addition to standard material data. Method 3 requires
information regarding scatter in the strain hardening ex-
ponent, n, as well as standard material data.

In general, both the location and the spread in the data
are important in robustness analysis, consequently both
the mean and the standard deviation estimates are equally
important for an accurate scatter representation. The

reason for the poor estimates of the mean of the responses
by Method 1a, Method 1b and Method 4 is likely the
fitting error. As can be seen from Fig. 6, the fitted analyt-
ical curve in Method 1 differs from the nominal stress–
strain curve of the Direct method. Similarly, Fig. 13
shows that there is a difference between the average curve
obtained by using Method 4 and the nominal stress–strain
curve from the Direct method, especially in the region
beyond the necking point. The primary reason for the
poor fitting in Method 1 is the fact that the minimum
value of n is used since that is the only data provided in
the material specification instead of the nominal n.
Method 1b or Method 4 would have performed better if
the analytical curve used in these methods had captured
the stress–strain relation of the experimental stress–strain
curve of the material used.

The results from Method 1 and Method 2 indicate
that scaling stress–strain curve based on Rm scatter
yields better estimates of scatter in the responses than
the scaling based on the Rp0.2 scatter. As can be seen in
Table 4 and Fig. 18, Method 1a and Method 2a over-
estimate the variation in the responses. The main rea-
son, in both cases, is that the scaling factors are based
on Rp0.2 scatter and the magnitude of Rp0.2 is small
compared to Rm. Consequently, the scaled curves grow
into a much wider spectrum than the spectrum of the
actual hardening curves from the experiments, especially
at higher strains, see Fig. 7 and Fig. 9. The scatter
estimates using Method 1b and Method 2b are much
better than those of Method 1a and Method 2a. This
is due to the fact that the width of the scaled curves
spectrum obtained by this method nearly matches the
test curve spectrum, see Figs. 8 and 10.

The Direct method is based on 102 tensile test curves and it
is found that the number of samples is adequate to capture the
variation in the material properties with a sufficient accuracy
according to the confidence intervals of the estimated mean
and standard deviation of mechanical properties, see Table 1.
It should be noted that no additional physical tests were per-
formed in order to obtain the strain hardening values beyond
the necking point. Instead, the strain hardening functions be-
yond necking are fitted to the tensile test using inverse
analysis.

The tensile test curve, which approximately represents the
average of the test curves has been used as the nominal stress–
strain curve in Method 2. The nominal stress–strain curve
provided by material suppliers usually represents the average
tensile test curve. If the nominal stress–strain curve provided
by the supplier does not represents the average curve, the
scaling factors range needs to be adjusted. The scaling factor
range can be computed by using the stress interval of the
standard data and the stress level (Rp0,2or Rm) of the given
nominal curve.

Table 5 Error
measurement for the
approximation models’
response variation

Estimation error (E)

μ σ

Method 1a 0.088 0.798

Method 1b 0.088 0.278

Method 2a 0.011 0.688

Method 2b 0.012 0.370

Method 3 0.024 0.296

Method 4 0.039 0.332

Method 5 0.026 0.282
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7 Conclusion

In this work, the accuracy of commonly-used, simplified
methods to model scatter in material properties is evaluated
by comparing material scatter generated by these methods to
the material scatter obtained by complete tensile tests.
Furthermore, the methods are compared based on selected
responses from an axially-crushed, square tube made from
DP600 steel. The impact load case is considered in this study,
since this type of load condition is critical in vehicle body
structure development.

The overall results show that Method 2b, Method 3,
Method 4 and Method 5 provide higher levels of accuracy
compared to the other scatter modeling approaches. Method
4 and Method 5 require a significant amount of experimental
data, whereas Method 3 and Method 2b require a minimal
amount of experimental data apart from standard material da-
ta. Method 2b is the most economical and pragmatic in the
early stages of a design process and the accuracy level provid-
ed by this method is sufficient for the early design studies. As
long as the strain hardening behavior of the stress–strain
curves of the material does not vary much as compared to
the nominal hardening curve, this method will estimate the
variation in responses reasonably well. If scaling of the
stress–strain relation is used to describe the material scatter,
then the use of scaling factors based on the Rm scatter is rec-
ommended. The conclusion provided is based on responses of
an impact load case involving DP 600 material.
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