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Marine habitat mapping provides information on seabed substrata and faunal community structure to users including research scientists, conser-

vation organizations, and policy makers. Full-coverage acoustic data are frequently used for habitat mapping in combination with video ground-

truth data in either a supervised or unsupervised classification. In this investigation, video ground-truth datawith a camera footprint of 1 m2were

classified to level 4 of the European Nature Information System habitat classification scheme. Acoustic data with a horizontal resolution of 1 m2

were collected over an area of 130 km2 using a multibeam echosounder, and processed to provide bathymetry and backscatter data. Bathymetric

derivatives including eastness, northness, slope, topographic roughness index, vector rugosity measure, and two measures of curvature were

created. A feature selection process based on Kruskal–Wallis and post hoc pairwise testing was used to select environmental variables able to dis-

criminate ground-truth classes. Subsequently, three datasets were formed: backscatter alone (BS), backscatter combined with bathymetry and

derivatives (BSDER), and bathymetry and derivatives alone (DER). Two classifications were performed on each of the datasets to produce

habitat maps: maximum likelihood supervised classification (MLC) and ISO Cluster unsupervised classification. Accuracy of the supervised

habitat maps was assessed using total agreement, quantity disagreement, and allocation disagreement. Agreement in the unsupervised maps

was assessed using the Cramer’s V coefficient. Choice of input data produced large differences in the accuracy of the supervised maps, but did

not have the same effect on the unsupervised maps. Accuracies were 46, 56, and 49% when calculated using the sample and 52, 65, and 51%

when using an unbiased estimate of the population for the BS, BSDER, and DER maps, respectively. Cramer’s V was 0.371, 0.417, and 0.366 for

the BS, BSDER, and DER maps, respectively.

Keywords: habitat mapping, multibeam echosounder, supervised classification, towed video, unsupervised classification.

Introduction
Over the last decade the demand for marine benthic mapping pro-

ducts has increased steadily, as an increasing global population

places greater stress on the marine environment (Jackson et al.,

2001; Worm et al., 2006). Outputs from these investigations are

useful for research scientists in a range of fields including engineer-

ing (e.g. Wienberg and Bartholoma, 2005), archaeology (e.g. Plets

et al., 2011), the military (e.g. Blondel, 2000), and marine policy

makers (e.g. Howell et al., 2010). Policies such as the Magnuson-

Stevens Fishery Conservation and Management Reauthorization

Act of 2006 in the United States and the Marine Strategy

Framework Directive of 2008 in Europe show that governments

accept the need to understand and protect the marine environment

(Diaz et al., 2004). To be successful, the full extent of these

habitats must first be assessed. Acoustic and ground-truth data are

commonly used for the production of benthic habitat maps
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(e.g. Ierodiaconou et al., 2011; Lucieer et al., 2013). Althoughmany

techniques are used for habitatmap production, methodologies fall

into one of two broad categories, supervised and unsupervised clas-

sification (Brown et al., 2011).

In unsupervised classification, acoustic data are segmented

before being assigned a habitat type identified from ground-truth

observations made by camera or physical sampling. This has trad-

itionally been the most common method of conducting benthic

mapping with varying levels of success reported (Kostylev et al.,

2001; Lathrop et al., 2006; Brown and Collier, 2008). In supervised

classification, ground-truth data are classified then used to con-

strain interpretation of the acoustic data. How classification is

achieved for both approaches varies according to the precise

method employed. In general, unsupervised methods are those

that fall under data clustering or pattern recognition, and are

assignedhabitat type based on the spatial co-occurrence of classified

map pixels and ground-truth data. The supervised methods on the

other hand use the ground-truth data to form class signatures from

the acoustic data and these are then used to identify similar regions

in the acoustic dataset where no ground-truth data exist, to produce

a full coverage habitat map.

Multibeam echosounders (MBES) are an increasingly common

source of acoustic data for benthic habitat mapping (Brown et al.,

2011), owing to their ability to provide full-coverage bathymetry

and backscatter data while simultaneously correcting for vessel

movement and signal loss due to attenuation (Michaels, 2007).

Ground-truth data are usually in the form of underwater video

footage, stills or grabs, each of which has its strengths and weak-

nesses. Video systems are able to sample a larger portion of the

seabed than still imagery or grab sampling (Galparsoro et al.,

2012), and can sample areas of hard substrata where grabs are inef-

fective (Brown et al., 2011).These advantages areoffset against lower

taxonomic resolution, analyst subjectivity and an ability for only

semi-quantitative analysis of community data. Nevertheless, video

techniques continue to be apopular choice for collection of ground-

truth data in benthic habitat mapping (Brown et al., 2011). Once

collected, video data are normally segmented into categories of

habitat type based on observations of substrata and biota. Many

bespoke classification systems are used for this segmentation

(Diaz et al., 2004), although it is increasingly accepted that there is

a need for a more universal system to allow comparison of studies

(Dauvin et al., 2008). The European Nature Information System

(EUNIS) habitat classification scheme aims to bring such uniform-

ity to European studies (European Environment Agency, 2007;

Galparsoro et al., 2012).

The relationshipbetweenacoustic backscatterand substratumcan

be complicated by data acquisition parameters (McGonigle et al.,

2010a, b), effectively meaning that two surveys of the same area can

yield variable results given different data collection or processing

parameters, or by using different hardware. Further complication

can arise from sessile organism cover (Holmes et al., 2008), bioturb-

ation (Urgeles et al., 2002), gravel fraction (Goff et al., 2004), random

inhomogeneities in surficial sediments (Borgeld et al., 1999) and

when trying to distinguish coarse and mixed sediment classes

(Diesing et al., 2014). Despite these complications, many sources in

the literature have been able to describe relationships between acous-

tic backscatter intensity and seabed composition (Jackson et al.,

1986a, b; Mitchell, 1993; Goff et al., 2000, 2004; Collier and Brown,

2005; Ferrini and Flood, 2006; McGonigle and Collier, 2014).

Furthermore, relationships have been observed and reported

between marine substrata and benthic community structure

(Van Hoey et al., 2003; Beaman et al., 2005; Dutertre et al., 2013).

In this way, backscatter data may have the capacity to be a useful

proxy for abiotic classification of marine benthic habitats. It is pos-

sible then that these data could be used to infer habitats described at

level 4 of the EUNIS classification scheme which are described

almost exclusively based on their abiotic component. This level of

the classification system has been used in broad-scale predictive

mapping efforts (JNCC, 2014) and medium scale rule-based

mapping using MBES data (Diesing et al., 2009).

Morphological characteristics of the seabed including slope,

seabed roughness, and orientation can be extracted frombathymetry

data, and thisapproachhasbeenwell explored inthemarinegeologic-

almapping literature (Herzfeld, 1993;Herzfeld andHigginson, 1996;

Mitchell, 1996). These outputs are commonly derived from MBES

bathymetry to represent variation on the seabed that governs

exposure to hydrodynamic conditions and sediment accretion or

erosion, and to provide a measure of morphological complexity

(Ierodiaconou et al., 2011). Many investigations have successfully

integrated these data with acoustic backscatter data to enhance

the predictive capacity of MBES products for marine mapping

(Mitchell and Hughes Clarke, 1994; Rattray et al., 2009; Rattray

et al., 2013). Bathymetric derivatives have also been successfully

used by themselves in broad-scale seabed mapping investigations

(Elvenes et al., 2014). Where comparative studies are performed

using these data, they tend to concentrate on one set of input data

with multiple classifiers, rather than multiple sets of data and

multiple classifiers.

Both supervised and unsupervised classification techniques

have been widely used for benthic habitat mapping (Brown et al.,

2011). These include the easy-to-implementmaximum likelihood

and ISO cluster classifiers found inmost GIS packages (Brown and

Collier, 2008; Ierodiaconou et al., 2011), and themore complicated

statistical procedures which require specialist knowledge and

software to implement. These include neural networks (Marsh

and Brown, 2009), decision tree classifiers (Rattray et al., 2009),

random forest (Che Hasan et al., 2014), and support vector

machines (Che Hasan et al., 2012). In addition to these habitat

classification approaches, many studies employ a range of species

distribution modelling techniques (e.g. Reiss et al., 2011). These

methods are more able to predict change (Lecomte et al., 2013)

but require significant training in terms of the statistical

methods employed to set up the models. In this study, the focus

is on two of the habitat classification methods to allow for a com-

parison of the two broad conceptual approaches to classification:

supervised and unsupervised.

The primary aim of this investigation is to evaluate the outputs

of supervised classifications and unsupervised classifications given

different sets of input data. To achieve this aim, the objectives of

the study are:

(i) Generate benthic habitat maps using maximum likelihood

supervised classification on acoustic backscatter data, back-

scatter in combination with bathymetry and its derivatives,

and on bathymetry and its derivatives alone.

(ii) Generate benthic habitatmaps using Iterative Self-Organizing

(ISO) Cluster unsupervised classification on acoustic back-

scatter data, backscatter in combination with bathymetry

and its derivatives, and bathymetry and its derivatives alone.

(iii) Calculate accuracy assessment and agreement statistics to fa-

cilitate comparison of the classified maps.

An evaluation of techniques for marine benthic habitat mapping 1499
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Methods
Study area

The study area of Dundrum Bay is off the coast of Co. Down in

Northern Ireland (Figure 1). The area was surveyed as part of the

INIS (Ireland, Northern Ireland, and Scotland) Hydro survey,

(INISHydro, 2012).Thebedrock geologyof the region is dominated

by Silurian greywackes, with overlying Pleistocene deposits com-

posed predominantly of till and sand (GSNI, 1997). Holocene

sand, muddy sand, and gravel dominate the surficial sediments in

the region, with a large area of cohesive mud further offshore

(Atkins, 1997). Approximately 30% of the study area lies within

theMurlough Special Area of Conservation (SAC). The area of sub-

littoral sand banks in the region is one of the qualifying features for

the designation of the offshore part of the SAC, the other being the

common seal Phoca vitulina (JNCC, 2011).

Bathymetry in the study area ranges from 15 m below chart

datum in the northwest to 30 m in the southeast over a distance of

16 km, producing a very shallow gradient (Figure 1). The area

experiences the largest tidal variations in Northern Ireland

(Atkins, 1997), with a mean spring range of 5 m (Jackson et al.,

2005). This tidal variation produces weak streams (,0.2 ms21)

that run along the shore north and east with the flood tide, and

west and south with the ebb tide (Great Britain Hydrographic

Department, 1985). Net sediment transport by these tidal streams

is in a northerly direction, with net accretion observed in the nor-

thern section of the bay (Atkins, 1997; Cooper and Navas, 2004).

Due to this net accretion, themorphology of the seabed changes sig-

nificantly with time, which in turn affects incoming wave energy. In

the outer bay, defined here as the portion of the bay seaward of a line

joining Newcastle and Killough (Figure 1), net wave energy moves

in a westerly direction. In the inner bay, net wave energy moves in

a north north-westerly direction (Cooper and Navas, 2004).

Prevailing winds below gale force originate in the southwest,

with the majority of winds blowing at gale force or stronger

(.13.9 ms21) coming from the south to southeast (Atkins, 1997).

Acoustic data

Geophysical data were acquired during June and July 2011 aboard

theAgri-Food andBiosciences Institute’sR.V.Corystes, using a hull-

mountedKongsberg EM3002 single headMBES systemoperating at

300 kHz. Before the survey, two Valeport Midas water-level recor-

ders were deployed, one north and one south of the survey area.

A patch test was performed before beginning survey work to

calibrate the MBES system for any error in mounting, heading, or

positioning. The survey was undertaken at an average speed of

4 ms21, with an average ping rate of 8 Hz. Swath-width was limited

to a total angular coverage of 1208 with an overlap of 100% main-

tained throughout the survey. Positioning was achieved using a

Kongsberg Seapath 200 DGPS system integrated with a Kongsberg

MRU 5motion reference unit for heave, pitch, and roll corrections.

Bathymetry and backscatter data were logged using Kongsberg

Seafloor Information Systems (SIS) software. Sound velocity pro-

files were taken using a Yellow Springs International CastAway

CTDataminimuminterval of every4 horwhen therewas suspected

stratification as indicated by the sound velocity sensor on the sonar

head. Sound velocity profiles were subsequently loaded into SIS and

applied to the incoming sonar data before being logged.

Post-processing of the acoustic data was carried out to IHO

Order 1a standard using Caris HIPS & SIPS version 7.1. This

included correcting for relative position of the sonar head and

vessel draft, tidal corrections to chart datum (LAT), and visual in-

spection of positioning and motion reference data. A Combined

Uncertainty and Bathymetric Estimator (CUBE) surface was

generated for the study area, and the data were filtered to reject

any soundings lying outside the 95% confidence level for the

CUBE surface. Bathymetric data were exported as a 32-bit floating

point Bathymetric Attributed Grid. Backscatter data were processed

using the Geocoder engine (Fonseca and Calder, 2005) in Caris SIPS.

Beam pattern and time varying gain corrections were applied, and

the data were mosaicked and exported as a 24-bit uncompressed

GeoTiff. Both the bathymetry and backscatter data were exported

with a horizontal resolution of 1 m.

Video ground-truth survey

Underwater video ground-truth data were acquired in September

2011 on-board R.V. Corystes. Stations were predetermined inde-

pendently of the MBES data using a regularly spaced grid to object-

ively direct the sampling effort as therewas no a priori knowledge of

seabed composition. This resulted in a greater independence of the

two datasets, and therefore a more robust statistical comparison of

the final habitat maps. Video data were recorded at a total of 18 sta-

tions spaced 2.8 km apart. Equipment consisted of a drop frame

fitted with a Simrad underwater camera, with an arrangement of

four lasers spaced at 25 cm from each other to provide scale.

Positioning of the camera was achieved using a TrackLink Ultra

Short Baseline system. Each video tow was conducted for 15 min

at an average speed of 0.5 ms21, and the camera was suspended an

average height of 1 m from the seafloor giving an approximate

field of view of 1 m2. Video data were categorized using the

EUNIS habitat classification scheme. For its broad applicability,

Figure1. Locationof the studyarea inDundrumBayoff the coastof Co
Down in Northern Ireland. Contours were generated from the General
Bathymetric Chart of the Oceans (GEBCO) 30 arc-second dataset
(vertical datum is mean sea level).
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level 4 was chosen to classify habitats in this study. Distinction

between habitat types at this level is based mainly on the abiotic

component of the environment for unconsolidated substrata. The

only biotic information is contained within the description and in-

dicator species are often infaunal. For hard substrata, habitats at this

level are distinguished by introducing a description of community

structure. Video data were originally recorded as continuous lines

of habitat codes, breaking only where a change in habitat was

observed. These were subsequently split into 1 m segments for use

in further analyses.

Bathymetric derivatives

Seven bathymetric derivatives were generated in the study, all calcu-

lated using ArcGIS v10.1 (ESRI, 2012); slope, northness, eastness,

topographic roughness index, vector rugosity measure, curvature,

and profile curvature. These derivatives were chosen to describe

the seabed in terms of exposure to wave and current energy

(aspect), the likelihood of sediment accretion (slope), and seabed

complexity (rugosity) (Rattray et al., 2009). To overcome issues of

using radial data to represent aspect (e.g. 3608 ¼ 08), this layer

was further split into northness (cosine of aspect) and eastness

(sine of aspect), where 1 represents perfect north/east, and 21

represents perfect south/west, respectively (Zar, 1999). A low-pass

filter was applied to the bathymetry data before calculating each of

the aspect layers to reduce very small-scale (,10 m) variation in

the data. After testing a number of ranges over which to apply the

filter, a distance of 200 m was determined to provide an acceptable

balance between filtering very small-scale variationwhile still repre-

senting variation over distances of tens of metres.

Fourmeasures of seabed complexity were identified from the lit-

erature and were calculated from the bathymetric data; curvature

and profile curvature (Wilson et al., 2007), the Topographic

Roughness Index (TRI) (Riley et al., 1999), and the Vector

Ruggedness Measure (VRM) (Sappington et al., 2007). The TRI

and VRM rasters were calculated to show roughness over a range

of 25 m. After testing over several ranges, this distance was found

to show the largest amount of variation with the minimal amount

of surface smoothing for this resolution of data. It should be

notedhere that this is not an exhaustive list of available environmen-

tal descriptors, but a selection of thosemost commonly found in the

habitat mapping literature.

Prior to classification, Kruskal–Wallis tests were performed to

identify the variables most able to discriminate the ground-truth

classes. If a significant result was obtained for the main test, post

hoc pairwise tests were carried out using the routine described in

Siegel and Castellan (1988) and implemented through function

kruskalmc in R package pgirmess (Giradoux, 2014). Variables

were kept only if the pairwise tests showed significant differences

90% or more of the time, that is, if the variable was able to discrim-

inate at least 9 of the 10 pairs of ground-truth classes. Further redun-

dancywas eliminated by performing principal components analysis

(PCA) on the bathymetry and derivatives data.

Habitat map production, accuracy, and agreement
statistics

Classified maps were produced using unsupervised and supervised

classification methods on three sets of input data: (i) backscatter

data alone (BS), (ii) backscatter data in combination with bathym-

etry and its derivatives (BSDER), and (iii) bathymetry and its deri-

vatives by themselves (DER). Before any classifications were carried

out, all variables were scaled to have aminimumof 0 andmaximum

of 1 to satisfy the assumptions of the ISOCluster that all variables are

described on similar scales (ESRI, 2012).

Unsupervised classificationwasperformedusing the ISOCluster

algorithm in ArcGIS v10.1. This technique organizes the data in

the input raster into a user-defined number of groups to produce

signatures which are then used to classify the data using the MLC

function using the same set up parameters as for the supervised clas-

sification. Thenumber of iterations for the clustering procedurewas

set to 200, as it was found that larger numbers of iterations had neg-

ligible effect on the clustering results with significant increases in

computing time. Number of classes was set to correspond to the

number of EUNIS classes observed in the ground-truth video

footage. Dendrograms were plotted to show similarities between

ISO Cluster classes created using each dataset.

For each map, a contingency table was created based on the

spatial co-occurrence of the ISO Cluster classes and the ground-

truth data. Contingency tables were used to perform x
2 tests for

independence. Since x2 is sensitive to the sample size n, with large

n producing large and therefore significant x2, results of the x2 ana-

lyses were used to compute Cramer’s V statistics (Cramer, 1946).

Cramer’s V has a range from 0 (no relationship) to 1 (perfect rela-

tionship) and is not sensitive to sample size. The variableVwas cal-

culated for both the entire contingency table and for each individual

class.Mosaic plots (Zeileis et al., 2007) were generated for each con-

tingency table to graphically represent the values in the table.Cells of

the mosaic are scaled so that their size in the x-direction represents

the proportionof pixels assigned to an ISOCluster class, and the size

of the cell in the y-direction represents the proportion of ground-

truth data in each class. Circles represent zero values in the contin-

gency table. Plots were shaded based on the Pearson residuals of the

x
2 test for that table, where the units of the residuals are standard

deviations from the expected value. Therefore, any cell of the table

that has a Pearson residual of +2 indicates a relationship that is

statistically significant at the 95% confidence level. Cramer’s V

calculations andmosaic plotswere carried out in theRenvironment

using packages lsr (Navarro, 2014) and vcd (Meyer et al., 2013),

respectively.

Supervised classification was performed using the Maximum

Likelihood Classifier (MLC) in ArcGIS v10.1. The MLC used 80%

of the ground-truth data from each class as training data to create

class signatures from the input raster, retaining the other 20% toval-

idate the resulting classifiedmaps. A stratified sampling strategywas

used to ensure all observed EUNIS categories and ground-truth sta-

tions were evenly represented in the training and validation. This

was achieved by randomly sampling 20% of segments from each

ground-truth code within each station without replacement. The

MLC was set up to classify each pixel with none being rejected due

to low confidence, and all classes having equal probability of being

assigned. Dendrograms were plotted to show similarities between

class signatures created using each dataset.

For accuracy assessment of the MLC maps, contingency tables

were produced using the 20% of video data withheld from the

training set, based on their spatial co-occurrence with the classified

mapoutputs. Fromthese contingency tables, total agreement, quan-

tity disagreement, and allocation disagreement were calculated

(Pontius and Milliones, 2011). These authors point out problems

with the commonly quoted Kappa statistics for map comparisons

and suggest that the two measures of disagreement should be used

instead. Quantity disagreement is defined as “the amount of differ-

ence between the reference data and a comparison map that is due

to the less than perfect match in the proportions of the categories”

An evaluation of techniques for marine benthic habitat mapping 1501

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
2
/5

/1
4
9
8
/7

6
1
8
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



and allocation disagreement is defined as “the amount of difference

between the reference data and a comparisonmap that is due to the

less than optimal match in the spatial allocation of the categories,

given the proportions of the categories in the reference and com-

parison maps” (Pontius and Milliones, 2011). Furthermore, they

suggest that summary statistics computed for map comparison

should be based on an unbiased estimate of the population matrix

given by

pij =
nij

∑J
j=1 nij

( )

Ni
∑J

j=1 Ni

( )

,

where pij is elements of the estimated population matrix, nij is

elements of the sample matrix, and Ni is the total counts for the

population, where i and j refer to the classified map and ground-

truth categories, respectively, and J is the total number of classes

(Pontius and Milliones, 2011). Summary statistics are calculated

here using both the unbiased estimate of the population con-

tingency table and the sample contingency table. Significance of

difference between supervised classifications was assessed using

McNemar’s tests for related samples with continuity correction as

documented in Foody (2004).

Contingency tables for theMLCmapswere represented graphic-

ally by Bangdiwala agreement plots (Bangdiwala, 1988) produced

using the vcd package in R (Meyer et al., 2013). Plots were drawn

so that the size of the box in the x-direction represents the propor-

tion of ground-truth data available for that class, and the size of the

box in the y-direction represents the proportion of pixels classified

as belonging to that category by theMLC.Eachbox in theplot shows

agreement, omission error, and commission error for that class

where omission is a measure of between class discrimination and

commission is a measure of within class discrimination.

Results
Acoustic data

The MBES bathymetry data (Figure 2a) depict the seabed sloping

from ≏11 m in the northwest of the study area, to ≏33 m in the

southeast. The shallowest areas are observed in the north and west

of the study site, except for an obvious shoal in the form of a

linear feature to the south of the site. The feature rises from a

depth of 28 m on the northern side to a minimum depth of

13.5 mbefore sloping to24 mon the southern side.Basedon the lin-

earity, high-backscatter signature (Figure 2b) and orientation of the

feature, it is interpreted as an igneous intrusion, probably associated

with theTertiary dyke swarm in thenearbyMourneMountains. The

region to the eastof the centreof the studyareadisplays the least vari-

ation in terms of both backscatter andbathymetry (Figure 2a andb).

High-backscatter intensity is observed in the central northern

region and the entire southern region of the study area. These

areas demonstrate little variation in broadscale bathymetry but

show the greatest fine-scale bathymetric variation in the form of

morphological complexity or rugosity. This leads to the conclusion

that the central northern region and entire southern region are

dominatedbyhard substratum.Several curvilinearhigh-backscatter

features are observed in theMBES data in the southeast of the study

area, also indicating hard substratum. The central region of the

study area is dominated by an area of low backscatter intensity.

The sole area of low backscatter intensity in the southwest of the

study area is found adjacent and to the south of the igneous intru-

sion, indicating sediment accretion on the steep margin of the

dyke (Figure 2a and b).

Figure 2. Results of the acoustic survey showing (a) bathymetry (corrected to chart datum, LAT) and (b) backscatter data. Ground-truth stations
are displayed on both the bathymetry and backscatter data. In (a), letters (a) to (r) correspond to (a) to (r) in Figure 3. Locations of the images in
Table 2 (i–v) are displayed with the backscatter data.
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Ground-truth data

Five classes at level 4 of the EUNIS habitat classification scheme

are observed in the video footage (Table 1 and Figure 3).

Classification of the footage is broken down into 5865 1 m seg-

ments. The segmentation comprises 118 m of class A4.21

(Echinoderms and crustose communities on circalittoral rock),

622 m of class A5.14 (Circalittoral coarse sediments), 2979 m of

class A5.26 (Circalittoral muddy sand), 247 m of class A5.36

(Circalittoral fine mud), and 1899 m of class A5.44 (Circalittoral

mixed sediments). As well as being the most abundant, class

A5.26 is the most widespread, but dominates in the central

regions where the ground-truth stations are observed to contain

only this class. Class A4.21 is observed next to the dyke in the

south of the region, and on the curvilinear high-backscatter

features to the east. Classes A5.14 and A5.44 are observed in the

north and south medium backscatter regions, with much of the

latter seen where there is a change in backscatter intensity (Figure 2a

and b). The study area lies on the margin of the Northern Irish Sea

mud patch (Hill et al., 1995), and as such the only areas of class

A5.36 are on the seaward fringes of the study area, to the east and

the south.

Map production, accuracy, and agreement assessments

For each of the nine environmental variables created (Figure 4),

Kruskal–Wallis tests show significant differences between ground-

truth classes with p, 0.01. Therefore, pairwise tests were carried

Table 1. Example images and descriptions of EUNIS level 4 habitats (Figure 3) identified from the video ground-truth data
(European Environment Agency, 2007).

Image
EUNIS
Class EUNIS habitat description

Training data
(m)

Validation data
(m)

(i) A4.21 Occurs on wave exposed, moderately strong to

weakly tide-swept, circalittoral bedrock and

boulders. Echinoderms, faunal and algal crusts

(red encrusting algae) dominate this biotope.

95 23

(ii) A5.14 Tide-swept circalittoral coarse sands, gravel and

shingle generally in depths of over 15–20 m.

498 124

(iii) A5.26 Circalittoral non-cohesive muddy sands with the

silt content of the substratum typically ranging

from 5 to 20%.

2384 595

(iv) A5.36 Sublittoral muds, occurring below moderate depths

of 15–20 m, relatively stable conditions often

lead to the establishment of communities of

burrowing megafaunal species.

198 49

(v) A5.44 Mixed sediment habitats in the circalittoral zone

(generally ,15–20 m) including well-mixed

muddy gravelly sands or very poorly sorted

mosaics of shell, cobbles and pebbles embedded

in or lying upon mud, sand, or gravel.

1520 379

Lasers in the images are spaced 25 cm apart. Images (i) to (v) correspond to (i) to (v) in Figure 2b. The amount of data available for training and validation of the
habitat maps is also shown.
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out for each of the nine variables to identify which pairs cause the

differences. Bathymetry, backscatter, TRI, and slope discriminate

ground-truth classes in at least 9 of the 10 pairwise tests (Table 2

and Figure 5). These four variables were subsequently subject to

PCA. This results in two components accounting for 99.99% of

thevariation in theoriginal data, composedprimarilyof bathymetry

and TRI. The output PCA data form part of the BSDER and all the

DER datasets used for map production.

Figure 3. Ground-truth stations showing segmentation based on EUNIS habitat codes. Letters (a) to (r) correspond to (a) to (r) in Figure 2a.
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Maps resulting from the unsupervised classifications on BS,

BSDER, and DER are shown in Figure 6a–c, respectively. It

should be noted here that the ISO Cluster class names are assigned

randomly by ArcGIS, so class numbers do not necessarily corres-

pond from one map to another, and are displayed using one

colour scheme for convenience only. Each of the ISO Cluster

maps picks out the regions indicated as more topographically

complex in the south of the region, the BS and BSDER maps pick

out the topographically complex region to the north, and the

main source of disagreement for all three is in the central areas.

Mosaic plots reveal a one-to-many relationship between each of

the ISOCluster outputs and the ground-truth data (Figure 7).Main

sources of confusion are classes A5.26 and A5.44 for the BS and

BSDER maps, and classes A5.14, A5.26, and A5.44 for the DER

map. Results of the x2 analyses were significant with p , 0.001 for

all three contingency tables. It is likely however that the extreme

values of x2 are due to large sample size. Relationships are therefore

assessed based on Pearson residuals in the mosaic plots and

Cramer’s V statistics. Pearson residuals indicate relationships at

the 95% confidence level or above between all but two cells of the

contingency tables for the BS maps, and all cells for the BSDER

and DER maps. Overall, Cramer’s V is 0.371, 0.417, and 0.366

for the BS, BSDER, andDERmaps, respectively. The lowest individ-

ual class Cramer’s V is 0.232 for EUNIS class A5.26 for the BS map,

while the highest is 0.843 for class A4.21 for the BS map. Across

all three ISO Cluster maps, class A5.26 is the least well represented

Figure 4. (a) Processed backscatter data, (b) northness calculated from the filtered bathymetry data, (c) eastness calculated from the filtered
bathymetry data, (d) topographic roughness index, (e) slope, (f) vector rugosity measure, (g) profile curvature, and (h) curvature calculated from
thebathymetry data in Figure2a) andused in theKruskal–Wallis tests andPCA.Note these aredisplayed after each variable hadbeen standardized.
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by any of the ISOCluster classes, with Cramer’sVof 0.429 or less for

each map.

Dendrograms drawn for each of the ISO Cluster outputs reveal

varying degrees of similarity between classes depending on input

data (Figure 7). For theBSdata, classes 1, 2, and3are completely dis-

similar to classes 4 and 5. For themaps created with the BSDER and

DERdatasets, classes 4 and 5, respectively, are completely dissimilar

to all other classes. For the BS map, all other classes are similar at

,50%. Overall, ISO Cluster classes generated using the BSDER

andDERdata are less similar than those generatedusing theBSdata.

Maps resulting from the supervised classifications on BS,

BSDER, and DER are shown in Figure 6d–f, respectively. The

highestdegreeof visual similarity is observedbetween themapspro-

duced using the BS and BSDER data. In all three maps, the same

topologically complex regions have been identified in the north

and south of the region. In contrast to the ISO Cluster maps, each

of the MLC outputs classifies the central regions of the study area

to a similar category, A5.26, which is by far the most common cat-

egory in all three maps.

Results of the accuracy assessment for the three MLC maps

(Figure 8)using the sample contingency table resulted in total agree-

ment of 46, 56, and 49% for the MLC maps produced using BS,

BSDER, and DER, respectively. For the BS map, the main source

of disagreement when using the sample contingency table is quan-

tity disagreement at 36%, indicating high intensity losses or gains

among the different classes. For the BSDER and DER maps, the

main source of disagreement is allocation disagreement at 29 and

28%, respectively, suggesting a large amount of confusion

between classes. Bangdiwala agreement plots (Figure 8) show that

the main source of agreement for each map comes from class

A5.26. Most notably, the BS map fails to correctly classify any of

classes A4.21 or A5.44. The map produced with the BSDER data

includes the most even representation of each ground-truth class,

while the DER map represents contain a less even spread than the

BSDER map but a more even spread than the BS map.

Calculating the accuracy assessment statistics using an unbiased

estimate of the population matrix markedly affects results. Total

agreement using these data is 52, 65, and 51% for the BS, BSDER,

Figure5. Boxplots showing characteristics of (a) bathymetry, (b) backscatter, (c) TRI, and (d) slope for eachof thefive EUNIShabitat types observed
in the ground-truth data.

Table 2. Results of the post hocmultiple comparison tests for discriminating ground-truth classes.

Bathymetry Backscatter TRI Slope VRM Northness Eastness Prof. curvature Curvature

A4.21–A5.14 x – x x x x – – –

A4.21–A5.26 x x x x x x – x –

A4.21–A5.36 x x x x x – x x –

A4.21–A5.44 x x x x x x – – –

A5.14–A5.26 x x x x x x – – –

A5.14–A5.36 x x x x x x x – –

A5.14–A5.44 x x x x – x – – –

A5.26–A5.36 x x – – – – x – –

A5.26–A5.44 x x x x x – – x x

A5.36–A5.44 x x x x x – x – –

Cells containing an x represent cases where a significant difference was observed at p, 0.01, and cells containing a – represent cases where there was no
significant difference.
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andDERmaps, respectively. These correspond toquantity disagree-

ment of 28, 25, and 25%, respectively, where quantity disagreement

is the main source of disagreement for all three maps.

Dendrograms for the class signatures generated to classify the

MLC maps show that for the BS map (Figure 9) ground-truth

data classes A5.44 and A5.36 are most similar, followed by classes

A4.21 and A5.14. Class A5.26 linked with the grouping of A5.44

and A5.36 at ≏50% similarity. For the BSDER map, the output

signature file reveals the highest degree of similarity between ground-

truth data classes A5.14 and A5.44. These two classes were further

linked to classes A5.26 at the 55% level of similarity and A5.36 at

the 30% level of similarity. For thismap, classA4.21 is completelydis-

similar to all other classes. The dendrogram for the DERmap reveals

the highest level of similarity between classesA5.44 andA5.14 at 80%,

which joinwith class A5.26 at 60%.Class A5.36 joins with these three

at 15%, and class A4.21 is completely dissimilar.

Statistics calculated from contingency tables (Table 3) for

pairwise MLC map comparisons show that the BS map is 71 and

51% similar to the BSDER and DER maps, respectively, and the

BSDER map is 64% similar to the DER map. The main source of

agreement for these comparisons is due to the widespread nature

of class A5.26 in all three maps. McNemars’s tests show that all

three maps are significantly different at p , 0.01 (Table 3).

Discussion
The primary aim of this investigation was to evaluate outputs from

unsupervised and supervised approaches to benthic habitat

mapping, by performing ISO Cluster unsupervised classification

and maximum likelihood supervised classification (MLC) on

three sets of input data. Video ground-truth data classified to level

4 of the European Nature Information System habitat classification

scheme (European Environment Agency, 2007) revealed five seabed

classes in the study area, so theMLCproducedmaps containing five

habitat types. The same number of classes was produced during the

ISOCluster classifications, and statisticswere derived to evaluate the

outputs of the twomethods.Direct statistical comparisonof the two

approaches was not attempted due to differences in assumptions in

the statistical analyses. The x2 analyses assume independence in the

categorical databeing tested, so itwouldnot be appropriate tousex2

for the MLC outputs since one dataset has been used to predict the

other. Similarly, agreement and disagreement analysis assumes that

the operator knows which categories are paired, so for the ISO

Cluster class names being assigned randomly in ArcGIS, this is im-

practical.While a statistical comparisonwasnot attempted, it is pos-

sible to evaluate qualitatively the outputs from the two methods.

Accuracy of the MLC outputs was assessed using both a sample

contingency table and an unbiased estimate of the population

matrix following recommendations in Pontius and Milliones

(2011). The procedure of estimating the population matrix is cited

by these authors as vital for producing unbiased summary statistics

for accuracy assessment; however, no instances of this step are found

in the benthic habitat mapping literature. In the scientific literature,

accuracy assessments are commonly reported in purely numeric

terms (e.g. Diesing et al., 2014; Stephens and Diesing, 2014), with

total agreement or Cohen’s Kappa being the most widely quoted sta-

tistics. Visual analysis of agreement plots generated for the MLC

outputs in this study clearly show that, for the BS and DER maps,

almost all the agreement is due to the spread of class A5.26, and very

Figure 6. Classified maps using (a) ISO Cluster on BS, (b) ISO Cluster on BSDER, (c) ISO Cluster on DER, (d) MLC on BS, (e) MLC on BSDER, and
(f) MLC on DER. It should be noted that while the classes in the ISO Cluster maps appear spatially correlated, they are arbitrarily assigned class
names. Class names in the two MLC maps are the EUNIS habitat codes as identified from the video ground-truth data.
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little is due to agreement in any other class. The exclusion of either the

backscatter or bathymetric derivatives from the input data for the

MLC therefore seems to have a negative effect on the predictive cap-

acity of the data. Nevertheless, accuracy of the MLC maps in this

study is comparablewith that seen inother studiesusing the sameclas-

sifier (Ierodiaconou et al., 2011), although these authors show that the

MLC performs below the levels of other classifiers.

The ISO Cluster unsupervised classification used in this study is

not truly unsupervised. To attempt a comparison between the clas-

sified acoustic and ground-truth data, the ISO Cluster was con-

strained to create five classes out of the two sets of input data.

This partitioning into a user-defined number of classes assumes

prior knowledge of the data, when in fact, in comparison to the

acoustic data, very little of the seabed has been qualified by ground-

truth data. The dendrogramproduced from the ISOCluster analysis

on the backscatter data (Figure 7a) shows that classes 1, 2, and 3 are

≏50% similar, while at 75% classes 4 and 5 are even more similar,

suggesting that only two or three distinct clusters can be observed

in the backscatter data. Jones and Brewer (2012) report using a

similar method with the main difference being that they merged

classes which displayed high levels of similarity. This however

would not have allowed for a comparison with the ground-truth

data, so was not considered in this study.

In this study, a grid of ground-truth sampling locations was pre-

defined independently of the acoustic data, rather than using the

latter to direct the sampling effort, to objectively direct the sampling

of ground-truth data. Comparison of the BS, BSDER, and DER

maps would have been biased if the ground-truth sampling had

been based on the backscatter data or any other assumed a priori

knowledge of the seabed. As pointed out above, a maximum of

three (but more likely two) ground types would have been

sampled (Figure 7) if this were the case. Based on the EUNIS level

4 habitat codes though, a minimum of five ground cover types

exist in the region. Kostylev (2012) states that there is an urgent

need for a change in how data for marine habitat mapping are

sampled and interpreted, and suggests that acoustic backscatter

alone should not form the sole basis for inferring benthic habitat

nor directing sampling effort.

Nevertheless, backscatter data have been shown to be a good

proxy for substrate type (Goff et al., 2000, 2004; Collier and

Brown, 2005; McGonigle and Collier, 2014). Since the habitat

codes at level 4 of the EUNIS habitat classification system describe

the seabed almost exclusively based on their abiotic component,

maps were produced using three different datasets to investigate

the effects of their inclusion; backscatter alone, backscatter in com-

binationwithbathymetry andderivatives, andbathymetry andderi-

vatives by themselves. In this study, the use of the BSDER data is

shown to achieve more accurate results for the MLC classifications

than using BS.

For the ISO Cluster unsupervised classifications, Cramer’s V

results show that the exclusion of backscatter data does not

negatively impact the classifier as it did with the MLC maps. To

the contrary, inclusion of bathymetric derivatives resulted in

better relationships between the ISO Cluster classes and EUNIS

classes A5.26, A5.36, and A5.44 for the BSDER map, and classes

A5.26 and A5.44 for the DER map. Class separation as observed

in the dendrograms for the ISO Cluster classifications (Figure 7)

is also much better for the maps with bathymetric variables

included, which is not the case for the MLC dendrograms

(Figure 9). These results suggest that in areas of hard substrata

Figure 7. Mosaic plots of contingency tables and dendrograms produced for the ISOClustermaps using (a) BS, (b) BSDER, and (c) DER. Cells of the
mosaic are proportional to the counts for that cell. Shading is based on the Pearson residuals of thex2 test,whereunits are standard deviations from
the expected value assuming independence. Cramer’s V statistics are displayed to indicate agreement between individual ground-truth categories
and ISO Cluster classes as well as overall for each classification.
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with high morphological complexity, unsupervised classifications

using bathymetric derivatives may be as good for deriving mean-

ingful segmentations as backscatter data are.

Jackson et al. (2005) reported that the beaches in the littoral zone

ofDundrumBay are composed of a thin surficial veneer of fine sedi-

ment on top of a harder substratum, with cobbles frequently

exposed in the area. While wave energy is likely to be much

reduced in the middle of the Bay, and so sediment retention

should be higher, it is not unreasonable to assume that there

would be areas of surficial veneer offshore. Lucieer et al. (2013)

found that their classification system was least accurate when

trying to classify a seabed characterized by a sediment veneer on a

harder underlying substratum with ground-truth data identified

from video imagery. A similar situation is reported in Kostylev

et al. (2001), and is a potential source of some of the disagreement

seen in this study. Ground-truth station m (Figure 3), for

example, appears acoustically different fromstation g or h; however,

video footage reveals that, on the surface at least, they are each com-

posed of class A5.26. This is interpreted as volume scattering either

frommuddy sand overlying a coarse substratum or a coarser fraction

mixed through the sandwhichwasunobservable in the video footage.

Thus, describing the seabed in purely acoustic terms ignores the pos-

sibility that two different acoustic signatures are being assigned one

ground-truth class. On the other hand, describing habitat based

solely on video data ignores the possibility that hard substrata can

underlie surficial sediment (e.g. Callaway et al., 2009).

Figure8. Bangdiwala agreementplots producedusing the contingency tables produced for theMLCmapsusing (a) BS, (b) BSDER, and (c)DER. The
total size of each box is proportional to the counts for that cell of the table, the dark box represents perfect agreement, and the lighter box is error.
Error in the x-direction is error of omission and error in the y-direction is error of commission. Results for total agreement, quantity disagreement,
and allocation disagreement are also displayed. Values in parentheses are based on an unbiased estimate of the population matrix as described in
Pontius and Milliones (2011). Values outside the parentheses are based on the sample matrix.

Table 3. Pairwise map comparisons for the three maps produced using the MLC and results of McNemar’s related samples tests for
significance.

Dataset Agreement Dis. quantity Dis. allocation McNemar’s x2
p

BS and BSDER 71 18 11 16.2 ,0.01

BS and DER 51 15 34 48.7 ,0.01

BSDER and DER 64 15 21 18.2 ,0.01

Figure 9. Dendrograms produced from the signature files for the maximum likelihood classification on (a) BS, (b) BSDER, and (c) DER.
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The EUNIS habitat classification scheme has successfully been

applied in low-resolution, broad-scale mapping projects (Diesing

et al., 2009; JNCC, 2014). For the higher resolution MBES data

used in this study, it was found that some of the EUNIS habitat

codes did not provide sufficient allowances for discriminating

areas of seabed. For example, class A5.44 (Circalittoral mixed sedi-

ments) covers well-mixed muddy gravel, poorly sorted shell

mosaics, and cobbles and pebbles lying on mud or sand. Class

A5.14 (Circalittoral coarse sediments) covers a similarly large

range of substrata, including coarse sand, gravel, and shingle.

Within each of these classes there are many sediment types that

will be classified in the same way based on visual classification of

the ground-truth data, but will produce acoustic signatures that

differ immensely. In the BSmap created using theMLC, the greatest

amount of confusion was observed between the circalittoral mud

class and the mixed sediment class. This is potentially due to the

mixed sediment class including pebbles and cobbles lying on

mud, although as the amount of pebble/cobble increases, this con-
fusion should diminish as the larger fraction begins to dominate the

backscatter signal. For the BSDER and DERmaps created using the

MLC, the greatest amount of confusion was observed between the

mixed sediment class and the coarse sediment class. Again, this is

to be expected since the mixed sediment class includes mosaics of

shell, pebble, or cobble on coarse sand and gravel.

Someof this inter-class confusion couldbe eliminatedby collect-

ing a larger amount of ground-truth data. Collecting larger volumes

of these datawill however significantly increase survey cost (Holmes

et al., 2008; Clements et al., 2010). The result of this situation is a

comparatively small amount of ground-truth data that represents

the seabed at amuch higher resolution than the full-coverage acous-

tic data. The sampling unit of the video data in this study is the same

as the resolution of the acoustic data, at ≏1 m2 field of view per

frame of video footage. While it has been shown that the fine-scale

variabilityof the seabed iswhatdrivesbackscatter strength inuncon-

solidated substrata (Jackson et al., 1986a), the small-scale variation

observed in video data is often not evident in the acoustic data

(Diesing et al., 2009) This potentially accounts for some of the inac-

curacies in the current study. Che Hasan et al. (2014) state that ac-

curacy assessment of habitat maps needs to be considered not

only in terms of the statistics, but also with consideration of the

scheme used to classify the ground-truth data. Put simply, inaccur-

acies of the output habitatmapsmay be due to a comparative lack of

ground-truth data or the inadequacies of the habitat classification

scheme, rather than survey or experimental design.

Scale and resolution will also affect bathymetric derivatives.

Recent work has shown that changing the scale over which bathy-

metric derivatives are calculated, aswell as calculating the samederi-

vatives using different resolutions of input data will cause large

differences in the output layers (Wilson et al., 2007). For example,

calculating slope or rugosity over large scales will have a smoothing

effect on the surface, to the point that all the variation has essentially

been averaged out. For example, for the data in the current study ar-

tificially coarsening the MBES data to 10 m resolution changes the

maximum slope in the area from 678 to 168. Varying scales of

these bathymetric derivatives will therefore affect the success of

habitat modelling studies (Lundblad et al., 2006). Recent work has

shownpromise in terms of varying scales of analysis for habitat suit-

ability modelling (Giusti et al., 2014).

The BSDER and DER datasets used here included a number of

bathymetric derivatives, but were not exhaustive. As a result, there

could be others that explain more variation than these, or explain

variation in a way more suited to describing benthic habitat distri-

bution. Furthermore, the ISO cluster assumes that data are

described on similar scales, so all variables were transformed prior

to classification. This has the effect of giving each variable equal

weight which may not be the case in nature. For example, while

there are tidal streams observed in the study area, they were found

to be imperceptible in the middle of the Bay (Great Britain

Hydrographic Department, 1985). The two aspect variables were

included in initial tests due to their expected influence on exposure

to the current regime in the bay; however, they do not account for

the spatial variation seen in the strength of the currents within the

study area. In addition to this spatial variation, temporal variation

is observed in benthic habitat structure. Even over short-time

scales, distinct differences can be seen in seabed habitats that need

to be understood before mapping methods can be accurately

assessed (Anderson et al., 2008).

A further potential source of inaccuracy with the methodology

used in this paper is that the maximum likelihood classifier

assumes a Gaussian distribution when assigning classes to pixels

(Ierodiaconou et al., 2011). Habitat distributions, however, are

likely to be multimodal in nature. In this investigation, modal fre-

quencies were observed in classes A5.26 and A5.44. Moreover,

except features like rocky outcrops and sorted bedforms (Murray

and Thieler, 2004), habitats are not likely to display the types of dis-

crete boundary being modelled in maps of the type created in this

study. Rather, the boundaries between habitats would exist as

fuzzy boundaries (Lucieer and Lucieer, 2009) displaying features

that resemble more closely an ecocline rather than an ecotone

(Attrill and Rundle, 2002).

Diesing et al. (2014) state that there is a need for more compara-

tive marine mapping studies to fully inform best practice for this

type of investigation. Stephens and Diesing (2014) produced one

such study for the assessment of a range of supervised classifiers.

Based on the results of the ISO Cluster classifications produced in

this investigation, it is also recommended that the use of unsuper-

vised methods is explored to appreciate the full range of methods

available to habitat mappers.

Conclusion
This paper describes methods for classifying benthic habitats using

unsupervised and supervised classifications on three different sets

of input data. For habitat maps produced using a supervised classi-

fication on backscatter, backscatter with bathymetry and deriva-

tives, and bathymetry and derivatives alone, large differences were

observed in output maps, and significant increases in accuracy

were observed when using the backscatter and bathymetry combin-

ation. For habitat maps produced using an unsupervised classifica-

tion on backscatter, backscatter with bathymetry and derivatives,

and bathymetry andderivatives alone, little effect on the overall per-

formance of the classifier is observed. Accuracy of the supervised

outputs varies based on how the accuracy statistics are generated;

from the sampled values or from an estimate of the population

values. A class-wise assessment of the unsupervised outputs in this

study reveals that the unsupervised method is optimal for distin-

guishing coarse substrata andpoorer at distinguishing soft substrata

when using bathymetric derivatives alone. The study shows that

there are issues associated with using the EUNIS habitat classifica-

tion scheme for classifying video ground-truth data, and that the

use of this system could be a source of error in trying to match

these datawith the ISOCluster classes.Manyareas for improvement

have been identified with the EUNIS system and work is ongoing to
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improve it (Galparsoro et al., 2012), so many of the issues high-

lighted here may not be valid in future. Most importantly though,

this paper demonstrates the clear need to conduct more research

into how best to approach benthic habitat mapping in the future.

It is recommended that more investigations are carried out to

assess variability due to the types of input data, the resolution of

the input data, and the classifier used to generate the map.
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