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Abstract 

The use of straight vegetable oil (SVO) as biofuel has been recognized as a valid 

substitute of diesel fuel in the agricultural sector under specific circumstances. Its direct 

use reduces most of the chemical processes involved when converting it into biodiesel, 

thus lowering harmful emissions. This study presents the economic analysis of a self-

supply farming model that uses rapeseed as its fuel base. This model addresses 

agricultural environmental concerns and can even minimize dependence on the 

fluctuating costs of diesel fuel. The use of SVO in agriculture can help reduce farmers’ 

vulnerability to fossil fuel prices. The economic evaluation of the model proposed in 

this study shows clear economic benefits of introducing rapeseed to the traditional crop 

rotation of wheat and barley. The key factors analyzed in this model are diesel fuel price, 

diesel fuel grants and crop aids. The current situation in Spain favors the use of diesel 

fuel in agriculture rather than rapeseed SVO due to an 8% profit difference. However, 

results show that changes in key factors slightly affect the profit margin, calculating a 

difference of only 3.7% for particular factor combinations. Combined environmental-

friendly agriculture supporting policies are necessary to cover this slight profit 

difference to promote this biofuel. 

 

Keywords: straight vegetable oil, Brassica napus, biofuel, economic assessment, 

self-supply. 

 

 

1. Introduction 

The use of biofuels may help to mitigate global warming and the emission of 

contaminating gases [1]. However, as stated in many studies [2-6] some practices 

related to large-scale biofuel production may lead to higher environmental impacts than 

the situations they avoid such as market by-products saturation, risks associated to 

intensive farming production or competition with food and feed production among 

others. 

Farming land covers approximately half of the Earth’s land surface and contributed 

to a tenth of the world CO2 equivalent emissions in 2005. Consequently, the reduction 

of agricultural greenhouse gases emissions should be taken into account when analyzing 

the reduction of climate change [7-9]. 

Currently, agriculture strongly depends on fossil fuels, which leads to dependence 

on oil markets and generates harmful environmental emissions. Reducing this 

dependency and moving towards sustainability in agricultural practices needs to be a 

major concern for society. Sustainability includes social, environmental and economic 

aspects. The latter is essential to implement any new agricultural model. Due to recent 

price instabilities, an economic model is essential to analyze how changes in the 

markets affect agricultural profits. 
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Life cycle costing (LCC) is a method of calculating the total cost of a product 

induced throughout its life cycle [10]. There are different LCC approaches depending 

on their target, the costs involved and the context of the LCC itself. Cost benefit 

analysis (CBA) is an analysis of the cost effectiveness of different alternatives in order 

to assess whether the benefits outweigh the costs. Thus, CBA is oriented to evaluate 

economic alternatives while LCC aims to cover the whole life cycle of a product. CBA-

based LCC carried out in this study aims to evaluate the economic alternatives of the 

whole life cycle. 

Life cycle assessment (LCA) has traditionally been a steady state modeling 

technique. In comparison, LCA-based LCC aims to also deal with quasi-dynamic 

modeling, taking into account changes in time by means of sensitivity analysis towards 

future possibility projections [11]. LCC is used in many fields, such as in building and 

rebuilding techniques [12, 13] and analysis of acquisition costs of military equipment 

[14]. However as a product oriented method, it is hardly used for agricultural processes.  

Traditionally, economic comparisons of alternatives for any process have been 

mainly based on initial capital costs and the estimated income. However, operating and 

maintenance costs must also be examined. Externalities should be included in this case 

because they can greatly affect the economic feasibility of the process. LCC is an 

assessment that considers external factors such as compensation in the form of taxes and 

subsidies for example [15]. 

The aim of this study is to carry out an LCC-based economic evaluation of a self-

supply farming model, which focuses on minimizing environmental impacts, as well as 

optimizing economic benefit. This model is based on first converting to oil a portion of 

harvested rapeseed, which is then consumed as biofuel. The introduction of rapeseed to 

the crop rotation system in a Spanish Mediterranean zone to produce straight vegetable 

oil (SVO) for fuel on the same farm is shown in Grau et al. [16]. SVO is a biofuel 

obtained by pressing, filtering and degumming rapeseed without any chemical process. 

Nowadays its use is well known and technically available [17]. 

Based on LCA practice, this study analyzes the processes and policies that impact 

on the production, processing, use or sale of grain, seed and oil. Data was obtained from 

the Anoia region in Catalonia (Spain). Even though the study is centered in a Spanish 

region, the model parameters can be replaced with data from any other location. The 

proposed model does not contemplate cradle-to-grave, but cradle-to-use analysis, as the 

main purpose of the analysis carried out in this study is to evaluate the possible use of a 

field, not the fuels themselves. 

The LCC-based assessment performed in this study shows the expected benefit for 

different farming scenarios and the analysis of the rapeseed introduction in the 

traditional cropping system. It also includes the possibility to use the obtained seed to 

produce SVO for self-consumption. 

 

 

2. Definition of the goal and scope 

 

2.1 Goal definition 

The main purpose of this research is to compare the economic feasibility and 

limitations of self-supplied SVO as fuel in farming practices to traditional diesel-based 

agricultural practices through the life cycle costing (LCC) methodology [11]. The 

modification of a previous rotation and the economic evaluation of the fate of rapeseed 

(into commodity markets or used as SVO) are also addressed in this study. The 

objectives of this CBA-based LCC study are as follows: 
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 To calculate the profit margins for different agricultural practices 

 To evaluate the economic feasibility of self-supplied SVO as biofuel 

compared to diesel fuel 

 To examine the influence of policy strategies on the practice 

 To assess the future prospects of key factors affecting the economic 

feasibility 

The selected functional unit of the system is 1.0 km
2
 of cultivated land. 

 

2.2 System boundary 

This study defines the system boundary for an agricultural practice, which includes 

the cropping system for each type of crop analyzed, as shown in Fig. 1. The boundaries 

include raw materials input, crop management (such as sowing, fertilizing, herbicide, 

insecticide or fungicide treatments, harvesting and seed/grain transportation) to the sale 

of seeds and grains. Soil no tillage technique is factored in due to its environmental and 

economic benefits [18, 19]. Furthermore, the processing of the rape seed to obtain fuel 

(either self consumed SVO or sold to the market) is also examined. 

 

 
Figure 1. Cropping options scheme. 

 

The base model taken into account here is composed by grouping three crop models, 

namely rapeseed, wheat, and barley. A fourth crop type –fallow– is also included. All 

models are based on a general field system and its particular crop type. Barley and 

wheat models consist on the grain production and its sale to their corresponding market. 

Additionally, the rapeseed model incorporates the seed processing stage to obtain the 

SVO, which can be used as biofuel in the agricultural practice or sold in the market. 

The 6 scenarios considered according to the different possibilities of agricultural 

practices are shown in Table 1. 

 
Table 1. 

Considered scenarios 

Scenarios Rotationa Fuel used Rape seed fate Rape seed oil fate 

Diesel current WBBB Diesel - - 

Diesel classic WBBBF Diesel - - 

Diesel seed RWBBB Diesel All sold to the market - 

Diesel oil RWBBB Diesel All converted into oil Sold to the market 
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SVO seed RWBBB SVO 
Some processedb and the 

rest sold to the market 
Used as SVO 

SVO oil RWBBB SVO All converted into oil 
Some used as SVOb and 

the rest sold to the market
a R: Rapeseed; W: Wheat; B: Barley; F: Fallow. 
b The amount needed as fuel is the processed one. 

 

Each scenario is obtained by the combination of different crop partitions, each one 

with its own conditions, as already explained. The different partitions are Barley, 

Barley-2 (two years after rapeseed), Fallow, Rapeseed, Wheat and Wheat-1 (one year 

after rapeseed). 

 

 

3. Method and data collection 

This study follows the LCC methodology taking into account all the process stages 

following the LCA approach and evaluating different economic alternatives like a CBA 

analysis. The benefit calculation is developed by modeling each crop type as well as the 

rapeseed processing stage. Each crop type requires its particular fertilization and crop 

protection products. The rapeseed processing stage is only assessed when the seed 

transformation into SVO is required. The use of diesel fuel or SVO in the tractor is also 

examined to take the consumption and the corresponding fuel emissions into account. 

The model of the present study was developed using the Gabi 4 software [20]. Data 

on farm work, fertilizing needs and yields were obtained from the Anoia region, a dry 

Mediterranean area in Spain. 

Crop yields, process costs and product prices are described in this section. Data 

related to aids and taxes affecting farmer costs and benefits are explained in section 4. 

Finally, the economic values introduced in the model are justified in section 5. The 

results (sections 6 and 7) are calculated as the net economic benefit obtained by the 

farmer after processing 1.0 km
2
 of land taking into account different circumstances: 

crop rotation with or without rapeseed and using SVO or diesel as fuel. 

 

3.2 Field system 

The field area is considered the same for the different crops. Table 2 shows the 

analyzed field inputs and outputs. 

 
Table 2 

Field inputs and outputs. 

Inputs Outputs 

Fertilizers Crop production 

Insecticide agent Ammonia [Inorganic emissions to air] 

Herbicide agent Nitrogen oxides [Inorganic emissions to air] 

Planting seed Nitrous oxide [Inorganic emissions to air] 

Agricultural implement Phosphorus [Inorganic emissions to fresh water] 

 

By applying these inputs and outputs, the field system is analyzed when producing 

barley, wheat and rapeseed, with the appropriate fertilizing units and the corresponding 

emissions depending on the fertilizer according to IPCC 2006 method [21]. 

The planting seed input has an associated economic value according to the 

considered crop type. The agricultural implement input corresponds to working tractor 

hours associated to the field operations and its related costs (tractor, tractor operator and 

fuel). The considered tractor is fuelled either with diesel fuel or with SVO, with the 

corresponding consumptions and emissions for each fuel type. 
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3.3 Crop types 

The types of crop analyzed are barley, wheat and rapeseed. The first two are the 

most common in the studied area and are also greatly extended in Mediterranean dry 

areas [22, 23]. Rapeseed is also a crop option for this climate conditions even though its 

yield is lower than in other areas such as middle Europe wet areas. 

The examined fertilization needs are shown in Table 3 and have been obtained 

through individually interviewing various local farmers. The collected data has been 

verified by technical managers of two local cooperatives [24, 25]. The fertilizing needs 

must be calculated according to the estimated yield of the considered field. In Table 3 

reference values are given for a specific field yield.  

 
Table 3 

Fertilizing needs for barley, wheat and rapeseed crops and associated 

fertilizing costs (April 2010) 

  Barley Wheat Rapeseed 

Basic production (kg ha-1) 3800 3500 2300 

N units 91.2 122.5 115 

P units 91.2 87.5 55.2 

K units 91.2 122.5 46 

S units  -  - 46 

Fertilizing costs (€ ha-1) 186.05 221.01 146.38 

 

To account for fertilizer prices, an appropriate combination of fertilization needs 

was selected, seeking minimum cost. Thus, a minimum cost algorithm was used to 

obtain the required amount of each fertilizer for estimated production.  

Another important factor when defining a crop system is the time required for each 

specific agricultural job. Another important variable assessed was the fuel consumption 

for each field operation. These values are shown in Table 4. 

 
Table 4 

Time and fuel consumption for each crop and field operation (hours per hectare and liters 

per hectare). 

 Barley Wheat Rapeseed Fallow 

 h ha-1 L ha-1 h ha-1 L ha-1 h ha-1 L ha-1 h ha-1 L ha-1 

Pre-emergency treatment 0.33 9 0.33 9 0.33 9 0.67 18 

Fertilizing (P, K, S) 0.50 7 0.50 7 0.50 7 - - 

Sowing (planting seed) 0.50 10 0.50 10 0.50 10 - - 

Fertilizing (N) 0.50 7 0.50 7 0.50 7 - - 

Herbicide treatment 0.33 4 0.33 4 0.33 4 - - 

Harvesting 0.92 20 0.83 20 1.25 25 - - 

Seeds transportation 0.33 8 0.33 8 0.33 8 - - 

 

 

Data shown in Table 4 was obtained from local farmers’ experience and validated 

by Unió de Pagesos (local agrarian cooperative) [24]. Fuel consumption is referred to 

diesel fuel consumption. When the tractor is fuelled with SVO instead of diesel fuel, 

SVO consumption is slightly higher as explained in section 3.6.  

The abovementioned crops require specific insecticide and herbicide treatment. 
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3.4 Crop Rotation 

Crop rotation systems in agriculture were developed to palliate the effect of specific 

crop plagues and diseases. Plagues and diseases are weakened when the crop type is 

changed as their intended feed is changed. This results in a natural insecticide and 

herbicide treatment. Classically, fallow has been used in crops to allow the soil to 

recover some of the nutrients lost during harvesting. Nowadays, the use of insecticides, 

herbicides and fertilizers decreases the need of crop rotations and the use of fallow. 

However, it is still very interesting to consider rotation as an agricultural practice yield 

enhancer that avoids the use of some pesticides when using the same amount of 

fertilizer [24, 25]. 

Currently, in the studied area, 4 years rotation including 1 year of wheat and 3 years 

of barley -WBBB rotation- is the most commonly used. The introduction of rapeseed in 

this rotation system brings many benefits, such as soil fluffing, plague and disease 

reduction; consequently increasing the next crops yield. This increase is the most 

interesting benefit in this economic assessment, which also gives weight to rotation. 

This yield increase depends mainly on weather conditions and the crop sequence. In an 

average year, the yield increase after rapeseed production is 10% for the following year 

wheat’s production and 3% for the production of barley two years after rapeseed [24, 

25]. 

The traditional rotation in the studied area has been WBBBF, being F fallow. Fallow 

is subsidized by EU through the Common Agricultural Policy (CAP) as the other 

regional crops. In order to reduce or increase the production of cereals the amount of 

land in fallow is regulated. 

 

3.5 Rapeseed processing and co-products use 

Rapeseed cultivation generates different co-products, mainly rape seeds and straw. 

The straw obtained is returned to the field as its composition makes it a valid fertilizer, 

thus helping the growth of the next harvest. The rape seeds have other uses. The seeds 

can be directly sold to the market or can be processed to obtain oil and rape cake. The 

processing is done by means of a pressing plant, which is basically composed of a cold 

pressing stage (i.e.: screw press) followed by a filtering and a water degumming stage. 

The electricity consumption of processed seed is assessed at 0.55 MJ kg
-1

. This value is 

calculated from the electrical power consumption of a 500 kg h
-1

 mill according to press 

manufacturers (Maschinenfabrik Reinartz GmbH&Co. KG and La Mécanique 

Moderne) [26, 27]. 

 

3.6 SVO technology 

The use of SVO as fuel was firstly proposed by Rudolf Diesel in 1900, when he 

presented the diesel engine in Paris. There are many references in the technical literature 

related to the use of SVO in diesel engines [16, 28-31]. However, it is important to note 

that the use of SVO in unmodified diesel engines or in engines without oil preheating 

can lead to problems in the combustion chambers [32, 33]. Thus, in this study, a double 

tank system with a heat exchanger to heat the oil is taken into account. In the double 

tank system, some diesel fuel is used when starting and stopping the engine to avoid 

fuel system blockage and difficulties on the next cold start. The considered diesel fuel 

consumption is about 3% of the total SVO volumetric fuel consumption according to 

the author’s experience. In this study SVO consumption is considered 10% higher than 

diesel fuel, due to the different energy contents as shown in Table 5. 
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Table 5 

Properties of diesel fuel, unheated and heated rapeseed oil. 

 HHV [34] LHV [28]  

Fuel type 
Diesel 

fuel 

Unheated 

rapeseed 

oil 

Heated 

rapeseed 

oil (70ºC)

Diesel 

fuel 

Unheated 

rapeseed 

oil 

Heated 

rapeseed 

oil (70ºC)

HHV (MJ kg-1) 45.23 39.08 39.08    

LHV (MJ kg-1)    43.35 37.62 37.62 

Density (kg m-3) 0.844 0.918 0.884 0.815 0.914 0.884a 

Energy content (MJ dm-3) 38.17 35.88 34.55 35.33 34.38 33.11 

SVO consumption increase (%)   +6.02% +9.50%    +2.68% +5.87% 
a Considered equal to Nwafor study [34]. 

HHV: Higher heating value. 

LHV: Lower heating value. 

 

3.7 Market prices 

The price evolution of the products factored into this study is shown in Fig. 2 [35-

38]. It is clear that the results of this analysis can be significantly different depending on 

the specific moment in time chosen to calculate them. 

 

 

 
Figure 2. Market prices 

 

The market price of seeds and grains approximately follows the evolution of petrol 

market price as detailed in Fig. 2. 

 

4. Aids and taxes 

The policies establish a regulatory framework that can account for some 

externalities in form of taxes and aids. Thus there is the risk of double counting the 

environmental effects of a system. To avoid double counting, a non-regulated market 

could be supposed, but the aim of this study is to obtain the real benefit of agricultural 
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practices, which must include taxes and aids. Policy strategies related to crop aids, fuel 

aids and carbon rights market are discussed below.  

The policy strategies adopted greatly affect the results of the analyzed models. Thus, 

the feasibility of a determined model is subjected to future regulations, which means 

that legislators can influence on how sustainable the agricultural practices develop. 

 

4.1 Crop aids 

The Common Agricultural Policy (CAP) is probably the most influencing policy on 

crop production patterns in the European Union (EU). From an environmental point of 

view, agriculture can help the mitigation of climate change by reducing dependency on 

fossil fuels and by diversifying energy supplies (bio-energy). 

Nowadays, 2003 CAP reform is still in practice, including a mean aid to crops and 

fallow of about 190 € ha
-1

 in Spain and special aid for energy crops of 45 € ha
-1

 until its 

budgetary cap [39]. A new CAP reform is becoming a reality [40]. This new reform is 

towards green growth, which battles climate change and takes into account agricultural 

activity as a source of renewable energies. The 2013 CAP reform can vary the 

abovementioned aids, even making them disappear. Three possible policy scenarios 

were considered, according to the ones shown in the EU report from December 2009 

[41] and its update in March 2010 [42]. Thus, a reference scenario, a conservative CAP 

scenario and a liberalization scenario are analyzed in section 7.3. 

 

4.2 Fuel taxes 

Null taxation for SVO is allowed according to EU legislation [43]. On the one hand, 

Spanish legislation does not specify tax levels for SVO [44, 45]. Thus, the government 

should tax it at the same level as petroleum diesel fuel, which SVO substitutes. Even 

though, SVO is considered in this study as tax free (null taxation as the other biofuels in 

the Spanish market). 

On the other hand, diesel fuel for agricultural machinery is taxed in Spain at only 

0.00016 € L
-1

 [46, 47]). This means that diesel fuel for agriculture is being subsidized in 

Spain with virtually no tax. Conversely, automotive diesel fuel is taxed with 0.307 € L
-1

 

[48]. 

 

5. Economic factors considered in the model  

5.1 Installations and machinery costs 

The installations and machinery initial costs and the calculation of their assigned 

costs per year are shown in Table 6. Starting from an initial cost, each item is subject to 

inflation and worth variation leading to its end value. A linear amortization is 

considered when correcting the final yearly cost according to the uses given to each 

item. The costs ascribed to any machine are in proportion to its use on the reference area 

of 1 km
2
. Thus, one press will handle the output from 18 km

2
, and the cost is 

proportioned appropriately with a factor of 6%. Accordingly, one tractor will be used 

for 4 km
2
, and with a share factor of 25%. 

 
Table 6 

Installations and machinery costs. 

  
Initial 

Cost 

Infla-

tion 

Worth 

variation

End 

value 

End 

value 

Amorti-

zation 

Amorti-

zation 

per year 

Share 

factor 

Cost per 

year 

  € % % % € years € year-1 % € year-1 

Buildings 120000 a 3% 2% 74% 88764.04 30 1041.20 100% 1041.20

Installations 40000 a 3% -3% 29% 11604.25 20 1419.79 100% 1419.79
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Press 1 b 155170  3% -3% 21% 33037.27 20 5507.71 6% 305.98

Press 2 c 186850 3% -3% 29% 54206.35 20 6632.18 6% 368.45

Diesel tractor  90000 a 3% 0% 58% 52015.61 18 2110.24 25% 527.56

SVO tractor  95000 a 3% 0% 58% 54905.37 18 2227.48 25% 556.87

Tractor tools 30000 3% -3% 29% 8703.19 20 1064.84 25% 266.21
a According to data from local farmers and distributors [24, 25]. 
b According to electronic communication with sales manager of La Mécanique Moderne [26]. 
c According to electronic communication with sales agent of Maschinenfabrik Reinartz [27]. 

 

Installations consumptions are considered stable and equal to 50 € month
-1

. Taxes 

and building maintenance are also considered stable and equal to 150 € year
-1

 and 200 € 

year
-1

 respectively according to local farmers [24, 25]. 

The extra cost for the storage of rapeseed is considered null, as it is supposed that 

the seed warehouses of the farmer besides the ones from the cooperative can cope with 

the amount of rapeseed that must be stored until processed into oil. 

 

5.2 Tractor maintenance costs 

As SVO is not volatile, the unburnt SVO fraction is diluted in the lubricating engine 

oil which flows down the cylinder wall into the crankcase. It makes a more frequent 

basic check of the tractor necessary, as shown in Table 7. A basic tractor check includes 

changing the engine oil and checking basic parameters. The exhaustive check is a basic 

check with further detailed maintenance and the replacement of filters and other 

components when required.  

 
Table 7 

Tractor maintenance costsa. 

 Check Cost Frequency (SVO) Frequency  (diesel) 

 € hours hours 

Basic check 150 250 500 

Exhaustive check 1000 2000 2000 
a According to data from local farmers and distributors [24, 25]. 

 

As seen in Table 7, the tractor check costs are the same for SVO and diesel-fuelled 

tractors, as well as the frequency measured in working hours to perform exhaustive 

checks. The only difference is the frequency to perform the basic check. 

The yearly maintenance cost of tractor labor tools is considered at 3% of its residual 

value. 

 

5.3 European aid in the sector 

As already explained in section 4.1, CAP and energy crops aids should be analyzed. 

However, only the approximately 190 € ha
-1

 aid is taken into account in the proposed 

model. According to the mean Spanish production of cereals excluding rice [49], the 

CAP aid would be at 196.25 € ha
-1

. Consequently, an approximation of 190 € ha
-1

 is 

applied and confirmed by farmers of the analyzed area [24, 25]. 

 

5.4 Field operation materials 

The considered material costs shown in Table 8 are calculated for a conservation 

tillage technique, namely no-tillage practice. Conservation tillage (reduced tillage and 

no-tillage practices) has been proved effective to improve soil quality in Mediterranean 

areas as compared to traditional tillage systems [18, 22]. The fertilizing needs are 

adjusted to estimated productions of 3800 kg ha
-1

 for barley, 3500 kg ha
-1

 for wheat and 
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2300 kg ha
-1

 for rapeseed. The values for barley and wheat are mean values obtained 

from local farmers [24, 25]. The rapeseed yields obtained by farmers vary from 2300 to 

2800 kg ha
-1

, and the assessed value is 2300 kg ha
-1

 to take the lower yield margin into 

account. 

 
Table 8 

Field operation material costs (March 2010). 

 Barley Wheat Rapeseed Fallow 

 € ha-1 € ha-1 € ha-1  

Insecticide treatment 11.25 11.25 11.25 - 

Herbicide treatment 63 83 103a 6 

Fungicide treatmentb 7.5 7.5 - - 

Fertilizing (N, P, K, S) 186.05 221.01 146.38 - 

Sowing (planting seed) 64.91 72.12 79.33 - 
a Reduced value as it is only needed a mean of 4 out of 5 years in the considered 

region (the cost for 1 application would be of  128 € ha-1). 
b Only applies to cereals and is only needed 2 out of 5 years due to the considered 

region (the cost for 1 application would be of  18.75 € ha-1). 

 

The fertilizing costs shown in Table 8 are for a specific timeframe (March 2010). 

These costs are subjected to the fluctuations of international market prices. However, 

these fluctuations have a minimum effect on a comparative results analysis. 

 

5.5 Fuel and labor costs 

Fuel costs are assessed as being equal to the market prices, also taking into account 

that diesel fuel in Spain is subsidized with approximate tax value. 

Labor costs are assessed at 18.83 € h
-1

, which takes into account a 25000 € annual 

gross salary, a 35% for social security and the corresponding working days, holidays 

and vacations. This value is very close to the 2009 and 2010 mean hourly labor costs in 

the Spanish industry [38]. 

 

5.6 Analyzed market prices  

As market prices vary considerably over time and greatly affect the results, the 2010 

year’s mean values have been selected (see Table 9). 

 
Table 9 

Economic mean values for 2010 period. 

 Wheat Barley 
Rape 

seed 

Rape 

oil 

Rape 

cake 
 

Diesel fuel 

with taxes 

Granted 

agricultural 

diesel fuel 

€ Mg-1 € Mg-1 € Mg-1 € Mg-1 € Mg-1  € L-1 € L-1 

Year 2010 170.87 156.06 330.05 719.37 176.34  1,061 0,754 

 

These values are used to calculate the different scenarios and are taken as a basis for 

the time-evolution analysis in section 7.4. 

 

6. Results 

The results in this section are calculated by means of a cost-benefit analysis (CBA). 

Costs include investments which have been linearly distributed among the years of use, 

as this study aims to calculate a mean yearly economic benefit of the farming practice (a 

complete season). The benefit is shown as a representative parameter of the viability of 

each possible scenario as seen in Fig. 3, which also shows the contribution of each crop 

to the profit margin. 
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Figure 3. Economic benefits for 2010 conditions and crop contribution. 

 

It is clear that for current economic conditions, applying crop rotation RWBBB with 

diesel fuel use (diesel seed scenario) is the best option. The SVO seed scenario is very 

close to this good option, which uses the same rotation scheme but destines part of the 

harvested seed to produce SVO as fuel for the farming machinery. The later reduces the 

amount of diesel used in the agricultural practice. 

Crops contributions to profits are higher or lower according the proportion of each 

crop partition. Even not having production, fallow still has profit margin due to the CAP 

aid. Rapeseed when not processed gives a higher cost benefit per land unit than the 

other analyzed crop types. It is clear from the results that small-scale processing of 

rapeseed to sell oil is not economically feasible. 

The scenarios results show a clear profit increase in diesel seed and SVO seed 

scenarios comparing to the current scenario (18% and 10% profit increase, 

respectively). Thus these scenarios as well as the current scenario are the ones used for 

comparisons in the following sections. 

 

7. Effects of policy regulations on end results 

In the following subsections, an evaluation taking into account the results of policy 

regulations on the economic model is performed. A sensitivity analysis was carried out 

to evaluate the profit differences depending on changes over time for different 

parameters. Price projections were also factored in, constituting a quasi-dynamic model 

analysis to complete the LCC results with the profit variation expected over time. Some 

parameters are evaluated to show the changes that can make SVO seed scenario as 

profitable as using diesel seed. 

The analyses carried out in this section are grouped into diesel fuel tax scheme 

analysis, CAP reform scenarios and time-projection analysis. 
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7.2 Diesel fuel tax sensitivity analysis 

Taking into account diesel fuel grant distribution in Spain, diesel fuel prices for 

agriculture is lower than the diesel fuel market price (the diesel fuel market price is 

about 1.5 times higher, 1.507 in 2009 and 1.407 in 2010). 

Diesel fuel in Spain is generally taxed at 0.307 € L
-1

. However, agricultural diesel 

fuel is only taxed at 0.07871 € L
-1

. Moreover, the current tax scenario for diesel fuel in 

Spain offers agricultural grants for machinery at a refund rate of 99.8% of the current 

agricultural diesel fuel tax. This situation heavily influences diesel fuel use in 

agriculture. Thus a comparison is performed between 3 different options: 

 Current taxation: agricultural diesel fuel taxed at 0.00016 € L
-1

.  

 Agricultural taxation: agricultural diesel fuel taxed at 0.07871 € L
-1

. 

 Diesel fuel generic taxation: agricultural diesel fuel taxed as generic diesel 

fuel at 0.307 € L
-1

. 

From Fig. 4, it is clear that the scenarios using only diesel fuel are more influenced 

by diesel fuel tax variation than the SVO-seed scenarios. This tax variation leads to a 

change in benefit difference between diesel seed and SVO seed scenarios from 8.0% 

(current taxation) to 3.7% (diesel generic taxation). Despite the fact that SVO based 

model is more stable, it is interesting to point out that the SVO option would be 

economically feasible in Spain if the policies supported the use of this biofuel in 

agriculture in the same way as with diesel fuel. 

 
Figure 4. Profit versus diesel fuel tax variation. 

 

It should be also discussed whether the aids to agriculture should support fossil fuels 

or biofuels. In the latter case, the benefit for the farmer would be almost the same, and 

also allows farmers to gain independence from diesel fuel price fluctuation. 

The economic feasibility of SVO vs. diesel fuel would be achieved if the diesel tax 

grants were 137% higher (0.726 € L
-1

 instead of the current 0.307 € L
-1

), which at 

present is a highly unrealistic measure. 
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7.3 CAP reform scenarios 

A study from the EU shows 3 possible tax scenarios for the CAP reform [42], a 

conservative, a reference and a liberalization CAP. These three options reduce the 

current CAP aid of approximately 190 € ha
-1

 to 161.5 € ha
-1

, 133 € ha
-1

 and 0 € ha
-1

, 

respectively. As the income from CAP is proportional to the hectares of land, the profit 

reduced is the same for all the scenarios. 

It is thus clear that taking only economic results into account, a CAP reduction 

strongly affects farmers’ profits. The situation of a null CAP aid would clearly lead to a 

price increase of agricultural products or an unsustainable decrease in farmer’s incomes. 

 

7.4 Time-projection analysis 

Based on the LCC methodology, the time-projection analysis assessment is used 

here to calculate the profits for future conditions through today’s Euros. The aim of this 

section is not to model real diesel fuel future prices, and therefore uses instead an 

approach to diesel fuel’s possible evolution.  

In this study, the costs of grains and seeds are assumed to be directly related to 

diesel fuel price to model its dependency. Machinery, installations, herbicides and 

fungicides are considered constant due to their low significance in the global profits. On 

the other hand, labor costs, fertilizers prices and diesel fuel price projections are 

supposed to increase linearly. Thus, taking into account the price changes over the last 

decade, linear increases have been selected to estimate projected prices. Diesel fuel 

dedicated to agriculture is considered to increase 2.13% per year, labor costs for the 

Spanish industry at a 1.24% increase and fertilizer prices at a 2% increase. Carbon 

market allowances are considered to increase 2.5% annually, as stated in section 4.3 

[50]. The price changes of harvested products are calculated taking into account their 

link with diesel fuel for the last 5 years. Thus, their future estimated price depends on 

each base price and each diesel fuel price analyzed per year. 

Results in Figure 5, show that the use of diesel fuel remains to be profitable 

compared to self-supplied SVO. However, the difference between Diesel seed and SVO 

seed scenarios remains close, varying from 4.57% in 2010 to 3.42% in for 2050 price 

calculations. Thus, the projected analysis shows that even obtaining a slight difference 

between the scenarios, the tendency remains the same. 
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Figure 5. Crops profit time-projection analysis (2010-2050). 

 

When taking into account CO2 emission rights costs, results keep the same tendency. 

In this case the benefit for Diesel seed scenario against SVO oil scenario would be from 

~4.5% in 2010 to ~3.3% in 2050. The benefits get closer, but with no final changes 

when comparing the tendencies. 

 

8. Conclusions 

In this study a comparative economic assessment of six agricultural scenarios 

including a rapeseed-based self-supplied fuel farming model has been carried out. The 

use of self-supplied SVO in farming can help to reduce the dependency on fuel price 

flux, giving independence to the farmer. Additionally, SVO fuel production and self 

consumption reduces GHG emissions with no major profit reduction to farmers’ 

incomes. The profit decrease calculates at only 8%. 

The comparative economic assessment includes a diesel fuel tax sensitivity analysis 

(a CAP reform analysis and also a price-projection analysis. 

Results of these analyses show that Spanish diesel fuel farming grants do not 

promote SVO to be introduced as fuel for agricultural practices. Furthermore, when 

analyzing unsubsidized diesel fuel, the profit margin is still higher than SVO-based 

methods calculated at 3.7%. The CAP affects profits for common diesel fuel and 

biofuels equally. Consequently, if the fore coming CAP reform only introduces aids 

reduction, it would only decrease farmers’ benefits without enhancing the use of more 

sustainable options. Current policies do not specifically support self-supply fuels in the 

farming industry; therefore SVO is unable to compete with established diesel fuel 

agriculture practices. In the time-projection analysis carried out, results show a minor 

reduction in profits between diesel seed and SVO seed scenarios over time. Calculations 

show that slight isolated changes in key factors do not have much impact on profits and 

depending on the type of crop management used, the final cost benefit difference could 

be nearly the same for both SVO and diesel fuel based scenarios. 

The implementation of local fuel generation models leads to a win-win situation for 

farmers and society. On one hand, farmers are less dependent on diesel fuel and on the 
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other; society gets a reduction in emissions and a decrease of long distance fuel 

transport. Nevertheless, there is no expected profit increase in the current situation 

without changes in key issues such as energy and environmental policies. 
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