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Abstract
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A.r1
In this paper, we survey models proposed by Cleary,

f5X,
Thorndike, Cole, Linn, Einhorn and Bass,, Darlington, and Gross

H
and Su for analyzing bias in the use of tests in a selection

fpft4
. .

strategy. Several additional models are also introduced. Our

purpoge is to desc be, compare, contrast and evaluate these

models while, at the,same time, extracting such u'eful ideas as

may be found in these approaches. Several of these models (those

of Thorndike, Cale and Linn) are judged to contain operational

con radictions because of their use of the wrong conditional

probability within the context of the probabilistic structure.

These models, deriving from a concept of group parity, are also

shown to have highly objectionable practical implications. It

is suggested that the use of any of theselinodels is contraindicated

IrD /

0 "and that, indeed, the very concept of culture-fair selections is

(40
unworkable. It is then suggested'that.the necessary level'of

compensatory treatment for disadvantaged persons can be guaranteed

O
t
This paper derives from material contain in a thesis sub-

mitted by Nancy S. Petersen in partial'fulfillm ht of the reauj.reL

ments for the degree of Doctor of Philosophy'at the University of

Iowa, July, 1974.
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only through the formal use of an appropriate model based on the

Von Neumann - (Morgenstern theory of maximizing expected utility.

Three, of the models studied (Cleary, Eithorn and Bass, Gross and Su)

are based on what we judge to be the correct conditional probability

and are special cases of the Expected Utility Model, but each has

limited applicability.
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Introduction

Tests are being used e'ltensively by businesses and educational

institutions for the screening of applicants for jobs or training

programs. A major problem facing these institutions is how to

eliminate cultural or racial unfairness arising from the use of

tests in this process. There are many different definitions of

what constitutes culture-fair selection, each implicitly, though

unfortunately not explicitly, involving a particular set of value

judgments with different implications for how selection should be

accomplished. For each of these definitions a remedy has been pro-

,. posed. Our purpose in this paper is to show that some of these

approaches are inadegu4te to their task and that more complex analy-

ses are required.

Description of the Selection Process

, The selection process can be ch- ?acterized in the same manner

for all selection models. First, there are individuals about whom

decisions are required. These decisions are to be based on infor-

mation about the individuals. The information is procegsed by some

strategy which leads to a final decision. The final decision ends

the decision-making process by assigning the individual to either

%

a s
4
elec ed or an outselected group. The outcome is the individual's

perfo ;ante after the assignment or, in other words, the consequences

resu ing from the decision. (Cronbach and Gleser, 1965, p. 18.)

A strategy is a rule for making decisions. Each selection model

reF esents a strategy, the intent of which is to guarantee cultural
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fairness in the selection 'rocess. Information is general y pro-

vided by a test and we shall us term test .to refer to all
t,

information-gathering procedures including interviews'and'p ysi

AW

mgasurements. The overriding problem is the lack of agreem

2-

as to the meaning of the term culture-fair selection.

Each of the selection models or strategies we discuss ca

characterized in the same manner. It is assumed that the appl

cants to an educational institution, to a training program' or for

employment can be separated into subpopulations because of an a priori

belief that the assumed linear regressions within these

subpopulations are different:-that is, the test (or predictor) may

be more valid for some subpopulations than for others (different

slopes), and/or for a fixed value of the predictor, the level of

criterion-performancesimay differ (different intercepts), or that

some- differential selection criterion is appropriate for various

subpopulations. Alternatively, these subpopulations may be differ-

entiable primarily becauseof public concern with what is going on

in them and a public need to verify that

all subpopulations are being handled "fairly". Specifically, it is

assumed that initially a criterion score (Y),-as well as a predictor

or test score (X), is available for members of each subpopulation,

implying that in the past all applicants have been admitted or em-

ployed.regardless of their score on the test. A minimum level of

satisfactory criterion performance (y*) is determined. The number

of applitants thatcad be selected is ecified.' If there is no

constraint on"the number or applicants that can be accepted, then

the selection 'situation is referred to as quota-free selection; if

/1.

),
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only a fixed proportion of the applicants can be accepted,'then the

selection situation is. referred to as restricted selection. A cut

score' (x *) on the predictor needs then to be calculated for each

subpopulation so that the definition of culture-fair selectiOn

specified by the-particular model is satisfied: In the case of

multiple predictors or tests
,

(X.
1

X2, ..., X
m.
); the cut score will

be determined on the variable formed by the usual least squares

linear combination of the predictor variableS. In the future, appli-

cants with a test score above the predictor cut score for their sub-

population will be selected and applicants with a test score

below the predictor cut score for'their snbpopultion 14q.11 be rejected.

This selection strategy presupposes that an!acceptable criterion

variable is available. The inappropriateness of the criterion,vari-

able will not be treated in this paper, although this may be the

most important problem. Thus, the following discussion of selection

fairness will be based on the premise that the available criterion

score is a relevant, reliable and unbiased measure of performance

for applicants in, each subpopulation. All previous contributions

in this area have implicitly made these assumptions. Caveat emptor:

4.

The Regression Model

The Regression Model for "test bias" has been well stated by

Cleary (1968):

A test is biased for members of a subgroup of the popula-

tion if, in the prediction of a criterion for which the

test was designed, consistent non-zero errors of predic-

tion are made for members of the subgroup. In other words,

the test is biased 41 the criterion[ score predicted from

the common regression line is consistently too high or too low

for members of the subgroup. With this definition of bias,

there may be a connotation of "unfair," particularly if the

use of the test produces a prediction that is too low. [p. 115.1



Here, standard regression theory with the minimization of mean-

squared error is used to. provide predicted criterion scores.

At the minimum leydl of .satisfactory criterion performance (y*),

* *

. Y. = al + 81x1 = = a -Sgxgx , (1)

4

"whore a
i

, V and x
i

represent the intercept, slope and predictor cut

score for subpopulation = 1, g), respeatively. If the

regression lines are identical in each subpopulation, then the.use,of

the common regression equation to select applicaitts with the highest

1°' predicted criterion scores is considered fair.

Using the Regression Model,.and assuming that the parameters
1

(al, 01), (a2, 02), ..., (as, Bg) are known precisely, a decisidn

maker can be assured that the average predicted criterion score,

given the available predictor variables, will be a maximum for the

applicants selected and, incidentally, a minimum for the applicants

rdjeeted. Using the Regression Model, the applicants can be assured

that the selection'proCedure is "rainidindividual members of each

subpopulation in that criterion performance is not systematically

t
:.

,.,.

under or overpredicted for members of any Subpdpulation. Or to put
Mkt,,

it another way, the Regression Model says that if two applicants are

V
being considered for one post,, then that applicant having the highest

predicted performance would be selected with,prediction being made

on the,basis of subpopulation regression.

This definition of culture-fair selection assumes fairness

is achieved if the applicants with the highest predicted criterion

scores, using separate regression equations within subpopulations,

. are selected. From this point of view, selection is faiCif and

7
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only if it is based on the best Prediction available.. Thus,' opti-
z

mal prediction and fairness (lack of bias) are taken to be strictly

equivalent and the procedure adopted is that whiCh maximizes

expected performance for each individual and hence overall.

To illustrate, supposg the applicants to .an institution

can be divided into two subpopulations referred to as subpopu-

/

. lation If
1

and subpopulation tr
2'

Now, refer to Figure 1. In
'N

Figure 1(a), the regression lines for the two subpopulations have

the same slope but different intercepts. In Figure 1(b), the

regression lines for the two subpbpu- lations have different slopes

and different intercepts with the point of intersection outside the

range of possible test
:

scores. In each of these
,

situations, suppostv
: . ',

the common regressibt line (it
c
) for the totarapplicant'population

,I,

-., .

were used for predicting criterion scores for all applicants rather
,

'than the separate within-subpopulation regression lines, .then for.any

. ,
r

2

given test, score, ctiterion scores for .subpopulation ir' would be

conalstently underpredicted .: and, therefore, this subpopulation would
$

;be discriminated against by.the test: In.Figure 1(c), the
- , .

:f,

regression linesfor,the'two subpopulations again have different

;slopes ancdifferent intercepts, but the point of intersection'is
.

, .
. .

'', .. .

,

inside the range of pOssible'test scores. If the common regression
4 .

line were used for predicting criterion scores, then some individual

from troth subpopulations would be discriminated against. At point

xi on the test, the criterion score for a member Of subpopulation

would be undefpredicted and; at point x
2
on the est, the criterion

score for a member of subpopulation Tr2 would be u derpredicted. InI

the speCial case in which the regression lines for the two subpopu

lotions coincide, an applicant's predicted crite ion score is the
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Figure 1.

_Illustration of Culture-fair SeI4ction

as Defined by the Regression Model

Criterion co

Figure 1(a). Supopulations with parallel regression

lines but different intercepts.

Criterion (r)

Test (X)

Figure 1(b). Subpopulations with different regression

lines. Point of intersection outside range

of possible test scores.



_7

er.

,

1

Figure 1 (cont'd.)

Criterion (Y)

Test gC)

O

Figure 1(c). Subpopulations with different regres-

sion lines. Point of intersection

inside range of possible test scores.

10
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e,regardless 6f group,membershtp, for atiy given test score.----41D

(

The Regression Model is the most widely used itodelof selection

fairness within the predictive context. It is a straightforward

application of minimum-mean-squared error theor3i. It hag been

used in a number of empiri l'studie (e.g., Cleary, 1968; Bowers,

1970; Temp, 1971) and it hasTheerrvms c in the conceptualizations

and discussions of selection fairness that may be found in Anastasi

(1968), Guion (1966), Bartlett and O'Leary (1969), Einhorn and Bass

(1971), Linn and Werts (1971), Linn (1973), and Schmidt and Hunter

(1974).

,The Constant Ratio Model

Thorndike (1971) suggests that in a,study of culture-fair

selection we'should consider the implications for the proportions

of applicants admitted from each subpopulation as well as the

implications of the within-subpopulation regression lines as was

suggested by the Regression Model. He demonstrates that if a

test has equal regression lines for each subpOpulation but the

discrepancy between subpopulations on the test differs from the
,

discrepancy between subpopulations on the criterion, then,the use of

the selectioastrategy tmplied by the Regression Model,

which is "fair" to individual members of the group scoring

lower on the-test, is "unfair" to the lower [scoring] group

as a whole in the sense that the proportion qualified on

the test will be smaller, relative to the higher-scoring

group, than the proportion that will reach any specified

level of criterion performance. [p. 63.]

Thorndike proposes that in a fair selection procedure,.

the qualifying scores on a test should be set at levels that

will qualify applicants,in the two groups in Proportion to

the fractions of the two groups reaching a specified. evel

Of criterion performance. [p. 63.].

11
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This definition assumes that the'selection procedure ii fair if

applicants are selected's° that the ratio of the proportion'selected

,

to the proportion successful i the' same in all subpopulatiohence

na
the reference to itas thLons nt R4o Model. Therefore, given a

minimum level of satisfa4ory
.z/

cr erion performance'(y
*
), a selection

procedurE is considered fair when

Prob(X >
*,

PiPb(X > x*Iff )

R =
g g

(2)

Grob (Y >311y Pfob(Y >-y*Ing) .

*where R is a fixed constant for all subpopulations n an x
i

repre-

7
sents the predictor cut score fof subpopulation Tri6. = 1, ;..,

It should be noted that.Thorndike did not give a formal statementpf ;

4

a model, only a general prescription. The explication of the modeX,

o <

as given above, is due to Cole (1973).

- To illustrate, refer to Figure 2.
t

(Adapted from Thorndike,

1971, p. 66.) Assume the applicants to the institution were divided

into two subpopulations, 7r
1
and

2.
Figure 2(a) depicts the

situation whichThoindike refers to as being "fair" to Indi4idual

members of the minority population Tr
1
.-but'"unfair" to the minority

t,To.simplify the diagrams in Figure 2 and Figure 4, it is

assumed that (1) the variables X and Y have a bixriatd normal dis.tri-',

bution in each subpopulation, (2) the correldtion between X and Y ..

(rxy) is positive, and (3) the standard deviation of the test (sx),

.the standard deviation of the criterion,(s ), and t are constant
Y xy *

for each subpopulation. uthermore, the predictor cut score (x )
2

for the majority population is.chosen to be on the regression line

(i.e., for subpopulation ff2? given X = x2, thed Y = y*). The predictor

cut score (x
1

for the minority population is then adjusted

. accordingly.

. 12
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Figure 2

Illustratiori of Culture-fair Selection

as Defined by the Constant Ratio.Mbdel-

1

Criterioq (Y)

Pt

z

Figure Z Subpopulations with common regreasion

line. Mean difference on test is not

equal to mean difference on criterion.

/ .

13

.46

a.

A
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Figure 2 (cont'd.)

Criterion (Y)

Test (X)

Figure 2(b). Subpopulations with parallel regression

lines. Mean difference on test equals

mean difference on criterion.

Criterion (Y)

Test (X)

Figure 2(c). Subpopulations with parallel regression

lines. Identical criterion score

distributions.

14
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population As a whole. The regression is identical in each subpopu-

lation;. thus the test would be considered fair according Ito the

Regression Model if all individuals; regardless- of group ership,

who have test scores greater than or equal to x2 are selected. Note

that the mean of X in subpopulation wi'is less than in subpopulation

w
2
and that this difference is greater than the corresponding

difference on the criterion measure. If only those applicants with

predicted criterion scores equal to or greater than y
*
were selected,

then approximately 50% of.subpopulatiod w2 would be accepted and

approximately 50% would be successful, but essentially no members of

subpopulation ITl would be accepted, yet approilbately 10% of the

members of subpopulation tfl would have been success ul. Thus, if

x
2

is used as the predictor cut score for each subpopulation, the

test discriminates against subpopulation nl according to the Constant

Ratio Model. In this situation, to make the selection p3ocedure fair

according.to the Constant Ratio Model, the Members of sub opulation

w2 with test scores greater tharLor equal to x2 would bey ctepted,

and members of subpopulation w, with test scores greater than or

equal to x
1
would be accepted. It is important to note, however,

that if the difference in the group means on the predic r,ls less

than that on the criterion measure, then application of the Constant

Ratio Model will give the lower cut score to subpopulation w
2
rather -

/
ntotrl.

In figure 2(b), the regressipn lines-are parallel and...sj___1e

difference between means on the Lest is the same as the difference

between means on the criterion. The ratio of the proportion quali-
.

fled on the test to the proportion successful is the same for each

subpopulation. This strategy is fair according to the Constant

15
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\
Ratio Model, but not according to the Regression Model.

there are differences in the distributions of the criterio

scores, the strategy is fair according to both the Consta t Ratio
Ai

Model and the Regression Model, only if the validity is pfrfect and

the regression lines are the same for each subpopiiatioll.

It Figure 2(c), the regression lines are parallel end the

distribution of criterion scores is the same for both subpopulations.

If y represents the minimum level of satisfactory criterion per-
,

formance, then the same selection strategy would be Considered fair

by both the Regression Model and the.Constant Ratio'Model. The

institution woultaccep members of subpopulation,11 who had test

scorestreater than or equal to x
1

and it would accept members

of subpopulation Tr
2
who had test scores greater thin or equal to

. , *
x2. l,

.

In many applications, the mean'criterion sco e of the mindrity,

population Trl will be less than in the majority pulation.,N- and
,..

that difference will be less than the difference f the p edict*

means, in which case an acceptance procedure based on the Constant

T4

Ratio Model will almost always acept applicants from the minority
e.4.,

population Tr
1
who do less well on the criterion, on the average,

than applicants from the majority population Tr2.. This feature

explains the attractiveness of this model.

The Constant Ratio model and the Conditional Probability and

Equal Probability models, to follow, have been described (Sawyers

Cole and Cole, 1975) as Group Parity models in that they focus un-

fairness to groups rather thin to individuals. By contrast other'

models studied focus on the individual.
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The Conditional Probability Model

11

14

Cole (1973) proposed a fully expli ated criterion forculture-

fair selection based on the conditional fobability of being selected

given satisfactory criterion performance; fence the reference to

it.as the Conditional Probability Model. Cole argues that all appli-

cants who, if'selected, are capable of being successful should be

guaranteed an equal, or fair, opportunity to be selected, regardless

of their group membership.

The basic principle of the conditional probability selection

model is that for both minority and Tajority groups whose*

members can achieve a satisfactory criterion score [Y > y I

there should be the same probability. of selection regardless

of group membership. [p. 240.1

Therefore,-given a minimum level of satisfaCtory criterion perfor-

*
mance (y ), a selection procedure ft; considered fair when

4'

*, * - *,
K r Prob(X xilY]t y , = = Prob(X 2x131Y > y , ),

(3).
,714E

where K is a fixed conitant f6r subpop4atioqp wi and x4 repre-,,,

gents the predictor cut score for subpopulation 2.. 1, ...v4).

Figure 3 is an illustration of a hypothetical bivariate

distribution of test and criterion scores. Individuals falling in
ro

* A:,

region II have test scores less than 'the predictorcut score (they

would be rejected); yet, if'selected, they would have satisfactory

criterion performance. Such individuals are referred to as false

negatives. False positives are those individuals with test scores

greater thitn the predictor cut score (they would be accepted) but

with unsatisfactory criterion performance. Such individuals fail in

17



Figure 3

A Hypotietical Bivariate DistribUiion

Criterion, (Y)

False Negative

15

True Positives

False Positive

IW

I

18

Test (X)
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region IV. The assignmedt of an individual to either region II or

IV is an incorrect decision (error). Correct decisions are made

for those individuals assigned to regions I and III. (Linn, 1973,

pp. 152-153.)

The emphasis in the Conditional Probability Modelis on the

number of applicants in region 'I in relation to the number of

applicants in regions I and II combined, whereas the emphasis in,

the Constant Ratio Model is on the number of applicants in region,sK,k

I and IV combihed in relation to the number of Oplicants in regions

?
I and II combined.

t

Fig:tire 4 contrasts the Regression Model:, the constant Ratio,.

Model and the Conditional Probability Model for thesituation'in-

whiCh the regression is identical for each aubpopulation, but the

mean test score and the mean criterion performance is less for

Members of subpopulation n
1

thah for members of subpopulation

C 2'
(See comment in ibference to Figure 2.), In Figure 4(a),

all applicants, :regardless of grodp.petbership, who have test

scores greater than x , are accepted. Using this selection strategy,

the selection procedure would be considered fair according to

4
i r

t
Linn (1973, -p. 153) stated that a test,was fair according to

Thorndike's definition of Selection fairness (the Constant Ratio

Model) if the number of individuals in region II equals the number

of individuals in region IV. (See Figure 3.) Strictly speaking,

the Constant Ratite Model does not require equality of region II and

IV. However, the :model will be satisfied and equality of regions

II and IV will occur if and only if the selection-succeSs ratio R
*,

[Equation (2)] equals 1 implying Prob(X > xilni) = Prob(Y > y
*
Ind

for each subpopulation For purpbses of heuristic comparison

among models, we shall assume that this assumption holds.

19
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Figure 4

A Constrast of-the Regression, the Constant Ratio, and

the ConditionalFrobability Models

Criterion (Y)

¶Ti

Thst (K)

Figure 4(a). Subpopulations with common regression.

line. Selection strategy. fair according

to Regression Model!

O

I

go



Figure 4 (contia:)---,..,

Criterion (Y)

18,

Figure 4(b)., Subpopulations with common regreSsion line.

Selection strategy fair according to

Constant .Ratio Model. ,

Criterion (Y)

Test (X)

Figure 4(c). Subpopulations with common regression line.

Selection strategy fair according to

Conditional Probability Model.

21. -*"
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the Regression Model. In. Figure 4(b), applicants from subpopu-

lation yare accepted if they have test scores greater than xl,end

applicants from subpopulation w2 are accepted if they have test,

. *

scores greater than x
2.

The ratio (I + IV)/(I + II) is constant

for each subpopulation. (Refer to Figure 3.) Thus, using this

-selection strategy, the test is considered fair according to the

Constant Ratio Model. In Figure 4(c), the predictor cut score'for

subpopulation w1 is xil And for subpopulation thethe predictor cut

*
score is x2. Here the-ratio I/(I.+ II) is constant for each subpopu-

lAtion (rAer to Figure,3).. Using this selection strategy, the

Ta

test is considered fair according to the Conditional Probability Model.

Note that as with the Constant Ratio Model, a selection strategy

based on the Conditional Probability Model will almost always accept,

applicants from subpopulation t
1
who do less well on the criterion,

on the average, than-Applicants from subpopulation,t
2.

.Also note

that if an applicant fiom subpopulation t
1

is predicted to do just

as well on the criterion as an applicant from subpopulation t 2' then

a selection strategy which is fair according to the Regression Model

will consider the two applicants equally-desirable candidates for

admission. However,..a selection strategy which is fair according

to the Constant Ratio Model will give preference to the applicant

from subpopulation ill and a selection strategy which is fair accord-

ing to the Conditional Probability Model will given even greater

preference to that applicant. Note also that this preference for

subpopulation ni will hold even if the "minority" population happens

to be majority subpopulation t2, as will be disduseed later. The

remarks in this paragraph can be substantiated by noting that the

22
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Cole criterion can be written as

*

> y )

ob(X x*
*ProkX > x / Y Y )

Pr

[prob(Y > y*IX > x )I

20

The first factor on the right is the Thorndike,ratio and the sec6nd

factor will be smaller for subpopulation w
1

than for w
2

under/,the

specific conditions assumed earlier. Thus,'for the Cole dtfini-

tion of selection fairness to be satisfied the cut score x for

subpopulation wi must be lower than that value required to satisfy

the Thorndike definition.

The Equal Probability Model

In the 'usual selection situation,the "given" information for

each applicant is not his futufe state of being (success or failure)

in relation to the criteriq Variable, 'but rather, his present ob-
.

seived.standlng on the prediCtor variable. Thus, from one point

of, view, it would seem reasonable to propose a definition of culture-

fair selection based on the conditional probability of success given%

selection. One might argue that all applicants who are selected should

be guaranteed an,equal, or fair; chance of being successful, regard-

less of group membership. Such a model for selection was described

by Linn (1973, p. 153) and shall now be referred to as the Equal

Probability Model.
f

Linn (1973, p. 153) described the Equal Probability Model but

referenced it as the traditional psychometric approach suggested by

Einhorn and Bass (1971). The definition of cultUre-fair selection

suggested by Einhorn and Bass, to be called the EC141 Risk Model,

will be discussed later in.the paper. At this poi4, it is enough

23
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According to the EqUal Probability Model, within the selected

group from each subpopulation wi, the proportion of successful

performers should be the same. Therefore, given a minimum level

*
of satisfactory criterion performance (y ), a selection procedure

is considered fair when

* *, ,

Q = Prob(Y > y*IX > xl, wi) = = Prob(Y > y.1X > )539 We

(4)
c

where Q is a fixed constant for all,subpopulations
i
and x repfe-

,

sents the predictor cut scoresfor subpopulation = 1, g).

In reference to 'Figure 3, the emphasis in the Equal Probabil-

ity Model is on the number of applicants in region I in relation to

the number of applicants in regions I and IV combined. In reference

to Figure 4, the selection strategy depicted in Figure 4(a) is fair,

according to the Equal Probability Model, when members of subpopula-

tion
1

and members of subpopulation IT
2
who are predicted to do

equally well on the criterion' are considered equally desirable

candidates'for admission. Clearly, a selection strategy dictated

by the Equal Probability Model will not typically coincide. with one

"N.

derived.from either of the three preceding models.' Thus, the prac-

titioner is faced with the task of choosing from among four "attrac-

tive" models. How should this choice be made?

to. note that in the Equal Probability Model the conditioning is on
-*

X >xi-while in the Equal Risk Model the conditioning is an X = xi.

It should be emphasized that, the Equal Probability Model was not

proposed by Linn, but was only discUssed by him as an academic exer-

cise. By contrast both the Constant Ratio and Conditional Probabil-

ity Models have been recommended for current adoption byCole.

24
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The Converse'Consfant.Ratio Model

The 'last three models described (the Constant Ratio Model,

the Conditional Probability Model and the Equal Probability Model)

presented definitions of culture-fair selection stated in terms of

success and selection probabilities. COnceptuall;', it seems just
\ A

as reasonable to explicate the fundamental concept df each approach
.

by exhibiting concern for the rejected and /or unsuccessful appli=

cant. Thus, the following three modellyor culture-fair selection

will be restatements of the_previdus threelModels in terms Of

failure and rejection.
Jr

Recall'that the Constant Ratio Model compares selection rate with

success rate in each subpopulation. The emphasis is on the Proportion

of applicants who are selected in relation tp the prop'brtion of apPli-
.

cants who are successful.- However, one could conceivably consider it

just as important or necessary to consider the implication? for the

proportion_pf applicants rejected in each subpopulatiOn. One could

propose that the cut scores on a test should be set at levels that will

reject applicants in each subpopulation in pfoportion to the fraction

.
of each subpopulation failing to reach a specified minimum level of

criterio4 performance. Such a s lection strategy will be referred to

as the Converse Constant Ratio M el. If we are particularly concerned
. .

with a ';itubpoptilation Ire then wd would want to be sure that the

ratio of the proportion rejected to the proportion failing be no

more than in any other subpopulation, whereas with the original

-.....-1-. .

'model we would wa t the ratio ofithe poportion selected to the t

/
.

.

proportion succe ful to be not less than in any other subpopulation ".

.Y:..,

, . .
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The new definition assumes that a selection procedure is fair if

applicants are rejected so that the proportion rejected to the

proportion unsuccessful is the same in all subpopulations. Therefore,

given a minimum level of satisfactory criterion performance (y ), a

selection procedure is considered fair when

R =
Prob(X < 411r1)

*'
Prob(X < x ir )

g g
(53

Probc
* P.v

Prob(Y < y *g

where el; a fixed Constant for all subpbpulations r
r- i
and x repre-

sents the predictor cut score for subpopulatIon yi 71, g).

The above relationship can be rewritten as

1 r, Prob(X > x:17r1)

1 - Prob(Y > y*Iwi)

[Prob(Y Prob(X > x:Ifid[Prob(Y > Y*Ivi)]
=

[Prob(Y y
*1

)]
-1

- 1

* -1 .--

[Prob(Y >'y Ir )] - R
=

[Prob(Y > - 1

4

* * -1
where R = Prob(X > x ir ) [Prob(Y > y kin is the value to )ei i

,..

equated among subpopulations for'selection fairness as specified by the

FT
I_.:s.

1

.

Constant Ratio Model. Nog, suppose we have specified a minimum level

of satisfactory criterion performance '(y ) and a selectilon-success

\

ratio (R), then a predictOrAut score xi can be determined for each

-*
opulation ri(i au. 1, ..., g). Given the values y , R, and x

i
,

th ejeCaotkailure ratio 11 be constant for each subpopulation

,4W-44'4
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4

r if the following condition_is satisfied:

[Prob(Y > y*Iii)1'4'- R

(Pxob(Y > y*Ini)J71 - 1

for i, j- = 1, 1.*, g.

* -1
[Praia > y i n )1

[Prob(Y > y*Iff )14'- 1

24

The above condition will be satisfied if and only if either (1)-R = I

implying Prop(X > x:Ini) = Prob(Y > y*ini) for i= 1, ...I g, or

(2) Prob(Y > yShri) 7 Prob(Y > y
*
Inj) for i, j = 1, ..., but not

.

generally. If either case (1) or ease (2) obtaires, the same set of

predictor cut scores x
i

(i = 1, ..., g) is considered fair according

to both the Constant Ratio Model and its converse, but, otherwise,

the strategies will differ. In Thorndike's iliustratift (1971, p. 66),

c?
he set R = 1, though he did not indicate that this was equired,by

his model. Only by reference'to various real applicitions might

we be convinced that R = 1 will be a commonly acceptable value.

However, with restricted selection, it'is not generallyr,,Possible to

simultaneously satisfy this condition and the selection constraint."

Consider carefully the force of the f011owing argument. If fairness

to subpopulation ni demands that the- selection- success ratio (R)

be the sie for any other subpopulation r then, with identical

logic, fairness to subpopulation ni demands that the rejection-

failure'ratio (i) be the same for any other subpopulation n , and

the two specifications eannot both be satisfied. This strikes ua as

being a logical contradiction; however,'each reader must make

personal judgment on this point.
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The.Converse Conditional Probability Model

Thi'Conditional Probability Model is based on the conditional

probability of being selected given satisfactory criterion perfOr-

mance. The emphasis,is on the proportion of potentially successful

applicants who are selected. However, one could argue Instead that

potential failures should be, rejected in

no greater, percentage in aft,subpopulation. shall

label this selection strategy the Converse Conditional Probability

Model.

' The Converse Conditional Probability Model is based on the

conditional probability of being rejected giVen unsatisfactory

criterion performance. Therefore, *given a minimum level of satis-

,

-fattory criterion performance (y*), a'selection procedure is

considered fair when

*, *
Prob(X < xtlY <

*
, n1) ... = Prob(X < x f4 < y*, Trg),

. (6)

where is a fixed constant for all subpop Ulations n
1
'and x

i
repre-

-.
.4%-

eents the Oredietor cut score for subpopulation n 1,

The 'above relationship-can be rewritten as

Rs= Prob(X < x yY < In
i
)(Prob(T$ y

*,

{[Prob(X>x, Y.?:y
*

+,Prob(X<xi,

- Prob(Y > y*11(1)] -1

28

g).

.-s-1
*, *.

y in M-Prob(X>x , Y>y 'Trill
1 i

4
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,

= {[Prob(X>xi,
*i

ffi) + Prob(X Nxi, Y<y
*I

ni)][Prob(y>y*Ini)]

Prob(Xx:, Ylfry*Ini)[Frol?(TIY*Iffi)]-1){[Prob(Y?y*Iff )] -1 -1)-1

= {[ProbIC>xi, Y>y.
*
Ini) + Prob(X<xi, Y<y

*
Ini)][Prob(y>y*Ini)] -1- 10

([Prob(Y > y*Ivi)] -1 - 1)-1

where K = Prob(X > x
*

Y > y
*In

i
)[Prob(Y > y*In )] -1 is the value to

be equated among subpopulations for selection fairn s as specified by

the Conditional Probabilityllgel: Now; suppose th decision maker

has specified a minimum level of satisfactory crite4on performance

(y ) and a constant conditional probability of selection given success

(K), then a predictor cut score x
i

can be determined for .each subpopu-

lation ni(i = g). Given the values y
*
, K, and7i, the

conditional probability of rejection given failure .R.) will be

constant for each subpopulation ni if the following conditilfr is

satisfied:

{[Prob(X > xi, Y > y*1ffi) +12rob(X < x Y < y
*,

F

[Prob (Y > y*I7i) ( [Prob (Y' > ni) - 4111

{[Prob(X > x;, Y > j) + Prob(X < x; Y < y!' I ) ]

[Prob(Y > y*In3)]-1 - Kl{[Prob(Y > Ani)]-1 - 1)-1

for i, j = 1, g.

/
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This condition will be satisfied if and only if Prob(T>y rai)=Probcy>y rxj)

and Prob(X < x Y < y
*
iw ) = Prob(X < x

*
Y < y rm ) for

;,1

j = 1, g, a most unlikely state of affairs. In that case,

the.aame selection strategy, the same set

*
"scores x

i
,(i = 1, g), is considered fair according to both

predictor cut

the Conditional Probability Model and the Converse Conditional

Piobability Model, but, otherwise, the selection strategies Will

differ. It does not seem at all apparent to us whether for the

particular subpopulatioft that is of public concern it is more

impqrtant to keep the conditional probability ft rejection (given

potential failure) low or the conditional probability of acceptance

(given potential success) high. Unfortunately, the two criteria are

based on different conditioning events and hence are contradictory.

A

The Converse Equal Probability Model

The Equal Probability Model is based ot the conditional Probe-

a

bility of success given selection. The emphasis is on the proportion

of the selected applicants who are successful. However, one could

propose that all applicants who are rejected should have the same

probability of being a failure, regardless of group membership. Such

a selection strategy will be labeled as the Converse Equal Probability

Model:

The Converse Equal Probability Model is based on the conditional

probabi+ity,,of failure given rejection. Therefore, given a'minimum

A
level of satisfactory criterion performance (y ), a selection

procedure is considered fair when

4 a Pra (Y < Y
*
IX < x1' 71)

= = Prob Y < y IX < xg,
g
)

30
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'where ie a fixed constant for all subpopueations
I.

and xi repre-
.

,seats the predictor cut score for subpopulation g).

28

The above relationship can be rewritten as

Prob(X < xi' Y < y I Tri) [Prob(X <
t

as f [Prob (X>x:, Y>7 1 Wi)+Prob (X<xi, Y<y I Tri) 3-Prob (X_>_xi , Y>y Tri)

[1 - Prob (X > xi I wi) ri

*. *
{ [Prob (X>xj,. Y_>y

*
I wi) + Prob (X<xj, Y<y

*
I &I, rob (X>xig I wi) ]

* *, *. -1 *, -1
-Prob(X>xi, Yzy Ini)(Prob(XaXilni)J }{[Prob(caxilwi)]

* * * t*
{ [Prob (X>xi, Yff I wi) + Prob (X<xit Y<31 iri) Prob (X>xi

{[Prob(X > x* i)] -1 - 111 ,

-1_
Q/

wheie Q at Prob(X ? Prob (X xigillradri is the value to

be equated among subpopulations for selectli.oilairness as specified by

the Equal Probability Model. Again, suppose di -have specified a

minimum level of satisfactory criterion performance (y*) and a constant

conditional probability of success given selection (Q), then a

predictor cut score Xi can be determined for each subpopulation

* *
7: (i I. 1, ..., g).: Given the values y , Q, and x the conditionali 1.°

probability of failure given rejection (Q) will be constant for each
0 ,

subpopulation ::i if the -following condition is satisfied:

31
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,y,

{[Prob(X > xi, Y > y 1Tri) + Prob(X <
*

Y < y
*l]

*
[Pilob(X > xilni)]

-1
- Q}{[Prob(X > x41111. )]-1 I)

-1

i

- {[Prob(K > x;, Y > y*Iirj) + Prob(X < x*j, Y < y*Iirj)]

0

[Prob (X > 41wi )]-1 - QI{ Prob (X > 41Trj) 1-1 1/-1

for i, j = 1, g.

This condition will be satisfied if and only if

x,117)
*,

ProWt - Prob(X>x
*
lw ) and Prob(X < x Y < y*lw )s= Prob(X < x

*
, < y )

j - 1, g, but not generally, In that case, the same selection

*

strategy, be same set of predictor cut sores xi (i = 1, ..., g),

. .

is considered fair according to both the Equal Probability Model

and the Converse Equal Probability Model, but, otherwise, the selection

Strategies will differ.

Figure 5 compares the Constant Raniagodel, the Conditional

Probability Model, the Equal Probability Model and the three .

_... -

"converse" models. Representing proportions as areas, we see the

six ratios for the six models. Unfortunately, there are indeed

six-models, each seemingly attractive and each paired with an in-

distinguishahle converse. Which is the appropriate model? Or,

indeed, is,any,one of them acceptable in any common situation?

The Equal Risk Model

Einhorn and Bass (1971) proposed a model for culture-fair

selection which takes into account, for each subpopulation, the

probability of success:associated with an applicant's test score

-32
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A Comparison of Six Models for Culture-fair Selection-,

Criterion (Y)

Test (X)

The cut score on the test (x *) is determined so that the

ratio (as specified by a particular model) is the same

for all subpopulations.

Model Ratio

Constant Ratio (I + IV)/(I + II)

Conditional Probability 1/(1 +.II)

Equal Probability I/<1 + IV)

Converse Constant'Ratio (III + II)/(III + IV)

Converse Conditional Probability III/(III + IV)

Converse Equal Probability, III/(III + II)

33
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tt



31

rather than just the applicant's predicted criterion-score as

suggested by the Regression Model. Their model is based on a
I

definition of selection bias given by Guion (1966). Guion stated that

unfair [test] discrimination exists when per:ions with equal'

probabilities of success on the jOb have unequal probabilities '

of being hired.for the job. [p. 26.]

The objective of this model is not simply tp accept those persons

who are predicted, in the sense of best pointeStimate, to be above

a specified minimum point on the criterion, but rather to accept those

persons far whom this prediction can be made with a specified degree

of confiden The problem than becomes one of finding a cut score

on the predictor variable so that the criterion score for persons

with test scores greater than the cut score will be above the.

minimum acceptable criterion scomwith probability at. least equal

to some specified value. Furthermore, this model specifies that this

probability (of, conversely, risk) must be the same in all sulaciptriL

ldtions; hence the reference.to it as the Equal Risk.Model.

Therefore, symbolically, at the minimum level -of satisfactory criterion

performance (y ), the Equal Risk Model requires that the predictor

cut scores x. (i = 1, g) be determined so that

*, *

Z = Frob(Y > y
*
Ix = x

1 ,
IT

1
) =' = Prob0 > y Ix = xg, ffg)

where Z is a fixed constant probability of succees'for all-subpopti-

lations e t
To illustrate, again suppose the applicants to an institution

can be subdivided into two subpopulations,m7i and Iry Refer, to

Figure 6. (Adapted from Einhorn and Bass, 1971, pp.'265, 267.)

Figure 6(a) shows the relationship between 'a predictor (test)'

4
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'Illustration

as Defined

Criterion' (Y)

Figure 6,

of Culture-fair Selection

by theiquai Risk Model

Test (X)

Figure 6(a). Conditional distribution of criterion

on test showing risk level.

*111.1c,

32
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Figure 6 (coned.)

Criterion (Y)

33

Figure 6(b).- Subpopulations with common regression

line but different standard errors of,

estimate.

Criterion (Y)

x
2

x
I.

Zest (X)

Figure 6(c). Subpopulations with the same standard ,

error of estimate and the same slope

but different intercepts.

36-
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variable and a criterion variable for one subpopullon. The condi-
,

tional distribution of Y (criterion) given X (predictor) is assumed

to be normal. The shaded 'portion of the distribution represents the

risk level for a particular value x on the test. In Figure 6(b),

the regression lines fin. the two subpopulations coincide; however,

the standard error of estimate is smaller for subpopulation 11
1

than

for n2. Provided, as in the figure, y
*

< y, (the sample mean), then

for any test score x, the level of risk is'less for members of

subpopulation vl than for members of subpopulation n2. Thus, if

all applicants with predicted criterion scores greater than or equal

to y
*

(X > x
1
) were selected, the test would discriminate against

subpopulation y
1
according to the Equal Risk Modef: In thif4 situation,

to make the selection procedure fair (according to the Etyl nak._

Model), members of subpopulation n1 with test scores greater than or

-equal to x
I
would be accepted and members of subpopulation it with

test scores greater than or equal to x2 would be,4aCcepted. However,

if the standard error'of estimate had been the same in each subpopu-

lation or if y
*
= y., then the use of a single cut score would be

considered fair to members of both subpopulations. In Figure 6(c),

the two subpopulations have the same standard error of estimate and

the same slope bpt different intercepts. For any test score x, the

level of risk is less for a person from subpopulation 11
2

than for a

.

person from subpopulation711. ,'If a single cut score is used, thengthe

test discriminates against members of subpopulation 11
2

according to

the Equal Risk Model. The selection procedure would be considered fair

(according to the Equal .Risk ModeWif members of subpopulation

37
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*
(v
2
) with test scores greater than or equal to x

*

1
(x

2
) are accepted.

Note that if each aubpopulation has the same standard error of estimate.

and the same slope, then the selection strategies proposed by the

Regression Model and the Equal Risk Model are the same. The two models

are very closely, related, differing only in that one is based on

the mean - squared -error criterion aria the other on a threshold-loss

criterion, and both are straightforward applicatttns of statistical\

decision theory.

The converse of the Equal Risk Model would require, given a

minimum level of satisfactory criterion p erformance (Y ) that the

*-,
predictor cut scoreax, (i = 1, g) be determined so that

* * * * ,

Z = Prob(Y < y IX = x
1' v1)

) = ...
=,
Prob(Y < y IX = x, V ) P

g . ,S
1 (9)

,

,

where-2 is a fixed constant degree of risk for all subpopulations

This relationships can be rewritten as

* *
Z I= 1 - Prob(Y > y X = xi, v )

Z

where Z - ,Prob(Y > y
*
IX = xi, vi) is the value to be equated among

subpopulations for selection fairness as specified by the Equal Risk

. Model. Thus, the criterion of the Converse Equal Risk Model is a linear

function of that of the Equal Risk Model. Hence, unlike the Constant

Ratio 'Model, the tondititnal Probability Model and the Equal

Probability del, the Equal Risk Model and its converse will always

specify the same selection stfategy. There is no internal contra-

diction; the model is coherent.l
.38
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A Critique of the Constant Ratio, the Conditional Probability,

and the Equal Probability Models

One problem the Conditional Probability Model and the

Converse Conditional Probability Model is that each model treats only

one aspect (selection-success) of the culture-fair selection issue. Re all

that K = Prob(X > x
*

> y
*
, x ) end ii = Prob(X < x IY < y

*
, x ) are the

values to be equated among subpopuletions for selection tairness as

specified by the Conditional Probability Model and Converse Conditional

Probability Model, respectively. In practice, we Mutt consider

equating both K and K among subpopulations. Since it can be shawn

that only under certain special conditions equating K aMO g aUbpopu-

/'
.,

latiops leads to equating X among suhpopulations,tand vice-Versa

(refer to the section entitled The Converse Conditional Probability

Model), it might be.suggegted that in order to take bothaspecta of

the culture-fait selection issue [the conditional Probability of selection

given success ( ) d the conditional, probability of rejection given'failure

(i)] into co ideration, we shoUld at least contemplate equating some

combination of K and K instead ok trging to equate, independently,
_

A

either K or Ramong subpopulations. Howeve , it will be difficult to

decide what function of K and K should be equated amoni'suhpopulations

for fair test use.

Similar comments can be made'regardingthe Constant Ratio and

Converse Constant Ratio models, and regarding"the Equal Probability

and Converse Equal Probability models. Each model deals with only one

aspect of the culture-fair selection issue.' In contrast, the definition of

7

39



,culture -fair selection proposed by the Equal Risk Mel deals with bbth

sides of the issue:, because if one equatg Z [EquatfPn (01 among subiopU2

lations, then one also equates the converse 1 - Z [Equation (9)J
I

among subpopulations.

To see why one should consider both aspects of the issue of-
.

.

. .

. fairness, note that if one tries to increase the(conditional
.

pram-
. .

,...-

..

.,

bility of se/altion given success (K), then one will decrease the
..r

.,.

. . __.

'conditional prob ility of rejection given failute'(K). Rewrite K.

and K as follows:

and

,

Prob(X > x
*

> y
*
Ini)

% .K =
*

Prob(Y i)

Prob(X < xi, Y < Y*Ini)

Prob(Y < y
1

Now, for a specified minimum level of criterion performance (y
*
),,

,

Prob(Y > y
*I
ni) and Prob(Y < y

*
Ind are fixed values. Thus, fgt. K&)

increase, Prob(X > xi, Y y must increase implying that the

predictor cut score (x
i
) must decrease. (See Pigure 3.) It is

then clear that if x
i
decreases, Prob(X < x ,Y < y*Ini 4 must

decrease implying that kmust'decrease. Hence, although both large

4

K and large K seem desirable for a given subpopulation ni, any

predictor cut score x
i
which leads to an increment in K will_result

' in a decrement of T. This is similar to the situation in hypothesis

testing where one tries to avoid two types of errors and, therefore,

h ..to reach a compromise ifi'faelecting a critical region. Thus, if

a 40
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one is inclined to build a model around Cole's conception of selection

fairness, then one muattry to equate a function of K and K among

subpopulations rather than to equate K or K alone. To do this

would require a value specification for the relative size of K and K.

One can also show thatiih the case of the Copsiant Ratio Model

and the Converge Constant Ratio Model, I [Equation (5)] will

'decrease as R [Equation (2)] increases. This indicates the same
ow"

dilemma of trying tf compromise between equating R or equating R

among sapopulations, Thus, a definition of selection fairness can only

be gatisfactory.if one considers both R and R.''Thus, among the

Cons nt Ratio, the Conditional Probability, the Equal Probability
e

and the Equal Risk models, only the Equal Risk Model is satisfactorry,

in the sense that it takes both sides (selection-success and rejection -

fai1ure) of the culture-fair selection issue into account.

The Culture-Modified Criterion Model

In addition to the criterion variable Y and the predictor

variable X, Darlington (1971)` defines a third variable C, which,

denotes an applicant's group membership. The variable C may be

either dichotomous or continuous (ft.g., sex; race; socio-economic

.status). Darlington then give* (and discards) four definitions of

41



cultural fairness. in terms of the correlations among the

on.

three variables X, Y, and C.

In order to State the four deflations in common correlational

/terminology, simplifying assumptions are introduced: the variables

X and Y have a bivariate normal distribution in each subpopulation;

the correlation between X and Y (r
xy

) is positive; and the standard

deviation on thd test (sx), the standard deviation on the criterion

'(s y), and r

XY

are constant for each subpopulation. Darlington's

four definitions of cultural fairness are:

(1), r r
cx c

(2) r
cx cY!,

(3) . r r r and
cx cy xy

(4) r 0,
cx

where the-es represent the correlations between. the subscripted

variables. 'In each case, a test is considered culturally fair if

it satisfies the appropriate equation. (Darlington, 1971, p.

Definition (1) is equivalent:to the Regression Model which

requires a common, regression line. Definition (2) is the same as

,Thorndike's Constant Ratio Model., Definition (3) is a special cast-

of Cole's Conditional Probability Model. Definition (4) is the same

astherequirementthatsubpopulationvhave equal means of the test.
4 ,

(Darlington, 1971, pp. '73-75; Linn, 1973, pp. 156-157.)I
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The four definitions yield contradictory results except in the

case of perfedt validity (rxy = 1) or in the case of equal sUbpopur

lation means on the criterion (r
ey

= 0). Darlington also claims that

the four definitions are

all based on the false view that optimum} treatment of

cultural factors in test construction or test selection can

be reduced to completely mechanical

l

ocedures. If a

d

conflict arises between the two goal i:if maximizing a test's

validity and minimizing the test's crimination agaipst

certain cultural groups, then a subjective, policy-level

decision must be made concerning the relative importance of

the two goals. [p. 71.1

Darlington then suggests that instead of predicting the criterion

variable Y that a variable (Y. - kC) be defined where k is determined

by a subjective value judgment on the part of the decision maker

(test user). Darlington urges that

4
the term "cultural fairness" be replaced in public discussions

by the concept of "cultural optimality." The question of

whether a test is culturally optimum can be divided in. two:

a subjective, policy-level question concerning the optimum

balance between criterion performance and cultural factors

(operationalized ... as the optimum value of k), and a purely

empirical question concerning the test's correlation with

the culture-modified variable (Y - kC) and whether that

. correlation can be raised. [pp. 79-80.]

According to this formulation, each institution must first choose a

value of k, indicating whether there is special value in the selection

of members from some subiopulation. That is, the decision maker must

answer the question, "How many units on Y are considered equivalent

in value to one unit on On Then, the psychometrician's job is to

contruct a test to predict the variable (Y - kC). Note that when k

is set equal to zero, that is, when there is no reason to favor one cultural

group, this procedure reduces to that of the Regression Model. Also
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note that where the other models for culture-fair selection would set different

predictor cut scores for each subpopulation, Darlington would add a

specified number of points to the scores of one subpopulation and

then use the same predictor cut ecore.

Darlington's formulation of selection fairness recognizes, explicitly,

that the variable which ia traditionally considered to be the criterion

(e.g., college grade point average) is not the only criterion. GroUp

membership or culture is also part of the criterion. Darlington,

then, argues that the traditionally. accepted criterion must be

modified for culture; hence the reference to Darlington's formulation

of selection fairness as the Culture-Modified Criterion Model.

An Appraisal of the Test Bias Models

The RegressiOn, the Constant Ratio, the Conditional Probability,

the Equal Probability, the Equal Risk and the qulture-Modiffed Cri-

terion models are each explications of general concepts of what

constitutes the fair use of tests in a selection situation. There

seems to be nothing in the literature that clearly,indicates, when,

if ever, one of the models is preferable to the other five models.

Thus, the practitioner has ho clear guidance in the choice of a

culture-fair selection model. Further, we have suggested that the

/Constant Ratio, the Conditional Probability, the Equal Probability

models and their converses are internally contradictory.

There has been considerable interest in the Constant Rdtio

MOdel and the Conditional Probability Model based on the fact that

these models yield as popular result, in that they apparently give
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lower cut score's for disadvantaged minority populations, The appeal

of- "these models, then, is that they produce 4 desirable result.

However, we might well contend that it is generally not appro-

priate to evaluate the correctness of a model.solely do the basis

of the pleasantness or unpleasantness of its implications but, rather,

that one must look carefUlly at the logical structure of the model.

One must be sure that the model is getting the right results for the

right reasons. If'the models are giving'the right results for the

-wrong reasons, it may well be possible that, in some other circum-

stances, wrong answers will be forthcoming. We shall see thatOis

is indecd the case. We shall show that these models sometimes can

produce most undesirable results and could, in fact, be used to

justify discrimination against some minority groups.

To see that this may happen, consider a situation in which the

regression lines in the minority and the majority populations are

identical, but in which the mean.values of X and Y are higher inl

the minority (disadvantaged) population and lower in the majority

(advantaged) population. (Refer to Figure 40, This situation is not

'typical but, in fact, can be found if one compares; for instance,a

Japanese-American minority population with the Anglo majority popu-

lation. In this situation,:HOth the Constant Ratio and the Condi-

t

tional Probability models will give lower predictor cut scores and
ce,vshr?..r

hence easier entry to the majority population. The Regression Model

and the Equal Risk Model will give identical predictor cut, scores.

If, as well may be the case, the Japanese-American subpopulation

has been discriminatedjagainst in some situations and is thus a dis-

advantaged group, then our desire might be toprovide easier access

tt



for that subpopulaEion, but, in fact, the two madels being considered make

access more diffiCult.,

Frain this example, it can be seen that the,two models being discussed

make a correction that is usually in the desirable direction, but that they

make that correction for the wrong .reason. They make the correction simply

because of differences in the mean values of X and Y in the two populations

and they only coincidentally take into account the public desire or social

necessitito rectify unfair treatment to a minority population. The degree

of advantage to the minority population is largely a function of the differ-

ence in the mean test scores and in no way directly reflects the degree of

prior discrimination and disadvantage that group has suffered. On the other

hand, if, following the general ideas to be laid down here, one allows that

differential treatment should be given. to a degree agreed upon by the poli-

tical process to some heretofore disadvarkaged group, then a lower predictor

cut score will be obtained for that group. In this case, the lower score is

obtained for the right reason, because of their disadvantaged status (different

utility structure), and not simply because of a difference in mean values. We

judge that for these reasons the use of the Constant Ratio, Equal Probability

and Conditional Probability models and their converses is contraindicated. In

stating this, it is not suggested that any ill effects will necessarily result

from their use. Only by more detailed study would. it be possible to document

more completely all of the situations in which these models break down. However

one Could easily name other minority groups, discrimination against which would

be, sanctioned by any official, or other, recommendation, endorsement or adoption

of any of these models. Finally; we would remark that there is no reason to

believe thAt either the Conditional Probability or' Constant Ratio models will

provide, under any circumst nces, the degree of compensation that I think

; certain disadvantaged ns should have..
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Maximizing Expected Utility,

44-

-.There exists a body of quantitative reasoning, whose origins

44

Axe ancient Aneremote,,that has received codification in this
,

c4ntury in-the'work of Von Neumann and Morgenstern (1947), Wald

(1950), and others. In the theory of the rational- economic man,

developed in these writings, when all probibil4ies of outcomes

are assumed known (au assumptioulmat,explicitly here and impli-
,

ow
city in previous statements of the models under consideration)

there is a simple paradigm required for rational decision. In

that paradigm the detlirability or utility, Of each possible outcome

is stated quantitatively. Then, given all available information

concerning the person in question, the probability, of each possible

outcome is stated for each decision 4der consideration. Next,. for

each possible decision, the utility of each outcome is multiplied

by the probability of each outcome and the products are summed to

provide an expected utility. Finally, that decision is then made

for which the expected utility is highest. Mose statisticians

interested in decision problems accept the correctness of the

,Von Neumann and Morgenstern-Wald model and the incorrectness of

any statistical decision procedure that does not conform to that

model. It seems clear that the Constant Ratio Model, the Conditional

Probability Model and the Equal Frobability'Model do not conform to

that model, though the'ideas that are at their bases may well be

reformulated in a coherent manner.

If the utility of an outcome depends 41S7 on the individual

outcome (success-failure) and the subpopulation inl.rolved, then the
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axioms, of rational decision-making require the maximizaikbn of

expected utility (but see Suppes,,197A,\!or a slight weakening of

this statement that is not relevant here). That maximization process

involves only the conditional probability of success given test score

and the utility of that success. It does not involve any of the

marginal or conditional: probabilities used by Thorndike, Cole or

Linn. From this point of view, the fundamental fallacy in each of

these models is that they are based-on the wrong conditional probe-

ilit .

Specifically, the conditioning process must be on the specific

A

value x observed on the person d not on the marginal distribution

of X (Thorndike), the conditional . istribution of X given y (Cole)

or the everit X > x (Linn). The thre mo els mentioned above do not

use the correct probability,. The Regression Mo0.1 an4 the Equal

Risk Model do, and it is for this reason that no logical contra-

dictions have arisen with these models. This is not to say that

,these latter models are entirely satisfactory; indeed, You could

judge them to be generally unsatisfactory but only because You judge

the utilities they adopt to be inappropriate. While these models

3

are both special cases in the general decision-theoretic formula-

tion they are, it would seem, much too special. The utilities they

1*.
adopt, implicitly, are not particularly compelling and unfortunately

they do not make these assumptions very clear. More general models
ez

are required.

Some individuals (e.g., Humphreys, 1973) have indicated a,

basic dislike of differential treatment of groups while possibly

accepting its short-term desirability: That position has merit,

Jo.
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though in the current climate of opinion, it may represent a minority

view. One coherent expecied'utility.model (the Equal, Risk,Model)

provides for equal treatment of all persons. However, we suggest that

if this criterion is appropriate it would be better to arrive at it

.on the basis of careful analysis and debate in the area of public

.

policy rather than because of some notion regarding the universal

"

applicability of- any one model.

Thoindike has argued forcefully that, the marginal distributions

of both X and Y are important in culture-fair testing whereas the

.
decision-theoretic formulation we discuss in the next section con-

, .

Centrates only on the conditional distribution of Y given x.

(Thorndike's view, which is that some consideration must be given

.in'the setting of cutting-scores to their effect on the pertdntake

* .

of successful persons in each iubpopulation, can possibly be accomMo-
,-.

^ ,
cpted. within a decision-theoretic framework.) It would Seem to v) 's

V

that it might be appropriatein assessing utilities in the,twosub-'
14

populations to t4ke into consideration the implications with respect

.4

to these marginal distributions.' We would expect, huwever, this -

'

consideration'of Marginal distributions to also take into account

the effect on the percentage of failures in the two subpopulations.

Such investigation could result in our utilities being'related to

the location parameters ,of the marginal distributions,. but this would'

'
not affect the probability aspect of tfie,.decisiOn-theoretic,formuli-

tion which would still depend only on, the diseriburi6n of Y given x.

A.similar remarkmightbe made with reSpettte) Cole's Conception of

Cuiture-faii SeleCtion which might e-reiOrMnlated ip terms of utili-

ties rather thanprobabilities. 'However, in.ourjudgient?4until

. 49



.47

these ideas are giveh a strict decision-theoretic formulation in

terms of utilities that You and I can understand, ve must caution

against any use, adoption or recommendation of these ideas.-

Darlington's Culture-Modified Criterion Model is the only model

surveyed that addresses itself to the utility question. It also has

the desirable feature of focpsing on the correct conditional proba-

bility. Unfortunately, this formulation is still not entirely con-

sistent with the decision-theoretic approach (i.e., it does not

incorporate a formal utility function), and hence may not be accept-

.able. We would'urge Darlington to restate his model so that it can

be evaluated more easily.

The Threshold Utility Model

In ,a recent paper, Gross and St. (1975) investigated one decision-

theoretic approach to the culture-fair selection problem. This tprmu-
.

lation maximizes expected i/tility using a threshold utility model.

The discussion in this section is taken from a somewhat more complete

analyses due to Petersen (1974).

Assume that the applicants to an institution can be separated

into two subpopnlations referred to as the minority population (Ty

and the majority population (v2). Further, assume that a predictor

variable X (a test score) and a criterion variable Y (a measure of

performance) have possibly different (unspecified) positively

correlated bivariate distributions in each subpopulation.

Each applicant to the institution will, if accepted, be either

-a successful performer or an unsuccessful performer. The state of

. .

the-applicant being a successful performer is represented by

those values of X greater than or equal to the point y*, and the
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state of the applicant being an unsuccessful performer is

represented by those values of Y less than the point y where

,,

the minimum le7e1 of satisfactory,performanceon the criterio I

rlvariable . .11W0 possible actions are open to the institution The,

institution can either accept the applicant or reject the applicant.,

The accept decision is represented by those values of X which

are greater than or equal to the point andand the reject decision

by those values of X which are less than the point,xi where xi is

the cut score on the predictor variable Xi and may differ for each

subpopulation irti, i = 1, 2.

For each subpopulation
i'

the action decided upon by the

institution can have one of four outcomes:.

X > xi Y > y* An applicant is accepted and is

successful.

02: X < xi. 'Y > y,

*
An applicant is rejected but would

have been successful.

. *
03: X < xi Y < y An applicant is rejectdd and would

have been unsuccessful.

04: X 1 xi Y < y
*,

An applicant is accepted but is

unsuccessful.

Outcomes 0
1

and 0
3
are desirable since they represent correct

decisions,'whereas outcomes Q2 and 04 are undesirable since they

represent incorrect decisions. 'Up to this point the formulation

is the same as for the constant ratio, conditional probability,

equal probabiliTy, and equal risk models.

With these outcomes in mind, the inptitution designates

threshold utility function u(0 ), j = 1, 2, 3, 4, for each
J.

aubpopulation ni, i 1, 2, as definedin Figure 7. For the
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subpopulation y
i

, the utilities a
i
= u(0

1
kr
i
)11ind c

i
= 0

i
)

. - t,3

are associated with correct decisions and should be larger than

the utilitigs bi = u(021Wi) and di =,u(041wi). The zero point_is

.arbitrary,,though it may be convenient to take bi, di <,0 and

refer to these as disutilities. The dtgree of pieference given any

group will depend upon the utilities; for that gioup.

Regardless of the otaering of the utilities,' the expected,
,

utility. of selection for an applicant from subpopulation wi is

given by

4

67,[u(01wi)] = E u(0.1s1wi)Prob(Oilwi)

j=1

=.ai[Prob(011y) + bi[P4pb(021wi)]

+ c [Prob(0
3 i

] + d-[Prob(0
4
lw

i
)] (1)

Now, the process, of selection is vieweas a series of separate

decisions, each of Which involves one applicant. Thus, the expected

utility of the selection proceim is found by summing the expected

utility of selection for an applicant [Equation (i.)] over all

applicants, that

2 to.

[u(0)] = E p (c71, [u(Oki)J
}-:

.1=1 i

2 4

= E pi E .u(04 1 wi)Proh (0j liri)

.1=1 j=1

where pi is thr proportion of the combined applicant population (wi

and W
2
) who are members of subpopulation w . The problem is to find

predictor cut scores x, and x,
L

such that the expected utility of the

4
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selection'process [Equation,(10)] is a maximum. The.method for

4*
doing this is given- 13z/ Gross Jand Su iand by Petersen.

Int effect what this m el does is to select those applicants

i with tbAAAghest expected.utility.selection. The utilities will-

typically` differ for different subpopulations. (If they do not,C

S

6 61.6
0

we have the Equal Risk Modell) The prediction equations may'also

differ in the subpopulations.

The advantage of this model is that it requires an explicit

public statement of utilities for each subpopulation. If I do not

like the utilities You provide, ;an Jlo tiVe public debate will

no doubt ensue',-with neither of us claiming any axiomatic justifi-

cation for our utilities. The important thing is that the discussioh

Vi public with all interested parties participating in the debate.
40

In our judgment, the concepts of culture- fairness and group ,

parity are neither useful,nor tenable, and.the models spawned from
A

them should not enjoy institutional endorsemg. The problem, we

.

think,. should be reconceptualized as a-problem in.maximizing expected

utility. The Threshold Utility model is one possibly, useful model.

It has its limitations. The concerns that motivated the Thorndike:

Cole and Linn models are 'important ones; however they can be explicated

in conceptual13, Simple extensions of the Threshold Utility model.

. .

This might involve dropping the additivity aqsumption of this model.

Our main purpose in this paper has been'to show that the ideas of.

,culture- fairness and group parity have spawned incoherent models that

k

can sanction the very discrimination they seek to rectify.- Any new

explications of these ideas will^need to be scrutinized carefully from

fso

statistical, ,psychological, social, ethical and points.of view.
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