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SUMMARY

An investigation is made to o%tain some information

nature and ma@tude of the errors involved in computing

stresses for large and relatively flexible aircraft when

concerning the

the landing

several simpli-
fying assumptions are made. An exact solution is ude for the landing

stresses of a simplified structure and is compared with several approxi-

mate solutions made when the simplifying assumptions are used..

The simplified structure investigated consisted of a uniform beam

for the wing, a concentrated mass for the fuselage, and an undamped

linear spring for the landing gear. This structure was considered to le
in uniform translation until the landlng gear touched the ground. The

subsequent motion was computed %y using operational calculus in conjunc-
tion with standard beam theog. In general, it was found that, for
moderately flexible landing gears, the neglect of the effect of structural

elasticity in computation of strut forces or of the acceleration of the point

of attachment of the landing gear and then the computations of stresses %y
considering the structure to %e elastic led to small consenative errors;

whereas the neglect of structural eksticity in computing ting stresses

from the strut force or acceleration of the point of attachment of the

landing st+ut led to unconservative errors of appreciable magnitude.

This result suggests tkt a satisfactory treatment of the landing problem

may possibly %e obtained fzmm an .maIysis which assumes that in landing
the aircraft is an elastic structure su%$ect to the forces or accelera-

tions found in a drop test in which a rigid uss is used.

INTRODUCTION

When an aircraft lands, the vertical component of its velocity is

rather suddenly reduced to zero. This sudden chemge in motion of the

aircraft gives rise.to stresses within the structure which ~ become

large and even destructive as the size and weight of airplemes increase
and the design load factor decreases. The desi~ of large airplmes
should therefore consider the effect of a se~ere lsnding on the wings,

fuselage, tail surface, landing-gear struts, and other elastic parts of

the airplane structure.
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When the

compared with
stiffness of an airplane structure
the stiffness of the &ding gear,
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is relatively large

all patis of the
airplane are sub$ect to essentially the same acceleration during landing
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and the stresses in all parts of the airplane are therefo~e readily

computed ?Iymethods of statics. When the stiffnesses of the landing

gear and the airplane structure are comparable in magnitude, the various

parts .ofthe airplane have different accelerations and the pro%lem
becomes much more involved. The calculation of the stresses is a

csomplexpro%lem even when the equations Involved are purely linear; that

is, when the internal forces are proportional to the deformations. Tt

is much more complicated in the actual aircraft %ecause of the nonlinear

characteristics of the landing gear. A nuuiberof approxhate methods of
computing landing stresses have consequently been used.

Because of the practical importance of the landing problem, it is &:

some interest to determine the nature and magnitude of the error involved
in various approximate-methods that-have been used. For this purpose,

an exact solution is made to determine the landing stresses for a highly

slmpklfied structure in which a uniform beam is ueed to represent–the
wing, a rigid mass the fuselage, and a simple spring the landing gear.

The stresses in the wings excited %y the landing impact are computed

by opemtional calculus In con~unction with the standard engineering
vi%ration theory of learns. The results are compared with the resultE

found ly a number of approximate methods. The analytical treatment of

the exact and approximate solutions are given in appendixes.

SYMBOLS

modulus of.elasticity

density of wing material in units of weight

([)

Eg
velocity of sound in wing material

T

acceleration of gravity

semispan of wing

moment of inertia of cross section of wing a%out

neutral axis

cross-sectionalarea o~wlng

()

~
radius of $grat”lonof cross sectl.onof wLng

v T

coordinate along wing measurx3dfrom root

distance from neutral axis of wing t=- fiber

.

●
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W(x, t)

a(x, t)

a(x) Y) t)

7(X, t)

.
An

.1 ii

ma’ss of wing

concentrated

(sexplspan)

mass (one-half of fuselage mass)

spring stiffness

time, zero at leginning of impact

operator
()

a
x

integers 1, 2, 3, and so forth designating a

particular mode of vihation

nth poslti% root of transcendental equation

associated with a given t~e of vi%ration

undamped natural angular frequency of nth mcde} radians

per second

vertical velocity of aircraft prior to impact

natural frequency of fundamental mode of a cantilever,

radians per second

()

PC 3=
~2

natural frequency of fuselage-spring system, radians

per second

(0

~
M

natural frequency of airplane with wing rigid, radians

per second

(~)

s
M~m

deflection, relative to root posititm at t = O,

of wing at station x apd time t

acceleration of wing at statim x and time t

lending stress in wing at station x, distance from

neutral axis y, szlitime t

average shear stress over cross secticm of beam at

station x aml time t

%ending-stress coefficient

mimm l&ding-stress coefficient obtained from

first three modes with proper regard tophase
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shear-stress coefficient

.

.

Bn

3 maximum shear-stress coefficient obtained from first

three modes with proper regafi to phase

RESUITS AND DISCUSSION

Exact solution.- In order to oltain pertinent information on the

problem of landing i~acts, an exact solution is made of the lending

stresses of a highly simplified structure. In this simplified structure
(fig. 1), auniformbeam of mass m was used to represent the wings of
the airplane, a rigid mass of magnitude M to represent the fuselage,

and a simple spring of stiffness S was substituted for the landing
gear. The exact analytical treatment giting the e~wtions for frequencies,

deflecticms, accelerations, strut force, lending stresses, and shear

stresses Is presented in appendix A. The maximum root bending stress
that results from impact (gravity not included) is shown in this appendix

to he given by the equation

where ~ is a dimensionless coefficient dependent-on the physical

parameters of the structure. As can le seen, the maximum stress is

directly proporticmd to the velocity of descenti.

.

.

In figure 2 the coefficient ~ is given for several values of the

ratio of fuselage mass to wing uss as a function of the ratio us WC.
/

In this ratio, Uc is the fundamental frequency of the w~ng as a canti-

lever and us is the frequency of the airplane when the wing is

considered.rigid. Low values of the frequency ratio correspond to a
flexible lending gear and the corresponding induced stresses are relat-

ively small hut-become larger as the landing gear %ecomes stiffer. The

()‘sllmiting case of a rigid landing gear ~ -CO was investigated in

reference 1, damping being taken into account. The results showed that

damping eliminates the higher frequencies much faster than the lower ones

;

so that only the luwer modes might-be expected to contribute to the

maximum root bending stress. In the computation of the curves shown in

figure 2, only the first three modes were considered, with proper regard

being gfven to phase. (See appendix A for the stress that Is associated “

with each mode.) On this basis X is approximately equal to 2.8 in the

case of a rigid landing gear. .
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Approximate solutions.- The exact solution just discussed was obtained
.bysolving the equations of motion directly. In the approximate solutions,
the problem is broken ar%itmri3y into two parts or stages as follows:

Stage 1: Determination of the strut reaction or of the acceleration

of the points of attachment of the lending gear.

Stage 2: Computation of the stresses in the airplane structure %y

use of one of the quantities o%tained in stage 1.

In %oth stages of this approach the structural elasticity must %e

properly taken Into ”accountif the correct solution is to he obtained.

In the approximate solutions the effects,of the structural elasticity

are neglected in one or %othshges. Five approxhate solutions are

given in aypendix B. For convenience in discussion, the approximate

methods are Identified herein as follows:

Method A - Structural elasticity negleoted in%oth stage 1 and stage 2.

Method B - Structural elasticity considered in determining reaction

(stage 1) In_ztneglecte dinstage 2.

Method C - Structural elasticity considered in determining accelerations

(stage 1) but neglected in stage 2.
.

Method D - Structural elasticity neglected in determining reaction

(stage 1) but comidered in stage 2. .
.

Method E - Structural elasticity neglected in detenuining accelerations

(stage 1) but considered in stage 2.

Method F - Statistical approach of Biot and Bispli@off (reference 2);

structural elasticity considered in stage 2.

The simplest calculation, of course, results from use of Method A, .

which neglects the structural elasticity altogether. The acceleration

of all parts of the structure is then assumed to le equal to the acceler-

ation measured in a drop test in which a rigid mass equal to the ~ss of

the airplane without the landing gear is used. The stresses are o%tained

by statics, from a wing loading obtained %y multiplying the mass distri-
bution by the acceleration found in the drop test. The coefficients for

maximum root %ending stress obtained %y method A are shown in figure 3.

This curve is independent of ths mass ratio M/m. For comparison the

exact solution for
M
-= 2 is also shown. This mass ratio is used for “
m

. all of the succeeding comparisons.

The physical assumptions of the two approximate methods in which
.

the structural elasticity is taken into account in stage 1 but ignored

In Btage 2 are shuwn schematically in figure 4. The results found by
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method B, where the true strut reaction (strut force given by exaot

solution) is applied to a rigid afrframe$ a by msthod c> where the

rigid airframe is sub~ect to the true acceleration (acceleration given

by exact solution) at the points of support are shown in figure 3.

.

It appears from figure 3 that the three approxl~te methods, which
neglect the effects of elasticity in the second stage, are Unconservative

for
‘s
~<1

(

‘s

)
markedly so near — = 0.5 but approach the correct results

UC

as the ratio approaches zero. For aircraft with extremely stiff landlng

$-042)>>1 , the approximate methods are highly consemative; they

predict infinite stresses when a rigid landing gear is used. The fact

that curves obtained by methods B and C, which represent approximate

methods in which structural elasticity is taken into account In the first

stage but neglected in the second, agree much better with the curve .

obtained by method A, which neglects structural elastfoity altogether,
them with the exact tiolutionsuggests that the neglect of structural
elasticity in s%age 2 is much more serious than in stage 1.

Two methods are then resorted to in which the effects of structural

elasticity are neglected In stage 1 of the analysis but are properly

taken into account k stage 2 (methodsD andE). The physical assumptions

made are indicated sche-tically in figure 5. Tn these methods the strut
.

reactim and the acceleration are determined in a drop test in which a
“-rigidmass is used. The resulti~ stresses are then computed with due

regard for the elastic response of the stfictuz%.” The results foti~re
.

compared with the exact solution in figure 6. The curve shown for

methcd D is for the strut-reaction method and the..curvefor method E

is for the acceleration method..

~.-

The curves are cut off when O#Ic iS

about-067, since for higher ratios the force or accelerations o%tained

from a drop test with the simple undamped spring will give rise to

resonance effects having very little relation to the actual landing

problem. It appears from figure 6 that the two methods which neglect
structural elasticity onQ in stage 1 (that is when determining strut”

forces or the accelerations of the points of support) are conservative and
are subjectito cnly sndl errors.

A somewhat different method of handling the lending problem is the

statistical approach developed by Biot ~ Bisplinghoff in reference 2.
In this methd (meth~ F),,the time history o~the landing impact is

assumed to he independent of the elastic.properties of the structure, so

that it-may perhaps be classed with the methcds which neglect structural
elasticity in stage 1. A number of other approximations are also involved

for the sake of simpli~ing the enalysis and including a wide variety of
landing conditions. Among these approximations are:

.

.
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(a) The impact force is characterized by only two parameters, the
n!aximumvalue and the duration”of the force; thus, the detailed history

. of the colld.sionis not considered.

(b) The maximum stress in the first mode is obtained By assuming,

in effect, that of a whole class of typical force-time histories having

prescribed values for these two parameters; the force-time histo~ that

applies is the one which leads to the highest stress.

(c) Similar assumptions are made in o%taining stresses in higher

modes. This procedure results, effectively, in the assumption that, of

the force-time histories used to determine the envelope response curve,
a different one may apply to each mode.

(d) The maximum stress is foundby adding together the uimum

stresses found for the first three modes without regard to phase.

.
All of the approximations discussed in connection with the Biot and

Bisplinghoff method are conservative except the use of only three males.

The restriction to three modes, which characterizes also the curves for

the exact solution of the present paper, would be unconservative in the

undamped case; the airplane, however, is subject to a large amount of

dadping and no real unconsematism is like~ to result. The expectation

of a conservative result for the Blot and Bisplinghoff method (method F)

. is verified in figure 6. This method, which makes use of a number of
conservative simplifying assumptions, appears in some cases to overestimat~

the stresses by a factor of almost 2.
.

CONCLUDING REMARKS
>

The problem of computing the landing stresses for a large and rela-

tively flexible aircraft is so complex that most investigations are based

on simplifying assumptions. The’present paper constitutes an attempt to

obtain some information concerning the nature and magnitude of the errors
in these assumptions by solving the landing problem exactly for a simpli-

fied structure and comparing the results with solutions to the ssme

problem obtained by use of the simplifying assumptions.

The simplified structure investigated consisted of a uniform beam for

the wing,,a concentrated mass for the fuselage, and = undamped linear

spring for the landing gear. This structure was considered to be In

uniform translation until the landing gear touched the ground. The

subsequent motion was computed by using operational calculus in conjunction
with standard beam theory..

In most of the approximate treatments that have been proposed the

. problem Is arbitrarily broken Into two parts in the first of which the -
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strut reaction or the acceleration of the point–of’attachment to the
handing gear is determined (stage 1), and in the second of which the .

stresses resulting from the applied force or acceleration are calculated

(stage 2). The various approximate methcxisinvestigated either neglect —

altogether or treat only approximately the effects of +ructural

elasticity in one or both stages.

In general, for moderately flexible landing gears, the neglect-of

the effects of structural elasticity in stage 2 was found to be more

serious than the corresponding neglect-in stage 1. Such neglect in

stage 2 led to unconservative errors of appreciable ruignitude;in stage 1
it led.to errors which were smaller and on the conservative side. A

statistical approach proposed %y Blot–and Bisplinghoffwas found to be
always conservative and to have in some oases a safety factor nearly equal

to 2*

The conclusions just stated were based primarily on the analysis of ‘

the behavior of the simplified structiiiestudied for a ratio of fuselage “

mass to wing mass equal to 2. The results, however, are essentially the

same when the ratio is 1/2 or 5. It therefore appe&s reasonable to

expect that the conclusions of--thispaper have general validitv as
applied to conventional aircraft. In addition, the results suggest that
a satisfactory treatment-of the landing problem may possibly be obtained

from an analysis which assumes that, in landing, the aircraft is an

elastic structure sub~ect to the forces or accelerations found in a drop -, “

test in which a rigid mass is used.

Langley Memorial Aeronautical Iaborato~ f

Natfonal Advisory C!mmittee for Aeronautics
. Iangley Field, Vs., January 30} 1948

.

.

.

.
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APFENDIX A

EXACT SOLUTION

Gene=l analysis.- In order to make the prollem of computing the

landing stresses of an airplane susceptible to accurate solution without

an inordinate amount of lalor it is necessary to ideallze the structure.

The simplified structure used in the present analysis to represent the

airplane is shown in figure 1. The airplane is;considered to be falling

with a constant velocity v until the lottom of the spring is suddenly

stopped by contact with the ground. This disturbance gives rise to

oscillations in the learngoverned ly the differential equation (reference

(Al)

Previous analyses (references 1, 3, and 4) have treated special cases of
oscillations of a cantilever beam due to impact. with an internal damping

term included. E~erlence indicates, howev~r, {hat damping has

slight effect upon the terms that are significant and therefore
is neglected in the present analysis.

‘~ and the operationalWith the use of the notation C2=

a 7
notation y = —

at’
equation (Al) may be written as the ordinary

order differential equation

4
dw

2
+Lw.()

&4 ~2p2

The general solution of this equation is

w=Pcoshe~+Qsinh e~+Rsine ~+sc06e~
L

where

e

r

=L ~
pc

only & -

damping

fourth-

The coefficients P, Q, R, and S are to ‘beevaluated from the

boundary conditions, which in this case are

(A2)

(A3)

1)
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E!x+‘E3r.=ts$=.=o

ti=o+’’ts!a=’J’(V- VI) d. - W(X+

The last-%oundary condition expresses the equilibrium of the forces that

act on the mass M. The expression in %rackets on the right hand is the

change in length of the spring and.,when multiplied by S, gives the force

exerted by the spring on the mass. The term ~(~-v~)dt indioates

that the motion of–uniform t~lation at the bottom of the spring is

suddenly stopped at t = O,
‘d ‘he ‘“em ‘(X=O)

is the displacement of

the root and is equal to the displacement of the bottom of the spring

for t< O. The oscillations set up when the bottom of the spring is

suddenly arrested from uniform translation would be the same as if the
bottom of the spring were suddenly set in uniform motion with the system
Initially at rest. The uniform-velocity term may therefore be omitted .

and the last boundary condition becomes, if ~(- vfi dt iS re~~ced by

the 02eration@l form - ti
P

d+w
P

1
(X=o)

.

With the application of the boundary conditions to equation (A3) there I

is obtained a set o~four nonhomogeneousequations in terms of the four

coefficients P, Q, R, and S. These equations are solved for the

four coefficients and the equation for velocity may then be written.

The operational form for the velocity (that induced in the beam when
the bottom of the spring is suddenly set in motion) Is found to be

●

✎

(A4)
.
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where

()F 13$
(

= (1 + COS e cosh e) cosh

.

- (cosh e sin

r

2

()

z=% 1+ ‘g (1+ Cos e cosh

‘o P
L

and

.

● Interpretation

‘o

of equation (Al+)3Y

\ .lJ

e+ sinhe

e~+ cos ef )
cos e: )

e)+ #cOsh e sin e + sinh e cos e)

{

g=
M

the HeaviSide

.

.

(cos e) slnh .& - sin es
L L )

addition of the com-tant velocity-

+

v gives

1

expexmion theorem and
for the total velocity

n=l “

where .9n is the nth positive root of the equation

()

2

1
00 + m cosh en sin en + sinhen cos en = o-—

z
(A6)

%12
en(l + cos en c06h en)

and

2
~=pceg

(with .!3replaced by en)
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()
2*

A = 1 -~ -$n(sinh~ cos ~ - cosh ~ sin ~)

%

( H+ 2 1 + COS en coah ‘en + m COS en cosh e
R n

3
+ 2Tn (

cosh en sin E?n+ ainh en COEIen
)]

-[

2,

1 ‘o
(

2
=

( )

1+3—
)

1 + COS 6= cosh en
2 I + cos en cOsh en

%2

(+; COS en + cosh
2

)]
en

.

The term
~02
— maybe transformed

%2

equation fA6), which defines the root en, ~ be written

SL3 m 1
into the form — -

~ Me~
and thus

Solution of’this equation for SL3@I gives

~ .enk~+
EI m

This equation (or any of

frequency equation of the befi-rass-spring ~ystem. A graphical represen-

en3(c0sh en sin en + shhen cos en)
(A7)

1 + Cos en cosh en

its previous forms) Is the characteristic

sL3
tation of this equation is shuwn in figure 7, in which — is plotted

EI
against e for values of ~ = o, 2, 5, 10, ad 50. The values of e

.
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D

3corresponding to given values of SL ~ and M/m are the roots On
.

which characterize the modes

Integration of equation
condition (w)~ = O gives

W(x, t) =:

of titration.

(A5) with respect to time with the
for the.deflection

(A8)

11=1

From equation (A5) for velocity and equation (A8) for deflection the

complete lehavfor of the idealized strqcture after landing may be found.

The qumtities of chief interest are the mximum bend@g stress, the

maximum shear stress, the accelerations, and the force in the spring.

Maximum %ending stresses.- The maximum lending stresses U(X$ Yy t)>
at any fiber distance y from the neutral axis, occur at the root and
are given by the equation

2

()
U(X, Y, t) = Ey bnw

ax=.

m

= x~~
E An sinant~

c p n=l
(A9)

where

2
~~ sin en sinh en + cos en cosh en

An=4—

%12

()

~02

1+3— 1 + COS en cosh en)2+ f (COS @n + cosh en)2

%2

Equation (A9) may %e written in the form

~=E~~(A1sfn~t+~ sin~t+A3sin~t+= ● ~) (A1o)
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In the e~ression in parentheses each term may be thoughtiof as the

contribution of a particular mode $0 the bending stress. The expression

in parentheses may be denoted by A and equation (A1O) becomes simll.y

The va#ue& of Al, ~, and ~ are plotted a@nOt ~#c

for - = $ 2, ma 5 in figure 8, and the nmximum value of ~ found to
m

occur in the initial cycles of...vibrationby use of the firsti-threeterms

.

‘1

/

M
of the series is plotted against US Uc for - = ~, 2, and 5, in figure 2.

The quantitY us is the frequency of the syst%m if the wing were rigid:

.
The quantity UC is the frequency of the wing if the spring were

infinitely stiff:

This equation represents the

C.hJ
. PC =2

L2

fun-,ntal cantilever frequency. (See

reference 1.) The ratio US/UC is related to the parameters used in

frequency equation (equation (A7)) by the relation

Msximum shear stress.- The maximum average shear stress ?(X, t)

occurs at the root and is given by the “equation .“
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7(X, t) ( )_2 ‘asw
=Ep —

X=(3 &3 ~+

Uo
.EI~ ‘x B= sinmnt~ - (All)

CL
n=l

where

2.

‘o
19ncosh f3nsin 8n + sinh f3ncos 13n

)(
1 + COS en cosh en

Bn =4_ )
2

‘n

(

%2
1+3—

( r(
1 + COS en cosh en +: CO@ en + cosh en)2

%2

In figure 9 the values of Bl, B2, and B3

for ~ = $ 2, and 5. Equation (All) may be
m

are plotted against OS/~c

written simply

.~~pE
T(X, t)x* Cr

and in figure 10 the value of ~ found by use of the first three modes

M
with proper regard to phase is plotted against ma/me for - = ~, 2, and5.

m

Accelerations.-

a(x, t)

The acceleration sqywhere on the learnis found to be
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Force in spring.- The force in the

stiffness times the displacement at the

equation (A8), the force is found to be

NACA TN No. 1584

syring after landing is the spring

position x=O. By use of .

.

.
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AXWENDIX B

AKPROXWATE SOLUTIONS

Stresses Computed for Rigid Wing

Method A - %ased on acceleration obtained with rigid wing (no

structural elasticit~).- If the wings of the structure shown in figure 1

were rigid the landing oyeration would be simply that of a rigid mass

equal to M + m alighting on a spring. The motion after arrest w ould le

that of a simple oscillator having a mass M + m and a maximum velocity v.

The solution lased on these assumptions is designated method A. The

maximum acceleration for such an &cillator is –

r

s
a =V —=VUS

M+m

The bending stress is computed on the %asis that the
a uniform load having an intensity equal to the mass

the maximum acceleration. From the static theorg of

(Bl)

wing is loaded with

per unit length times

the bending of a
cantilever %eam, the lending moment at the root ‘&sulting from ~his loading

. would be

m L2M= a-— .Q$
L2

The lending stress due to this bending moment is

MY amL~ CDs mLvy
c =—=— =—

1 21 21
(B2)

With the use of the notation C2 = ‘Tg and the equation for the cantilever

frequency of a beam, @c = pc ~ (see reference l).,equation (B2) mayzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h
be written

(B3)
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This equation is of the!same form as equation (A9). It is noted

the–stress varies linearly with US/UC, and has no expl.icit-

dependence on the ratio M/m. The value of ~ obtained ly method A
Is plotted against Us/me in figure 3.

Method B - lased on reaction obtained with elastic wi~.- In ,methodB,
a force equal to the nmximum force given by equation (A13) is applied at

the root. The rigid wing qnd fuselage ~ss then have an acceleration

F-
a=—

M+m

With this acceleration

at the root would be

mu.—

1

applied to the rook, the static stresses induced

L

max

en2(~+ COS 8n coshen]
sin ~t~

A 1-
(B4)

The value of ~ obtained by methcilB is plotted against ~/uc for

for ~ = 2 in figure 3.

Method C - based on acceleration o%tained with elastic wing.- In

method C, the root of the rigid wing is given an acceleration equal to

.

.

.
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the maximum acceleration given”by equation (Al-2). The bending stresses

at the root is then

=

21

vyd ‘u&F(o) sinmt~=.-—
cp21 ~ 13n2 A

n

n=l 1=

[

e Cosh en)m 002ena(l + Cos ~

z
.E~g _ sin mnt ~

CP
%2 A

n=l ~

(B5)

The value of ~ obtained ly method C is plotted against %luc

for

that

with

M-=2 in figure 3.
m

Stresses Computed for Elastic Wing

MethodD - %ased on reaction obtained with rigidwi~ .- The reaction

results from landing when the wing is rigid will vazy sinusoidally

an amplitude S~, thus
%

R =s~ SiiiU.)st
*S

.



.

If, k accordance with. method D, this rwacticm ware gudde@ applied to the root of the ela~tic

wing, bending vibaticma would be set up in the wing. The response can be found in a mnuer

similar to that used in the exac% ~olution of appendix A. The only difference is that the last

bounaav Conaltion is changed. The last boumda~ condition i’orthis case is

With this ma the remining

as In the case of the exact

where

‘H ‘m($~=-’f$:’”~t’
X=o

boundary conditionstlm deflectlone and bending stresses are then foumi

solution. The mrrlmum bend3ng stress for this case is found to be

T

1 + COS @n cosh @
n)+’n( )]

slnh en COB en - cosh f3n sin On

}

+ 2 COO 13ncoah On

In this erprwsicm, Qn is the nth positive rcat of the equation

l+coaencoshen+~

% ( )
cosh en Sill&ln+ SiIlhen COS L?n = O

●
✎✌ , ,
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If ~ is used to replace the lmacketed term in equation (B6)

The Value of ~ obtained by method D is plotted against us U)c
/

for ~= 2 in figure 6.
m

Method E - lased on acceleration oltained.with rigid win%.- The

accelerations that result from Ning when the wing is rigid will vary

sfnusoldally with an amplitude given by equation (Bl), thus

If, in accordance with method E, the root of the elastic wing were

suddenly given an accele?xikioncharacterized hy the equation, the wing
would %e set into bending oscillations. Again, the oscilktions or

response csm be found in a manner similar to that used in computing the

landing response by the exact solution given in appendix A. The hst

boundary condition for this case is, however,

With this and the..remainingboundary conditions, the deflections and

bending stresses

The maximum root

are then Found

bending stress

r

as in the case of the exact solution.

is found to be

,,.2

#= 4“A I

%
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.

where

‘o =

sin SO sinh Go
.

1 + COS “e.cosh 80

Fn =

(on sin 19n cosh 13n- cos 13nsinh en
)

‘o =

.

en = nth positive root of 1 + cos en cosh en = O

,n

.

e2’

~=pc#-

,

If ~ is used to replace the bracketed term in equation (B7)

.

The value of ~ obtained by’method E is plotted against U~/mc

M
for ~ = 2 in figure 6.
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.

Method 1?- Biot and Bisplinghoff method.- In the statistical

. approach suggested hy Biot and Bisplinghoff (reference 2), the maximum

force and dumtion of impact have to %e known. This method (designated
method F herein) was applied to the case considered %y taking the

maximum force eqml to the maximum value given by the exact solution

(equation (A13)) and %y taking the vertical impulse period T1 equal to

one-half the natural period of the airplane structure tith rigid wings and

with the %ottom of the spring fixed in position; thus T1 = ~ T
2 s~

2fi
where TS = — .

‘s

T1
The ratio of the impulse period to the period of the nth mode

T=

is found %y the follting consideration. The natural frequency of the
free-free modes of the structure, which are the modes used in the Biot
end Bisplinghoff method, are found from the equation for frequency given
in the exact solution (appendix A):

en=’
% =pc—

~2

where @n is taken to correspond to a structure without landing springs

and may be taken

for frequency of

Division through

frequency result

from figure 7 at
sL3 ~
— = . With the use of the equation
EI

3.52
a cantilever, UC = pc —

L2 ‘ % -Ye mitten

by us and use of the relation letween period and

in the relations

*2
an ‘c n Ts
—=— —=—

% us 3.52 Tn
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“

Since T~ ia taken as ‘I)
%

the equation for T— may %e written
n

directly

For the ratio ~ = 2, the

‘I ~ 1 ~

— = 2&~c 3.52Tn

2 Is 4.00 and. e22value of el iS 23.m.

The value of ~3p iS not @ven because it was found that the third mode

could %0 neglected.

In computing stz%sses, the response factor =s Men direct- from

the envelope curve given in figure 13 of reference ~. The ~lues of

stress coefficient obtained by method F are shown in figure 6.
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Figure 3.- Bending-stress

1.0 1.5 2.0

w
s/ ‘c

coefficients when structural elastici~ is

neglected in computing stresses (that is, in stage 2). ~ = 2.

a = X:; E.

Acceleration “ ~eaction

—-
a o t

m (rigid)

Figure 4.- Physical assumptions when structural elastici~ is

considered in determining reaction or acceleration but
neglected in computing stresses.
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(rigid)

Acceleration Reaction
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Figure 5.- Physicalassumptionswhen structuralelasticity

neglectedindeterrriitigreactionor accelerationbutis
consideredin computing stresses.
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Figure 6.- Bending-stresscoefficientswhen structuralelasticityis

neglectedincomputing reactionor acceleration(thatis,in

stagel). ~= 2. u=A~~E. “
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Figure 8.- Bending-stresscoefficientat rootforfirstthree modes.
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Figure9.- Shear-stress coefficient at root for first three modes.
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