
An Evaluation of the RGB-D SLAM System

Felix Endres1 Jürgen Hess1 Nikolas Engelhard1

Jürgen Sturm2 Daniel Cremers2 Wolfram Burgard1

Abstract— We present an approach to simultaneous local-
ization and mapping (SLAM) for RGB-D cameras like the
Microsoft Kinect. Our system concurrently estimates the tra-
jectory of a hand-held Kinect and generates a dense 3D
model of the environment. We present the key features of
our approach and evaluate its performance thoroughly on a
recently published dataset, including a large set of sequences
of different scenes with varying camera speeds and illumination
conditions. In particular, we evaluate the accuracy, robustness,
and processing time for three different feature descriptors
(SIFT, SURF, and ORB). The experiments demonstrate that
our system can robustly deal with difficult data in common
indoor scenarios while being fast enough for online operation.
Our system is fully available as open-source.

I. INTRODUCTION

Many relevant applications in robotics and computer vi-

sion require the ability to quickly acquire 3D models of the

environment and to estimate the camera pose with respect to

this model. A robot, for example, needs to know its location

in the world to navigate between places. This problem is a

classical and challenging chicken-and-egg problem because

localizing the camera in the world requires the 3D model of

the world, and building the 3D model in turn requires the

pose of the camera. Therefore, both the camera trajectory

and the 3D model need to be estimated at the same time.

With the introduction of the Microsoft Kinect camera, a

new sensor has appeared on the market that provides both

color images and dense depth maps at full video frame rate.

This allows us to create a novel approach to SLAM that

combines the scale information of 3D depth sensing with the

strengths of visual features to create dense 3D environment

representations.

In this paper we present an approach to SLAM based

on RGB-D-data that consists of the four processing steps

illustrated in Figure 2. First, we extract visual features from

the incoming color images. Then we match these features

against features from previous images. By evaluating the

depth images at the locations of these feature points, we

obtain a set of point-wise 3D correspondences between any

two frames. Based on these correspondences, we estimate the

relative transformation between the frames using RANSAC.

1 Felix Endres, Jürgen Hess, Nikolas Engelhard and Wolfram Burgard
are with the Department of Computer Science, University of Freiburg, Ger-
many. {endres,hess,engelhar,burgard}@informatik.uni-

freiburg.de
2 Jürgen Sturm and Daniel Cremers are with the Computer Sci-

ence Department, Technical University of Munich, Germany. {sturmju,
cremers}@in.tum.de

This work has partly been supported by the European Commission under
grant agreement number FP7-248258-First-MM

(a) Input data: Sequence of RGB-D images

−1 0 1 2 3

−1.5

−1

−0.5

0

x [m]

y
[m

]

true

estimated

(b) Ground truth and estimated camera trajectory projected to 2D

(c) Output: voxel grid (here displayed at 1 cm resolution)

Fig. 1. Our approach registers sequences of RGB-D images (a) to recover
the trajectory of the camera (b) and to create globally consistent volumetric
3D models (c).



As the pairwise pose estimates between frames are not

necessarily globally consistent, we optimize the resulting

pose graph in the fourth step using the g2o solver, which is a

general open-source framework for optimizing graph-based

nonlinear error functions [11]. The output of our algorithm at

this stage is a globally consistent 3D model of the perceived

environment, represented as a colored point cloud. Finally,

we use the Octomap library [33] to generate a volumetric

representation of the environment.

The contribution of this paper is twofold. First we describe

our RGB-D SLAM system and its components. Our second

contribution is a thorough analysis of the performance of

our system on a recently published benchmark dataset [29].

The dataset contains both the RGB-D images of the Kinect

with time-synchronized ground truth poses obtained from

a high-accuracy motion-capture system. As the benchmark

comes with a tool that evaluates the accuracy of an estimated

trajectory, the measured performance of our algorithm can be

objectively compared to those of other systems. Therefore,

we hope to establish with our evaluation a baseline for future

RGB-D SLAM systems. All code required to reproduce,

verify (and improve) on our results is also fully available

online. To summarize our results, we found that our sys-

tem provides the camera pose with an average RMSE of

9.7 cm and 3.95° in a typical office environment, and can

very robustly handle even the high speed sequences of the

benchmark with average velocities of up to 50 deg/s and

0.43 m/s.

The remainder of this paper is organized as follows.

We briefly review related approaches in Sec. II, before we

introduce our approach in Sec. III. We evaluate our system

in Sec. IV using the RGB-D benchmark sequences.

II. RELATED WORK

The general problem of SLAM has a long history in

robotics [30], [22], [10], [6], [15], [9], [23]. Especially

methods designed to learn three-dimensional maps of the

environment employ laser scanners or Time-of-Flight (ToF)

cameras to provide dense point clouds of an environment.

Many modern variants apply the iteratively closest point

(ICP) algorithm [2], [26], [27] for aligning pairs of local

point clouds to establish constraints between observations.

These constraints are then used to find maximum likelihood

map.

Visual SLAM systems [5], [16], [28] – in the computer

vision literature often referred to as structure and motion

estimation [14], [21] – typically extract sparse keypoints

from the camera images. Visual feature points have the

advantage of being more informative which simplifies data

association. Relevant feature descriptors include SIFT [20],

SURF [1], and the recently introduced ORB features [25], as

well as parallelized versions thereof like SIFTGPU [32]. In

the monocular setting, the absolute scale of the map cannot

be determined, so that additional normalization steps are

required during optimization. Stereo SLAM systems [17],

[24] do not suffer from this limitation as the depth can be

calculated from the disparity between the two images. In

general, however, the disparity can only be estimated for

distinctive points in the image, i.e., surfaces with little or no

texture cannot be matched easily.

Novel RGB-D sensors that are based on structured light

like the Microsoft Kinect directly provide dense depth maps

and color images. Note that in general SLAM approaches

that operate on RGB-D images are structurally different from

stereo systems as the input is dense RGB-D instead of two

color images. Fioraio and Konolige [7] recently presented

a system that uses bundle adjustment to align the dense

point clouds of the Kinect directly however without further

exploiting the RGB images. Most similar to our work is the

approach of Henry et al. [12]. Their approach uses sparse

keypoint matches between consecutive color images as an

initialization to ICP. In their experiments, they found how-

ever that often the computationally expensive ICP step was

not necessary. Therefore, they improved the algorithm so that

ICP was only used if few (or none) keypoint matches could

be established. While Henry et al. use sparse bundle adjust-

ment [19] for the optimization of the 2.5D reprojection errors

in RGB-D image space, we optimize the 3D pose graph

using the g2o [18] framework. Finally, the post-processing

of the two approaches is different: Henry et al. post-process

the resulting point cloud into a surfel representation, while

we create a volumetric voxel representation [33] that can

directly be used for robot localization, path planning and

navigation [13].

Finally, in contrast to all of the above approaches, we

evaluate our system on a publicly available benchmark [29].

Therefore, our results can directly be compared to other

approaches that are evaluated on the same datasets. We have

fully released our code (including the evaluation routines) as

open-source1 to ensure that our results are reproducible and

scientifically verifiable.

III. APPROACH

This section gives a detailed description of our approach.

A schematic overview of our system is given in Figure 2. The

trajectory estimation is divided into a front-end and a back-

end. Whereas the front-end extracts spatial relations between

individual observations, the back-end optimizes the poses of

these observations in a so-called pose graph and with respect

to a non-linear error function.

In the front-end, we use the visual image of the RGB-D

sensor to detect keypoints and extract descriptors. These are

matched to previously extracted descriptors and the relative

transformation between the sensor poses is computed using

RANSAC. Together with the depth information this allows

us to register dense point clouds in a common coordinate

system.

To compute globally optimal poses for the sensor posi-

tions w.r.t. the estimated relative transformations, we use a

graph-based optimization routine. After reconstruction of the

trajectory, we compute an occupancy voxel grid map.

1http://ros.org/wiki/rgbdslam



RGB ImageRGB Image

Pairwise Feature
Matching

(SURF, SIFT, ORB)

Pairwise 6D
Transformation Estimation

(RANSAC, GICP)

Global Pose Graph
Optimization

(g²o)

RGB Images

Registered
3D Point Clouds

Depth Images

Voxelization
(OctoMap)

3D Occupancy
Grid Map

RGB-D Camera

}

Front-End}

Ba
ck

-E
nd

Fig. 2. Schematic overview of our approach. We extract visual features that
we associate to 3D points. Subsequently, we mutually register pairs of image
frames and build a pose graph, that is optimized using g

2
o. Finally, we

generate a textured voxel occupancy map using the OctoMapping approach.

A. SLAM Front-End

The front-end is responsible for establishing spatial rela-

tions from the sensor data. Our system computes pairwise

relations between camera images by matching of visual

features. We rely on OpenCV [3] for detection, description

and matching of various feature types, namely SURF, SIFT

and ORB. Since SIFT features are computationally much

more demanding than SURF and ORB, we also make use of

a GPU based implementation of SIFT [32].

ORB is a new keypoint detector and feature descriptor

combination recently introduced by Rublee et al. [25]. It

is based on the FAST detector [25] and the BRIEF [4]

descriptor. ORB computes an unambiguous orientation from

the FAST corners and uses it for descriptor extraction, thus

making the combination robust to viewpoint changes. Being

significantly faster to compute than SIFT and SURF, we

added it as an alternative in our system and present an

evaluation in Section IV-B.1.

For the SURF keypoint detector, we apply the self-

adjusting variant which increases or decreases the threshold

on the Hessian to keep the number of keypoints roughly

constant. While this slows down keypoint detection in case

of fluctuating scene properties, variations in the number of

keypoints with a fixed threshold can lead to inaccurate or

even failed motion estimations. Too many features slow the

system down in the matching step and may lead to many

false positives.

After the detection of the keypoints, we project the feature

locations from the image to 3D using the depth measurement

at the center of the keypoint. The transformation of the

camera pose between two frames can then be computed in

closed form these correspondences [31].

However, no visual feature provides perfect reliability with

respect to repeatability and false positives. Further, the depth

data often is inconsistent with the color image, mainly due

to a missing synchronization of the shutters of infrared and

color camera, but also due to interpolation at depth jumps.

Since visually salient points often lie at object borders, the

3D feature positions are prone to be at a wrong depth, making

the robust estimation of transformations highly non-trivial.

A well-known approach to cope with noisy data and

outliers is the Random Sample Consensus (RANSAC) al-

gorithm [8]: After matching the feature descriptors of two

frames, we randomly select three matched feature pairs,

which is the minimal number from which a rigid transforma-

tion in SE(3) can be computed. Thanks to the full 3D position

we can efficiently avoid outliers by refusing sample sets for

which the pairwise Euclidean distances do not match. If the

samples pass this test, they are used to compute an estimate

of the rigid transformation. We apply the transformation to all

matched features and count the number of inliers. In our case,

consider a feature point an inlier when its mutual distance

after the transformation is smaller than 3 cm. Subsequently,

we use the inliers to compute a refined transformation. These

steps are iterated and the transformation with most inliers is

kept.

While the described procedure is very fast (exact timing

depends on the number of features and the outlier percent-

age), after few seconds the number of past frames is too

high to compare a new frame against all previous frames.

Therefore, we select a subset of twenty frames, consisting

of the 3 most recent frames and uniformly sampled earlier

frames, and compute the pairwise transformations in parallel

using threads.

If a frame could be matched to any predecessor, it is added

as a node to the pose graph of the SLAM back-end, the

pairwise spatial relations connecting it to the existing pose

graph. The process applied when no relation to previous

nodes can be found, depends on the application. If it is

tolerable that the map is fragmented, a sensible action would

be to keep the node even though disconnected, starting a

new map fragment possibly to be connected later on through

a loop closure. For evaluation purposes, we do not allow

fragmentation in our experiments. If a frame cannot be

matched, it will be connected to the prior node in the pose

graph under the assumption of a constant motion model

with high uncertainty. While this usually leads to higher

error values than evaluation on the biggest fragment, it

facilitates the comparison to other approaches, by reducing

the comparison to fully connected trajectories.

B. SLAM Back-end

The pairwise transformations between sensor poses, as

computed by the front-end, form the edges of a pose graph.

Due to estimation errors, the edges form no globally con-

sistent trajectory. To create a globally consistent trajectory

we optimize the pose graph using the g2o framework [18].

The g2o framework is an easily extensible graph optimizer

that can be applied to a wide range of problems including

several variants of SLAM and bundle adjustment. It performs

a minimization of a non-linear error function that can be

represented as a graph, as for example the one created by

the SLAM front-end described above.



TABLE I

WE EVALUATED OUR SYSTEM ON A LARGE SET OF SEQUENCES FROM THE RGB-D SLAM DATASET [29]. ON AVERAGE, OUR SYSTEM ACHIEVES AN

ACCURACY OF 9.7 CM AND 3.95° AND REQUIRES APPROXIMATELY 0.35 S OF PROCESSING TIME PER IMAGE.

Sequence Name Length Duration Avg. Angular Avg. Transl. Frames Total g
2
o Transl. Rot.

Velocity Velocity Runtime Runtime RMSE RMSE

FR1 360 5.82 m 28.69 s 41.60 deg/s 0.21 m/s 745 145 s 0.66 s 0.103 m 3.41°
FR1 desk2 10.16 m 24.86 s 29.31 deg/s 0.43 m/s 614 176 s 0.68 s 0.102 m 3.81°
FR1 desk 9.26 m 23.40 s 23.33 deg/s 0.41 m/s 575 199 s 1.31 s 0.049 m 2.43°
FR1 floor 12.57 m 49.87 s 15.07 deg/s 0.26 m/s 1214 488 s 3.93 s 0.055 m 2.35°
FR1 plant 14.80 m 41.53 s 27.89 deg/s 0.37 m/s 1112 424 s 1.28 s 0.142 m 6.34°
FR1 room 15.99 m 48.90 s 29.88 deg/s 0.33 m/s 1332 423 s 1.56 s 0.219 m 9.04°
FR1 rpy 1.66 m 27.67 s 50.15 deg/s 0.06 m/s 687 243 s 10.26 s 0.042 m 2.50°
FR1 teddy 15.71 m 50.82 s 21.32 deg/s 0.32 m/s 1395 556 s 1.72 s 0.138 m 4.75°
FR1 xyz 7.11 m 30.09 s 8.92 deg/s 0.24 m/s 788 365 s 40.09 s 0.021 m 0.90°

(a) Result of frame-to-frame tracking (no loop clo-
sures)

(b) Result after graph optimization (loop closures) (c) Volumetric 3D map after post-processing

Fig. 3. Using only stepwise tracking leads to undesired results due to the accumulated drift (a). After graph optimization with 5 iterations of g
2
o, an

excellent alignment of most point clouds is achieved (b). Individual clouds are still slightly misaligned. Through integration of the free-space information
these artefact are greatly diminished after computation of occupancy probabilities (c).

Generally, the error function has the form

F(x) =
∑

〈i,j〉∈C

e(xi,xj , zij)
⊤Ωije(xi,xj , zij) (1)

x∗ = argmin
x

F(x). (2)

Here, x = (x⊤
1
, . . . ,x⊤

n )
⊤ is a vector of pose repre-

sentations xi. zij and Ωij represent respectively the mean

and the information matrix of a constraint relating the poses

xj , i.e., the pairwise transformation computed by the front-

end. e(xi,xj , zij) is a vector error function that measures

how well the poses xi and xj satisfy the constraint zij . It

is 0 when xi and xj perfectly match the constraint, i.e.,

the difference of the poses exactly matches the estimated

transformation. For more details on the error function, we

refer the interested reader to [18].

Global optimization is especially beneficial in case of

a loop closure, i.e., when revisiting known parts of the

map, since the loop closing edges in the graph allows to

diminish the accumulated error. Unfortunately, large errors

in the motion estimation step may impede the accuracy

of large parts of the graph. This is primarily a problem

in areas of highly ambiguous features. We therefore use a

threshold to prune edges with high error values after the

initial convergence and continue the optimization.

C. Map Representation

The system described so far computes a globally consistent

trajectory. Using this trajectory, the original data can be used

to construct a representation of the environment. Projecting

all point measurements into a global 3D coordinate system

leads to a straightforward point-based representation. Such

a model, however, is highly redundant and requires vast

computational and memory resources.

To overcome these limitations, we use 3D occupancy grid

maps to represent the environment. In our implementation,

we use the octree-based mapping framework OctoMap [33].

Voxels are managed in an efficient tree structure that leads to

a compact memory representation and inherently allows for

map queries at multiple resolutions. The use of probabilistic

occupancy estimation furthermore provides a means of cop-

ing with noisy measurements and errors in pose estimation.

In contrast to a point-based representation, it represents free

space and unmapped areas explicitly which is essential for

robot navigation and exploration tasks.

IV. EVALUATION

To evaluate our system, we use the RGB-D bench-

mark [29] which provides a dataset of Kinect sequences

with synchronized ground truth. Furthermore, the benchmark

provides an evaluation tool that computes the root mean

square error (RSME) given an estimated trajectory.



TABLE II

EVALUATION OF THE ACCURACY WITH RESPECT TO THE KEYPOINT

DETECTOR AND FEATURE EXTRACTOR

Success Transl. RMSE Rot. RMSE
(Avg. ± Std. Dev.) (Avg. ± Std. Dev.)

SIFTGPU 9/9 0.097 m ± 0.063 m 3.95°± 2.47°
SURF 9/9 0.098 m ± 0.078 m 3.39°± 1.55°
ORB 7/9 0.215 m ± 0.189 m 7.75°± 5.55°

For our evaluation we choose the Freiburg1 (FR1) dataset

consisting of nine sequences placed in a typical indoor

environment. Two of these, the sequences “FR1 xyz/rpy”

have very simple motions. The result on these sequences

show the capabilities of our approach in the best case.

However, results like this can usually be achieved when the

sensor can be carefully moved in an indoor environment, e.g.,

during manual map recording prior to employing a robot.

The other datasets are more challenging as they cover larger

areas of the office space and unrestricted camera motions.

In this section, we first present our results on the accuracy

of our SLAM system and evaluate how the accuracy depends

on the chosen feature detector and sensor frame rate. Second,

we investigate the influence of various parameters on the

runtime of our system.

We evaluated our system on all nine sequences from the

FR1 set, see Table I. As can be seen from this table, the

average camera velocities range from 9 deg/s to 42 deg/s and

from 0.06 m/s to 0.43 m/s.

A. Accuracy of the Trajectory Estimation

In our first rounds of experiments, we evaluated the

accuracy of our system on all sequences using SIFTGPU

feature extraction and approximate matching using FLANN.

On the simple “xyz” and “rpy” sequences, we obtain the

best values of 2.1 cm and 4.1 cm RMSE error, respectively.

We achieved the worst result of 20.1 cm RMSE error on the

“room” sequence of 16 m length consisting of a long round

through an office space. In general, this evaluation shows that

our approach performs well in most of the sequences. High

angular and translational velocity pose no obvious difficulty

even though frames exhibit less overlap.

Further, we investigated the influence of different choices

for the keypoint detectors and feature descriptors. Table II

shows the root mean square of the translational and rotational

error per sequence. The accuracy achieved is similar for SIFT

and SURF. In contrast, ORB features turn out to be less

accurate and also less reliable: Using ORB, the trajectory

estimation failed for two of the nine sequences. This could

not be resolved by adapting the parameters of the feature

detector to find more keypoints.

B. Runtime Evaluation

In this section we discuss the computational requirements

of the presented system. All experiments were carried out on

a quad-core CPU with 8 GB of memory. By parallelizing our

software we achieved a speed-up by a factor between 2 and

2.5. Graph optimization is started after all frames have been

TABLE III

RUNTIME ANALYSIS OF FEATURE EXTRACTION WITH RESPECT TO THE

CHOSEN INTEREST POINT DETECTOR AND FEATURE DESCRIPTOR. WE

FOUND THAT ORB IS FASTER THAN SURF AND SIFT BY ONE ORDER OF

MAGNITUDE.

Type Count Runtime Detection + Extraction
Avg. ± Std. Dev. Avg. ± Std. Dev.

SURF 1733 ± 153 0.34 s + 0.34 s
ORB 1117 ± 558 0.018 s + 0.0086 s
SIFTGPU 1918 ± 599 0.19 s

TABLE IV

RUNTIME ANALYSIS OF PAIRWISE FRAME REGISTRATION. USING AN

APPROXIMATELY NEAREST NEIGHBOR METHOD DURING MATCHING

REDUCES THE RUNTIME BY A FACTOR OF TWO.

Matcher Runtime (Avg. ± Std. Dev)

FLANN 0.203 s ± 0.078 s
Brute Force 0.386 s ± 0.120 s

processed and runs on a single core. The runtime results

presented in Table I were generated using SIFTGPU and

FLANN matching. On average, our system required 0.35 s

per frame. The overall runtime performance strongly depends

on the configurations presented in the previous sections.

Therefore, we evaluated the runtime performance in more

detail in the remainder of this section.

1) Feature Detection and Descriptor Extraction: Our ap-

proach has to detect features and extract their descriptors in

each incoming image frame. Table III shows a comparison

of the computation time required for the different feature

types as described in Section III-A. We found that ORB is

faster than SURF and SIFTGPU by one order of magnitude.

However, the system produced high errors in two of the nine

sequences. SIFTGPU is still about 3.5 times as fast as the

non-parallelized SURF implementation.

2) Feature Matching and Motion Estimation: Feature

matching and motion estimation needs to be computed at

least once per frame. If the current frame is only matched

against one predecessor, the resulting camera trajectory will

quickly accumulate errors over time. Feature matching for

many frames is costly to compute, but especially since we

do not assume the availability of any odometry information,

only with the possibility for loop closures, the system can be

accurate over longer trajectories. Further, more information

about pairwise relative transformations makes the trajectory

estimation more robust to errors in pose estimation. However,

a densely connected pose graph also requires more time to

optimize. We therefore found matching the current features

to those of 20 previous frames a good compromise. Table IV

shows the average runtime for matching and motion estima-

tion. We found that FLANN reduces the time required for

frame-to-frame registration by a factor of two.

3) Pose Graph Optimization: The optimization of small

pose graphs is fast enough to be done in real time, i.e., for

every frame. With longer sequences of densely connected



poses, the optimization time increases. However, if the

motion estimates are reliable, the global optimization is not

required in every step. In all sequences, the ratio of graph

optimization versus the total runtime was below 6 %.

V. CONCLUSION AND OUTLOOK

We presented a novel approach to visual SLAM from

RGB-D sensors. Our approach extracts visual keypoints from

the color images and uses the depth images to localize them

in 3D. We use RANSAC to robustly estimate the trans-

formations between RGB-D frames and optimize the pose

graph using non-linear optimization. Finally, we generate a

volumetric 3D map of the environment that can be used

for robot localization, navigation and path planning. We

evaluated our approach quantitatively on a publicly available

RGB-D dataset. On this dataset our system achieves on

average an accuracy of 9.7 cm and 3.95°. With an average

frame processing time of 0.35 s our approach is suitable

for online operation. To allow other researchers to use our

software and reproduce the results (and improve on them),

we have released all source code required to run and re-

evaluate our RGB-D SLAM system as open-source.

During the evaluation of our system, we discovered that

sometimes erroneous edges are created that lead to a degra-

dation of the mapping result. It would be interesting to

see how such problems can be efficiently detected and

possibly repaired autonomously. In the near future, we want

to optimize the keypoint matching scheme, for example by

adding a feature dictionary, pruning never matched features,

and integrating keypoints as landmarks directly during non-

linear optimization.

REFERENCES

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (SURF). Comput. Vis. Image Underst., 110:346–359, 2008.

[2] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 14(2):239–256, 1992.
[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with

the OpenCV Library. O’Reilly Media, 2008.
[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust

Independent Elementary Features. In Proc. of the Europ. Conf. on

Computer Vision (ECCV), 2010.
[5] A.J. Davison. Real-time simultaneous localisation and mapping with

a single camera. In Proc. of the IEEE Intl. Conf. on Computer Vision

(ICCV), 2003.
[6] F. Dellaert. Square Root SAM. In Proc. of Robotics: Science and

Systems (RSS), pages 177–184, 2005.
[7] N. Fioraio and K. Konolige. Realtime visual and point cloud slam.

In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth

Cameras at Robotics: Science and Systems Conf. (RSS), 2011.
[8] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, 1981.

[9] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Trans. on Robotics,
21(2):1–12, 2005.

[10] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard.
Efficient estimation of accurate maximum likelihood maps in 3d. In
Proc. of the Intl. Conf. on Intelligent Robots and Systems (IROS),
2007.

[11] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.
Hierarchical optimization on manifolds for online 2D and 3D mapping.
In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
2010.

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using depth cameras for dense 3D modeling of indoor environments.
In Proc. of the Intl. Symp. on Experimental Robotics (ISER), 2010.

[13] A. Hornung, K.M. Wurm, and M. Bennewitz. Humanoid robot
localization in complex indoor environments. In Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2010.

[14] H. Jin, P. Favaro, and S. Soatto. Real-time 3-d motion and structure
of point-features: A front-end for vision-based control and interaction.
In Proc. of the IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR), 2000.
[15] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental

smoothing and mapping. IEEE Trans. on Robotics, 24(6):1365–1378,
2008.

[16] G. Klein and D. Murray. Parallel tracking and mapping for small
AR workspaces. In Proc. IEEE and ACM Intl. Symp. on Mixed and

Augmented Reality (ISMAR), 2007.
[17] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and

B. Gerkey. Outdoor mapping and navigation using stereo vision. In
Experimental Robotics, volume 39 of Springer Tracts in Advanced

Robotics, pages 179–190. Springer, 2008.
[18] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.

g2o: A general framework for graph optimization. In Proc. of the

IEEE Intl. Conf. on Robotics and Automation (ICRA), 2011.
[19] M.I.A. Lourakis and A.A. Argyros. SBA: a software package for

generic sparse bundle adjustment. ACM Transactions on Mathematical

Software, 2009.
[20] D.G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.
[21] D. Nister. Preemptive RANSAC for live structure and motion estima-

tion. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2003.

[22] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D
SLAM with approximate data association. In Proc. of the 12th

Intl. Conference on Advanced Robotics (ICAR), pages 242–249, 2005.
[23] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Intl. Conf. on

Robotics and Automation (ICRA), pages 2262–2269, 2006.
[24] L. M. Paz, P. Pinies, J. D. Tardos, and J. Neira. Large-scale 6-

DOF SLAM with stereo-in-hand. IEEE Transactions on Robotics,
24(5):946–957, 2008.

[25] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an efficient
alternative to SIFT or SURF. In Proc. of the IEEE Intl. Conf. on

Computer Vision (ICCV), volume 13, 2011.
[26] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.

In Proc. of the Intl. Conf. on 3-D Digital Imaging and Modeling, 2001.
[27] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proceedings

of Robotics: Science and Systems, 2009.
[28] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale drift-aware

large scale monocular slam. In Proceedings of Robotics: Science and

Systems, 2010.
[29] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Bur-

gard, D. Cremers, and R. Siegwart. Towards a benchmark for RGB-D
SLAM evaluation. In Proc. of the RGB-D Workshop on Advanced

Reasoning with Depth Cameras at Robotics: Science and Systems

Conf. (RSS), 2011.
[30] S. Thrun. Robotic mapping: A survey. In Exploring Artificial

Intelligence in the New Millennium. Morgan Kaufmann, 2003.
[31] Shinji Umeyama. Least-squares estimation of transformation param-

eters between two point patterns. IEEE Transactions on Pattern

Analysis and Machine Intelligence, (13), 1991.
[32] Changchang Wu. SiftGPU: A GPU implementation of scale in-

variant feature transform (SIFT). http://cs.unc.edu/~ccwu/
siftgpu, 2007.

[33] K.M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems. In Proc. of the ICRA 2010

Workshop on Best Practice in 3D Perception and Modeling for Mobile

Manipulation, 2010.


