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PREFACE  

This document reports processing and analysis efforts on one task  

of a comprehensive and continuing program of research in multispectral  

remote sensing of the environment. The research is being carried out  

for NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the  

Environmental Research Institute of Michigan (ERIM). The basic objec

tive of this program is to develop remote sensing as a practical tool  

for obtaining extensive environmental information quickly and economi

cally.  

The specific focus of the work reported herein was on the test  

and evaluation of the signature extension approach to large area crop  

inventories. This final report is complemented by an interim technical  

report ERIM 122700-29-T entitled, "Evaluation of Signature Extension  

Algorithms", by Alex P. Pentland.  

The research covered in this report was performed under Contract  

NAS9-14988 during the period 15 May 1976 to 14 November 1977. Mr. I.  

Dale Browne (SF3) served as the NASA Contract Technical Monitor, and  

Mr. M. C. Trichel (SF3) was NASA Task Monitor. At ERIM, the work was  

performed within the Infrared and Optics Division, headed by Richard  

R. Legault, Vice-President of ERIM,. in the Information Systems and  

Analysis Department, headed by Dr. Quentin A. Holmes. Mr. Richard F.  

Nalepka, head of the Multispectral Analysis Section, served as Principal  

Investigator, Mr. Richard Cicone and Mr. Alex Pentland shared responsi

bilities as Task Leader.  

The authors wish to acknowledge the assistance of other ERIM staff  

members who have participated in the development of techniques in the  

LACIE agricultural context examined herein. Mr. Richard Kauth and  

Dr. Wyman Richardson contributed to the design of the multisegment  

signature extension experiment reported herein. Mr. Robert Beswick  

provided able support. Ms. Darlene Dickerson, Mrs. Elizabeth Hugg  

and Ms. Martha Warren provided efficient and accurate typing support  

throughout the contract period and for this report.  

iii  



2  IM   FORMERLY  WILLOW  RUN LABORATORIES  TH UNIVERSITY OF MICHIGAN 

CONTENTS  

............. ii  

TABLE OF CONTENTS .......... .................. v  

PREFACE ...................  ......  

FIGURES .................. .............. .. vii  

TABLES ............... ............. ..... ix  

1.  SUMMARY ............. .................. 1  

2.  INTRODUCTION .................. ........... 5  

3.  PHASE I: EVALUATION OF SIGNATURE EXTENSION TECHNIQUES . 7  

3.1  APPROACH ................... ......... 7  

3.2  HAZE CORRECTION ALGORITHMS. . ............. 8  

3.2.1  EVALUATION OF CROP-A. . ........... 8  

3.2.2  EVALUATION OF XSTAR . .............. 9  

3.3  TRAINING SAMPLE SELECTION STRATEGIES ..........  13  

3.4  DATA STRATIFICATION ....  ..............  14  

3.4.1  EXAMINATION OF AVAILABLE DATA STRATIFICATION 14  

3.4.2  RELATIONSHIP OF ANCILLARY INFORMATION TO  

SIGNATURE EXTENSION PERFORMANCE . ........ 19  

3.4.3  THE UTILITY OF STRATIFICATIONS OF THE DATA 23  

3.5  GREEN INDICATOR AND CROP DEVELOPMENT CLASSIFIERS . 24  

3.5.1  TESTS OF SEVERAL CLASSIFIERS .. ..... .... 24  

3.5.2  CROP DEVELOPMENT INVESTIGATIONS ..... .... 26  

CONCLUSIONS AND RECOMMENDATIONS 3.6  PHASE I: . . .... . 29  

4.  PHASE II: EVALUATION OF MULTISEGMENT SIGNATURE EXTENSION  

PROCEDURES ........... ................ ... 33  

4.1  BACKGROUND ........... ............. .... 33  

4.2  ADVANCED MULTISEGMENT SIGNATURE EXTENSION EXPERIMENT  

DESIGN ........  ......  .........  .........  35  

4.2.1  APPROACH AND DESIGN SUMMARY ...... ........ 35  

4.2.2  SYSTEMS UNDER TEST .... .......... .... 38  

v  
IV  



FORMERLy  WILLOW  RUN LABORATORIES THE UNIVERSITY OF MICHIGAN 

CONTENTS (Cont'd)  

4.2.2.1  Generalized Procedure 1 Training  

Strategy ....... ........ ... 41  

4.2.2.2  Character of the Procedure B Training  

Selection Process ...... ......... 42  

4:2.3  PERFORMANCE MEASURES ...... ....... .... 43  

4.2.3.1  Descriptive Performance Measures... . 43  

4.2.3.2  Analytic Performance Measures ...... . 44  

4.2.4  MEASUREMENT PROCEDURES.. .... ..... ....... 45  

4.2.5  PARAMETERS, FACTORS AND LEVELS ... .... .... 48  

4.2.6  DATA SETS .......... ........ .. ... 50  

4.3 FIELDS DATA BASE PREPARATION AND AUGMENTATION ...... . 52  

4.3.1  LOCATING AI FIELD DESIGNATION ERRORS ..... ... 52  

4.3.2  SIMULATING A RANDOM TRAINING SELECTION . . .... 54  

4.3.3  FURTHER ANALYSIS USING CHECK ... ....... ... 59  

4.4 ANALYST INTERPRETER LABELING ERROR ANALYSIS ..... ... 61  

4.4.1  APPROACH ....... ................... ... 62  

4.4.2  EFFECTS OF LABELING ERRORS ON PROPORTION  

ESTIMATE . . .............  .... 63  

4.4.3  CORRELATION OF LABELING ERRORS WITH ANCILLARY  

VARIABLES ...........  ..........  ..  63  

4.4.4  DISPLAY OF DATA IN COLOR SPACE .. ..... . .. 68  

4.4.5  FACTORS AFFECTING QUALITY OF THE PRODUCT 1  .... 70  

. . 75 4.4.6  EXPLORATtON OF POSSIBLE IMPROVEMENTS. ....  

4.4.7  DISCUSSION ......... ......... ...... 75  

4.5 PHASE II: CONCLUSIONS AND RECOMMENDATIONS . ... . ... 82  

APPENDIX I: DATA PREPARATION ....... ........ .... 85  

APPENDIX II: CLASSIFICATION ACCURACY USING COMPRESSED DATA . 95  

APPENDIX III: DESCRIPTION OF THE PROCAMS TEST BENCH . . ..... 99  

APPENDIX IV: TWO APPROACHES TO MULTISEGENT PROCEDURE I .... 103  

APPENDIX V:  DESCRIPTION OF DATA EMPLOYED IN ANALYST- 

INTERPRETER LABELING ERROR ANALYSIS ...  .......  .113  

REFERENCES: ..............   ..................  .....  117  

DISTRIBUTION LIST ...........   .....................  119  

vi  



>IM  FORMERLY  WtLLow  RUN LABORATORIES,  THE UNIVERSY  OF  MICHIGAN 

FIGURES 

Page 

1.  Flow Diagram of Multisegment Signature Extension  

Procedure Evaluation ......... ................ 37  

2.  Six Hypothetical Multispectral Signature Extension Test  

Results ............ .................. .46  

3.  Data Coverage Versus Minimum Bin Size ........ .. 56  

4.  Number of Bins Versus Minimum Bin Size .. .. ....... 56  

5.  CHECK Histogram Map of Portion of Segment 1154 ..... .. 58  

6.  Number of Bins Containing 0.1% or More of Data Covered  

by Training as Determined Through CHECK .. .... ... 60  

7.  Fraction of Wheat in Scene Detected Versus Missed Wheat  

Error ............. .............. ... 64  

8.  Missed Wheat Error Versus Percentage of Wheat in Scene .  66 

9.  Segment Latitude Versus AI Total Error Figure ...... . 67  

10,  Color Ranges of the CIE X-Y Chromaticity Diagram (After  

Coberly) . .. ....... ........... ..... 71  

11,  CIE 1931 (x,y)-Chromaticity Diagram Showing Statistical 

Variation of Chromaticity Matches (After Stiles, 1946) . 72 

12.  CIE 1960 UCS Diagram with Stiles Ellipses of Figure 11 . .  72 

13.  (r,g) Chromaticity Plot of Field Means for Segment 1041,  

Julian Date 127 ............ ........ . . 73  

14.  (U,V) Chromaticity Diagram of Dlata Shown in Figure 13 . . 73  

15.  Two Segments in Second Biowindow .............. . 76  

16.  Biowindows 1 and 2 for Two Segments ..... ...... . 77  

17.  Three Biowindow Acquisition History for One Segment . .  78 

18.  Linear Discriminant Boundary Between Wheat and Non-Wheat  

for Five Segments in Biophase Two ..... ........ . 81  

(  vii 



L RIM  FORMERLY WILLOW RUN LABORATORIES. THE  UNIVERSrMY OF MICHIGAN 

FIGURES (Cont'd)  

Page  

I-i.' Test Sites in Kansas, 73-74 Data ... . .... .... 86  

...  

1-3. Test Sites in Kansas, 75-76 Data .......... .... 92  

1-2. Test Sites in Kansas, 73-74 Data .... ........ 88  

III-1. Flow Chart of the PROCAMS System .... . .....i... 100  

IV-i. Illustrations of Two Approaches in Extending Procedure 1  
to a Multisegment Environment ... ............. . 106  

viii  



TABLES  

Page 

1.  Comparison of Field Mean Classification Results Using  

Local,Untransformed and Crop-A Transformed Signatures . . . . 9  

2.  Performance of Classification on XSTAR Corrected and  

Uncorrected Spring Wheat Data ........ ..... .. 12  

3.  List of Ancillary Variables ........ .............. 21  

4.  Results of Stepwise Linear Regression of Untransformed  

Signature Extension Results vs Ancillary Information . . . 22  

5.  Results of Stepwise Linear Regression of XSTAR Corrected  

Signature Extension Results vs Ancillary Information . . . . 23  

6.  Green Development Indicators and Their Formulas ...... .. 25  

7.  Performance of Green Development Indicators .. ...... . . . 25  

8.  Comparison of Several Classifiers ..... ............ . . 29  

9.  Principal Procedural Strategies for Test and Evaluation .  39  

10. Summary of AI Accuracy Measures ...... ............. . 53  

I-1. First Period Data Base .........  ...............  .  87  

1-2. 1973-74 Multitemporal LACIE Sample Segments ...........  89  

1-3. Ancillary Variables and Their Range ..  .......  ......  ..  91  

1-4. Range of Ancillary Data: Winter Wheat (Kansas) Data . ... 93  

1-5. Range of Ancillary Data: Spring Wheat (North Dakota)  

Data ............... ................... . 94  

II-1. Local Classification Accuracy (Compressed vs Uncompressed  

Data ................ .................. 96  

11-2. Untransformed Signature Extension Results Comparing  

Compressed and Uncompressed Data ....... ........... 97  

ix  



FORMERLY  WILLOW  RUN LABORATORIES  THE UNIVERSITY OF  MICHIGAN 

TABLES (Cont'd)  

V-I. Biowindow One Acquisitions ..... ............... .. 113  

V-2. Biowindow Two Acquisitions ..... ............... .. 114  

V-3. Biowindow Three Acquisitions ..... ........... ... 114  

V-4. Description of Ancillary Data .... .......... ... 115  

x  



FORMERLY WILLOW RUN LABORATORIES. TH5 UNIVERSITY OF MICHIGANIRI 

1 

SUMMARY 

The overall objective of the research reported herein was to initi

ate an evaluation of the signature extension approach to large area crop  

inventories utilizing space image data. The Large Area Crop Inventory  

Experiment (LACIE) is an attempt to establish the feasibility of inven

torying the production of wheat on a world-wide basis by utilizing  

Landsat data. A basic 5x6-mile sampling region or segment is employed  

and wheat production statistics are aggregated over estimates made  

within each segment. The current estimation technique employed is  

called Procedure 1. This technique extracts training data from each  

segment, applying the resultant measured statistics in classifying the  

segment. This local training and classification procedure requires  

that each segment be manipulated by an intervening Analyst Interpreter  

(AI). Multisegment training and classification techniques attempt to  

reduce the need for AI intervention. This is carried out by extracting  

training statistics from a subset of segments and employing the statis

tics or signatures to other segments, hence the term signature extension.  

The activity was carried out in two phases. First, several algo

rithms and procedures which were candidates for inclusion in a large  

area crop inventory system were separately evaluated. Second, prepara

tion was made to conduct an extensive signature extension systems evalu

ation incorporating those candidate algorithms and procedures which  

showed promise for crop inventories in a multisegment-environment, and  

an analysis was carried out to investigate the Analyst Interpreter stage  

in crop inventory.  

The algorithms and procedures evaluated in the first phase of this  

program are divided into four distinct types:  

1. Haze correction algorithms  

2. Training sample selection strategies  

1  
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3.  Data stratification procedures  

4.  Permanently trained green development-trajectory  

classifiers.  

The algorithms tested which fall into category one, haze correc

tion algorithms, are CROP-A [1] and XSTAR [2]. The XSTAR algorithm  

has been extensively tested in both winter and spring wheat areas and  

offers substantial benefit to large area crop inventory systems.  

The training sample selection strategy available for testing was  

a preliminary version of Procedure B [3]. First results show its  

promise for future large area crop inventory systems.  

In the third category, stratifications of the data, two were  

available for "testing: a static stratification defined by UCB [4],  

and one defined by JSC [5]. Employment of these stratifications  

yielded an increase in classification accuracies. It appears that  

these stratifications should be further tested using a multisegment  

training strategy in order to clearly establish their contribution to  

improved performance in this environment.  

In the final category, green development-trajectory classifiers,  

several algorithms were tested. Four unitemporal green development  

classifiers, with and without haze correction, the Delta Classifier  

[6], and a crop development classifier were tested. Results obtained  

are promising, but additional testing is recommended using a more sub

stantial data base covering several growing seasons.  

The  second phase of the program revolved about three basic concerns:  

1.  The definition and advanced design of an experiment to examine  

the overall signature extension approach  

2.  Preparatory phases required to conduct such an experiment  

3.  Analysis of the nature of analyst interpreter errors and  

the sensitivity of the signature extension approach to  

analyst interpreter errors.  

2  
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The design of the multisegment signature extension experiment  

required a definition of five basic components of an experiment  

including: (1) the definition of the systems under test, (2) defini

tion of performance measures, (3) definition of the measurement pro

cedures, (4) specification of factors, parameters and levels desired,  

and (5) specification of data sets. The systems to be evaluated incor

porate the static stratifications defined by UCB and JSC, Procedure B  

defined by ERIM, data preprocessing filters including haze correction  

defined by ERIM, and Multisegment Procedure 1. The particular perfor

mance measure of most interest will be the measure of variation in  

wheat proportion estimate as a function of training gain. The results  

of the multisegment signature extension approach are to be compared to  

standard LACIE Phase III local classification results.  

Preparatory phases carried out to expedite the execution of this  

experiment have included both data base specification and software  

development. A preclassification technique was developed to facilitate  

the evaluation of classification performance where training parameters,  

like the number of training segments, would be varied to establish the  

variation in performance.  

The specification of a data base for testing led to an analysis  

of the nature of Analyst Interpreter (AI) errors detected in the  

labeling of wheat and non-wheat for training purposes. The AI's basic  

tool is a false color image product generated from Landsat digital data  

using a Production Film Converter (PFC) that maps Landsat bands 4, 5  

and 7 into blue, red and green colors. The product currently in use  

is called Product 1. It was determined that classification performance  

in a multisegment environment is sensitive to AI labeling errors. Analy

sis of the image product indicated significant differences in the color  

of wheat from one segment to another at the same stage in the crop  

calendar. This is attributed to the technique employed in the genera

tion of the image product as well as to the effect of other ancillary  

parameters such as land use, haze and sun angle conditions.  

3 
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INTRODUCTION  

The Large Area Crop Inventory Experiment (LACIE) is an attempt  

to establish the feasibility of inventorying the production of wheat  

on a world-wide basis through the use of Landsat space image data.  

The experiment can be structured into four basic components: (1) an  

overall geographical stratification of the regions of interest, (2) a  

sampling strategy within strata utilizing five by six mile segments as  

the basic sampling unit, (3) an estimation system for wheat production  

within a strata, and'(4) an aggregation of results. The techniques  

employed have shown success to date. However, the cost of the third  

component, the within strata estimation system, is high, primarily  

because each sample segment must be individually processed by an  

Analyst Interpreter (AI). Multisegment signature extension, the  

ability to infer the signature of a crop in many segments from a  

selected subset of segments and features, would significantly lower  

processing cost by reducing the amount of AI data interaction required.  

In addition, the stratified selection of data samples for training  

purposes may provide more robust signatures resulting in improved per

formance.  

Many different approaches have been proposed to solve part or all  

of what is referred to as 'the signature extension problem' -- finding  

a technique or, more likely, a collection of techniques (a procedure)  

to succeed at the accurate inventory of crops over a large area through  

signature extension. It is the objective of this report to (1) initi

ate an evaluation of the overall signature extension-acreage estimation  

approach, and (2) perform an evaluation of the components of that  

approach.  

The activity carried out to address these objectives was conducted  

in two phases.  

ORIGINAL  PAGE  IS  
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The goal of the first phase was to provide some of the necessary  

information concerning the effectiveness of candidate techniques and  

procedures, and to identify technical needs in order to construct the  

overall signature extension procedures for extensive evaluation. Four  

signature extension techniques and related procedures were evaluated:'  

(1) haze correction algorithms, (2) training sample selection strate

gies, (3) data stratification procedures, and (4) green development

trajectory classifiers.  

The goals of the second phase of activity were twofold. First,  

the evaluation of multisegment signature extension procedures was begun  

through a specification of the experiment design and an initiation of  

preparatory phases required to conduct such an experiment. Secondly,  

an analysis of the cause and effect of Analyst Interpreter labeling  

errors was initiated. One specific concern was the sensitivity of  

signature extension classification results to Al labeling errors.  

Section 3 of this report deals with Phase I of this project.  

Section 3.1 reports tests of two haze correction algorithms tested:  

CROP-A [1] and XSTAR [2]. Section 3.2 reports on tests of a prelimi

nary version of a training sample selection strategy called Procedure  

B [3]. Section 3.3 covers evaluations of two stratifications of data:  

one by UCB [4] and one by JSC [5]. Section 3.4 reports on tests of  

several green development and trajectory classifiers, including the  

Delta Classifier [6] and a green development classifier. Section 3.5  

is a discussion of the ramifications of the Phase I project results.  

Section 4 of this report deals with Phase II of this project.  

Section 4.2 introduces the multisegment experiment design. Section 4.3  

describes the preparatory phases of this experiment. Section 4.4 des

cribes the Analyst Interpreter labelling error analysis carried out.  

Section 4.5 summarizes the observations, conclusions and recommenda

tions derived during Phase 1I of this project,  

6  
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3  

PHASE I: EVALUATION OF SIGNATURE EXTENSION TECHNIQUES  

The overall goal of this task is to evaluate the multisegment  

signature extension approach to large area crop inventories. Signa

ture extension pertains to the ability to infer the signature of a  

crop in a group of segments based on signatures from a selected subset  

of segments. One motivation for this approach to crop inventory is  

that it would lower processing cost by reducing the amount of Analyst  

Interpreter/data interaction required. A second motivation was born  

out of research on specific signature extension techniques. The signa

ture of a particular crop, that is, its statistical characteristics as  

a function of spectral, temporal and ancillary conditions, may be better  

understood and more accurately estimated in a multisegment environment.  

The goal of Phase I of this project is to study certain signature exten

sion techniques that appear to have promise and to recommend whether  

the development of an accurate large crop inventory system using sig

nature extension techniques is a feasible goal.  

3.1 APPROACH  

Four types of signature extension techniques or related procedures  

are examined:  

1. Haze correction algorithms  

2. Training sample selection strategies  

3. Data stratification procedures  

4. Green development-trajectory classifiers.  

These techniques were evaluated using a compressed data base of  

LACIE blind sites as is described in Appendix I. That data base is  

known as the Fields Data Base and consists of the mean values for each  

field designated by an Analyst Interpreter during the LACIE operation.  

7  
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3.2  HAZE  CORRECTION  ALGORITHMS 

Two examples of haze correction algorithms were tested by this  

task. The first, CROP-A [1], is a cluster-matching algorithm. The  

other algorithm tested, XSTAR [2], employs a simplification of the  

ERIM radiative transfer model [7,8] to measure and correct for the  

effects of haze.  

3.2.1 EVALUATION OF CROP-A  

The cluster-matching algorithm CROP-A was tested over ten sample  

segments in Kansas using acquisitions from early and late May 1974  

(see Appendix I.1 for a more complete description of the data set).  

The form of the evaluation experiment was to perform unitemporal,

matching-biophase signature extension between these sample segments,  

first applying signatures from one segment directly to other segments  

with no transformation of the mean or covariance of the signatures, and  

then to repeat these extensions after transforming the mean and covar

iance of the signatures using CROP-A transformation.  

Classification results were obtained for each segment by classi

fying mean vectors computed from several wheat and non-wheat fields in  
K 

the segment, instead of classifying every pixel. This permitted a  

great many classifications to be run relatively economically. That  

field mean classification results are strongly indicative of pixel-by

pixel classification results are shown in a study reported in Appen

dix II.  

The performance measure used in the comparison between untrans

formed signature extension and CROP-A transformed signature extension  

was the average accuracy of the field mean classification. This average  

accuracy is the average of the percent of wheat field means correctly  

classified and the percent of non-wheat field means correctly classified.  

The CROP-A experiment was carried out on a test bench known as  

PROCAMS, PROCAMS (PROtotype CAMS) is a system of programs developed  

at ERIM and is described fully in Appendix III.  
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The major results of the CROP-A evaluation experiment are seen in  

Table 1. Briefly, the classification results using CROP-A transformed  

signatures were not as good as the classification results using untrans

formed signatures.  

The primary difficulty with CROP-A seems to be that it makes the  

assumption that the same materials are presented in both training and  

recognition scenes in order to make training cluster-recognition cluster  

pairings. This assumption is quite often not true, and can account for  

very large errors,  

TABLE 1.  COMPARISON OF FIELD MEAN CLASSIFICATION RESULTS USING  

LOCAL, UNTRANSFORMED AND CROP-A TRANSFORMED SIGNATURES  

STANDARD 

DEVIATION 

AVERAGE OF AVERAGE 

CLASSIFICATION USING: NUMBER OF CASES ACCURACY (%) ACCURACY  (%) 

Local Signatures  10 (Early May) 90'.7 8.2  

10 (Late May) 87.5 10.4  

CROP-A Transformed 12 (Early May) 78.3 15.0  
Signatures 31 (Late May) 67.8 19.0  

Untransformed 12 (Early May) 85.0 9.1  

Signatures 31 (Late May) 72.9 15.5  

3.2.2 EVALUATION OF XSTAR  

XSTAR is a haze correction algorithm which employs a model of haze  

effects derived from the ERIM radiative transfer model [7]. Briefly,  

the XSTAR uses shifts of the data distribution in a linear combination  

of Landsat channels known as the yellow direction in the Tasselled Cap  

transformation [9] to measure the amount of haze present, and then cor

rects for the effects of this haze using the haze model [8]. In all  

tests of XSTAR, a simple cosine correction was also used to correct for  

sun angle effects.  
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The standard used to evaluate XSTAR was similar to that used for  

CROP-A, namely, compare classification results for untransformed sig

nature extension and for signature extension where all data sets have  

first been corrected to a standard haze condition using XSTAR.  

Two different experiments were conducted to evaluate XSTAR. The  

first was conducted using 1975-76 multitemporal (first and second bio

windows*) data over 23 sample segments in Kansas for a total of 506  

extensions. The second experiment was conducted using 1975-76 multi

temporal (first, second and third biowindows) data over 18 sample  

segments in North Dakota (306 possible extensions), where the crop of  

interest is spring wheat. Appendices 1.3 and 1.4 contain a full des

cription of these data sets.  

In the Kansas experiments the performance measures used were the  

field mean classification accuracy and the proportion estimation accu

racy. In the North Dakota experiment the true spring wheat proportions  

were unavailable, and so only the field mean classification accuracy  

was used. The LACIE fields data base as of day 315 provided the field  

definitions and crop type labels.  

While both the field mean classification and proportion estimation  

results were fairly good when using XSTAR it was noted that the XSTAR  

corrected results were no better than the untransformed results. This  

was initially quite puzzling, because examination of cluster plots  

both before and after XSTAR correction showed that XSTAR was doing an  

adequate job of correction for haze and other effects.  

Currently, the term biowindows (or alternatively biophases)  

refers to a division of the crop calendar into four parts. Each divi

sion is related to important phases in the growth pattern of wheat.  

Biowindow 1 refers to the pre-emergent to the emergent stage. For  

winter wheat this would be the period from planting about September  

(about Julian date 285) through winter dormancy. Biowindow 2 refers  

to the wheat greening up period to the point of heading. Biowindow 3  

is associated with post-heading'and the senescent stages. The final  

biowindow refers to the harvesting stage in the growth cycle of wheat.  
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The explanation for these results is found in the method of classi

fication used: our method of classification was to use a sum-of-like

lihoods classifier with no rejection threshold. It was this lack of a  

rejection threshold which caused untransformed signature extension to  

yield results comparable to the results obtained when using XSTAR.  

According to the haze model used by XSTAR, the principal effect of  

haze is to shift the data distribution along the brightness axis of  

the Tasselled Cap transformed data space. It happens, however, that  

the principal direction of discriminability between wheat and non-wheat  

is orthogonal to this, parallel to the green direction of the trans

formed space. Thus, the decision-boundary formed by the sum-of-likeli

hoods classifier is essentially parallel to the brightness axis. As  

the amount of haze in a scene varies the data distribution moves along  

this plane but does not cross it; thus, without thresholding, the  

decision boundary formed from a training site in a high haze condition  

was still-reasonably effective in a test site with a low haze condi

tion and vice versa.  

The fact that not thresholding acts as a haze correction technique  

is true only because the primary direction of discriminability between  

wheat and non-wheat is orthogonal to the primary direction of haze shift.  

With crops other than wheat, this haze compensation effect will not con

tinue to hold true. Further, it can be seen that using a threshold  

introduces a large bias, and significantly increases the RMS error in  

proportion estimation.  

In the multisegment training tests on 74 winter wheat data sets  

over 39 Kansas segments (see Section 4) every proportion estimate using  

a classification threshold was less accurate than the corresponding  

estimate without a threshold. Examination of this result showed that  

in every case as the classification threshold was made smaller, the  

accuracy of the proportion estimates increased. A more thorough dis

cussion of,these results may be found in the interim technical memo

randum "Evaluation of Signature Extension Algorithms" [10].  

1i  
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It is hypothesized that this increase in accuracy is due to pick

ing up additional types of wheat which were not represented in the  

training segment.  

Because of the effects which occur when no classification thres

hold is used, the North Dakota experiment was also run with and without  

a classification threshold.  

Table 2 shows the average classification accuracy for thresholded  

and unthresholded classifications on XSTAR-corrected and uncorrected  

data. The performance of unthresholded classification on XSTAR cor

rected data is statistically no different than the unthresholded per

formance on uncorrected data, but when a classification threshold is  

used the performance on uncorrected data drops sufficiently to make  

the performance on XSTAR corrected data significantly better than the  

performance on uncorrected data. The conclusion that may be reached  

from this is that the XSTAR correction is in fact aligning the data  

distributions from different sample segments, but that the unthresholded  

classification is unimproved because the classifier decision boundary  

is parallel to the principal direction of haze shift, as explained above.  

TABLE 2. PERFORMANCE OF CLASSIFICATION ON XSTAR CORRECTED  

AND UNCORRECTED SPRING WHEAT DATA (Average of 318  

Signature Extensions)  

Average Field Mean Classification Accuracy  

Thresholded Unthresholded 

Classification** Classification 

XSTAR Corrected 60.10% 60.35% 

Uncorrected 57.17% 61.65% 

0.001 Rejection Threshold  

* 

The significance level of 0.01 is used throughout this report.  
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An analysis of the factors which were important in determining  

the difference between performance on XSTAR corrected and on uncor

rected data indicated that the number of time periods involved in the  

classification was the only significant factor, although the haze level  

was also a significant factor at the 0.1 level. As more data acquisi

tions are added to the classification the chance of an acquisition with  

differing haze levels between the training and test sites increases,  

and so the uncorrected accuracy remains the same or drops in spite of  

the additional information in the classification, while the XSTAR cor

rected accuracy increases.  

The conclusion to be reached from these results is that XSTAR  

performs a haze correction function which increases the accuracy of  

field mean classification and proportion estimation as compared to  

untransformed signature extension using a sum-of-likelihoods classifier  

with a rejection threshold.  

3.3 TRAINING SAMPLE SELECTION STRATEGIES  

Another activity pursued under this contract by another task was  

developing and demonstrating a training and classification technique  

called Procedure B [3]. This technique incorporates a training sample  

selection strategy together with an unconventional classification tech

nique. In order to separate the effects of the training procedure from  

the effects of the classification procedure, and in order to evaluate  

the effect of this training sample selection strategy on a LACIE-like  

system, early in the contract period the PROCAMS test bench was modi

fied to incorporate the training sample selection strategy of a pre

liminary version of Procedure B.  

The following is a description of the resulting classification  

procedure, referred to as Multisegment CAMS. First, apply the train

ing sample selection strategy of Procedure B'to a large collection of  

LACIE sample segments. This selection strategy selects a number of  

sample segments as training segments. These XSTAR-corrected training  

13  
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sample segments are then clustered as if they were simply one large,  

contiguous portion of the data. The set of clusters generated (signa

tures) are then applied directly to all of the (XSTAR corrected) sample  

segments within the original large data set, using the normal maximum  

likelihood classifier.  

In the original Procedure B demonstration, six LACIE sample seg

ments were chosen to serve as training for all of the Kansas sample  

segments. In all of the following experiments, these same six segments  

were used for training both Procedure B and Multisegment CAMS classi

fication. Local classification, used as a comparison, uses signatures  

extracted on a segment by segment basis from the Fields Data Base (see  

Appendix 1.4 for a complete description of the data base*). Multi

segment CAMS and the local classification were run without a classifi

cation threshold on the maximum likelihood classifier.  

A comparison of proportion estimation accuracy for Procedure B,  

Multisegment CAMS, and the 75-76 LACIE procedure of local training and  

classification was carried out over 28 sample segments. None of the  

differences in proportion estimation accuracy or bias were statistically  

significant, due to the relatively large variance in the proportion  

estimates.  

A comparison using 74 Kansas data sets was carried out between  

Multisegment CAMS and local training and classification. Again the  

differences in proportion estimation accuracy (variance) were not sta

tistically significant, but now with the larger sample size Multisegment  

CAMS revealed a statistically significant bias.  

These results did not include a bias correction procedure such as  

is being incorporated into LACIE. When considering ,an environment  

The Fields Data Base consists of a number of fields, extracted  

from LACTE Blind Sites, that have been designated and labeled 3y an  

Analyst Interpreter. This labeling was carried out late in the year  

(Julian Date 315) which enabled the AI to use all available Landsat  

imagery showing crop development throughout the year.  
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where it is anticipated that a bias correction procedure such as Pro

cedure i will be used, the training gain advantage enjoyed by a method  

such as Multisegment CAMS is largely nullified by the need for an Al  

to process every sample segment anyway, for bias correction purposes.  

If, however, the bias of a procedure were a relatively consistent  

function of the true proportion (or ancillary variables), then the  

AT would need to process only enough sample segments to allow for the  

estimation of the bias correction function.  

Such is the case with Multisegment CAMS. Because the same set  

of signatures is used for all sample segments, much of the bias is  

predictable. This is not true for local training and classification  

methods. In the 74 data sets over Kansas, bias which was a function  

of the true proportion of wheat accounted for only 5% of the error in  

the local training and classification procedure, as compared to 30%  

of the error in the Multisegment CAMS procedure.  

Thus a linear bias correction rule trained over only the six  

original training segments and then applied to the proportion esti

mates for all of the data sets considerably improves the accuracy of  

Multisegment CAMS, while the accuracy of local training and classifi

cation is affected relatively little.  

The difference in proportion estimation accuracy (variance) between  

Multisegment CAMS (as bias corrected) and local training and classifi

cation (corrected or uncorrected) is statistically significant at the  

5% level. Neither of the biases are statistically significant.  

The above results indicate that a Procedure l/CAMS system, modi

fied to incorporate the Multisegment CAMS training and bias corrected  

procedures, might enjoy a large training gain advantage, together with  

increased accuracy, as compared with the 75-76 LACIE procedures. It  

is also possible that a Procedure 1/Multisegment CAMS system would be  

more consistently accurate (in addition to being less expensive to run)  

than a Procedure 1/local CAMS system if the Al's turn out to have a  

large or randomly varying bias because of the consistent estimable bias  

of Multisegment CAMS.  
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3.4   DATA STRATIFICATION  

Data stratification is the grouping of segments on the basis of  

similarity in segment physical features which affect the performance  

of signature extension. The primary difficulty in stratifying the  

data  is that it is not known which features of a segment (which we  

will  hereafter refer to as ancillary variables) affect the performance  

of signature extension.  

For this reason the emphasis of the task in this area was twofold.  

First, examine existing stratifications of the data and determine their  

relationship to signature extension performance. Second, use the actual  

performance of signature extensions to determine what factors are most  

important in determining signature extension performance.  

3.4.1 EXAMINATiON OF AVAILABLE DATA STRATIFICATION  

Two data stratifications were available for testing. The first of  

these was developed by the University of California, Berkeley (UCB) [41,  

and the second was developed by Johnson Space Center (JSC) personnel [5].  

The UCB stratification was first examined in conjunction with the  

CROP-A evaluation, using unitemporal Landsat data, collected in May 1974  

over  10 segments in Kansas. The UCB stratification was broken down into  

three levels of coarseness: the original UCB stratification, a coarser  

version of the original stratification, and an even coarser version which  

ignored soil type differences.  

The performance of within-strata signature extensions was then com

pared to the performance of across-strata extensions, for each of the  

three coarseness-levels of the UCB stratification, and for both CROP-A  

transformed and untransformed signature extensions. The result was that  

there was no statistically significant difference between within-strata  

and across-strata signature extension performance, regardless of whether  

CROP-A transformed or untransformed signatures were used. This seemed  

to indicate that the stratification was too fine, and that a much coarser  

stratification would probably suffice.  
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The UCB and JSC stratifications were later examined much more  

carefully during the evaluation of XSTAR on 1975-76 multitemporal  

Landsat data collected over 23 sample segments in Kansas (see Appen

dix 1.3 for a complete description of the data). The form of the  

evaluation experiment was to first perform all signature extensions  

possible among the 23 segments (a total of 506 extensions) first using  

untransformed signature extension, and then using XSTAR-corrected sig

nature extension. The field mean performance of each of these exten

sions was then tabulated, and the field mean performance of the within

strata extensions was compared to the field mean performance of the  

across-strata extensions.  

The original UCB stratification is composed of four parts: a  

very fine soil stratification, a stratification based on land use and  

irrigation in the segments, a stratification into three groups based  

on a ten-year average of degree days for the segments, and a strati

fication into four groups based on a ten-year average of the amount of  

precipitation in a segment. These four parts of the stratification are  

then combined (via a Cartesian cross-product of the three) to produce  

what is referred to as the UCB data stratification. The soil strati

fication resulted in a partitioning of our 23 data segments into 23  

partitions. As a result signature extension analysis could not be  

carried out. Our analysis was therefore restricted to three parts.  

Each of the three component parts of this stratification were  

then examined in combination and separately as well.  

The difference between the within-strata accuracy and the across

strata accuracy in classification of field means was not found to be  

statistically significant when the land use/irrigation portion of the'  

UCB stratification was used to stratify the data.  

Stratifying using either the degree day portion or the precipi

tation portion of the UCB strata produced a difference between within

strata accuracy and the across-strata accuracy which was significant  

at the 0.05 level. Within-strata accuracy was 72.8% for degree days  

17  
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strata and 82.4% for precipitation. Across-strata accuracy was 67.3%  

and 66.2% respectively.  

The greatest difference between within-strata and across-strata  

accuracy was found when the degree day and the precipitation portions  

of the UCB stratification were both used to stratify the data into a  

total of twelve groups. Within-strata accuracy was 86.5% and across

strata 66.6%. This difference was significant at the 0.001 level.  

An observation made from this analysis is that since precipita

tion and degree days are related to crop development, the primary  

effect of the successful portions of the UCB data stratification is  

to insure a similar degree of crop development in both the training'  

and test segments.  

The analysis of the JSC data stratification was somewhat different.  

Because none of the components of the stratification were available to  

us, no analysis of the components could be conducted. JSC strata de

fines "groups" and "subgroups". Three levels of generalization of the  

JSC stratification were analyzed at a "group" level. First, the per

formance of the "suggested" training segment-test segment extensions  

were analyzed. Second, the performance of extensions from any 6egment  

designated as a training segment to any segment designated as a test  

segment (both within the same strata) was examined. Third, the per

formance of extensions between any segments within the same strata was  

evaluated. In all three cases the accuracy of the extensions under  

examination were compared to the average across-strata signature'exten

sion accuracy. The "subgroups" defined in the JSC data stratification  

were ignored in these evaluations, since none of these subgroups had  

more than one of our testing segments in them.  

Analysis of the first level of generalization, i.e., the "suggested"  

extensions, could not be effectively carried out since it.was found that  

there were only two examples of such extensions within our data set,  

hence no significant results could be obtained.  
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Fourteen out of the 506 possible extensions were between desig

nated training and designated test segments in the same strata, the  

second level of generalization. The field mean accuracy of these  

fourteen was not much different than the average field mean accuracy,  

and what difference there was was not statistically significant.  

The third level of generalization of the JSC stratification  

examined, where all extensions within the same strata were compared  

to the  across-strata extensions, had a different result. The average  

of the field mean accuracies of the within-strata extensions was found  

to be significantly higher than the average across-strata accuracy  

(70.5% vs. 62.6%).  

Whereas the JSC stratifications yielded less substantial improve

ment in the field mean accuracy than the UCB stratification, the  

important issue realized is that partitioning of segments does yield  

improved performance in field mean accuracy and therefore potentially  

useful in a multisegment environment wherein proportion estimates are  

of interest. In addition, the UCB strata analysis indicated that  

physical variables associated with crop calendar afforded the best  

results. This underlines the importance of accurate crop calendar  

information. It is our judgement that a similar analysis of JSC com

ponent variables would yield the same observation.  

3.4.2  RELATIONSHIP OF ANCILLARY INFORMATION TO SIGNATURE  

EXTENSION PERFORMANCE  

For. each signature extension technique there is a unique best  

stratification of the data which matches the assumptions on which the  

development of the technique was based.  

Thus, logically, one would need to choose a signature extension  

algorithm and then choose a data stratification to match that particu

lar algorithm. The simplest method to obtain the data stratification  

for a particular algorithm is to use the actual performance of the algo

rithm on various test-training pairs to determine what test segment
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training segment differences affect classification performance. This  

is what was done for both XSTAR corrected signature extension and for  

untransformed signature extension.  

The technique used to investigate the relationship between various  

ancillary variables and the performance of signature extension between  

those segments is a fairly straightforward one.  

First, train separately on every site in the test set and then  

extend each of these sets of training statistics to every other site  

in the test set.  

Secondly, pair the performance figures obtained from each of the 

signature extensions with a list of ancillary variables which describe 

the extension. 

Third, use this list of ancillary variables to describe or charac

terize the successful extensions.  

This characterization of the successful signature extensions can  

then be used to derive the "best" stratification for the particular  

signature extension algorithm used in the first step. This is done  

by using the characterization of the successful extensions (possibly  

a linear equation in the ancillary variables) to predict which exten

sions are most likely to be successful. These pairs of extensions  

with the best predicted performance are then said to be within the  

same strata, and thus the stratification is complete,  

This process was carried out first using 1975-76 Landsat data  

over 23 segments in Kansas (see Appendix 1.3 for a complete descrip

tion of this data set), and later using 1975-76 Landsat data over 18  

segments in North Dakota (see Appendix 1.4 for a complete description  

of this data set). The list of ancillary variables used in performing  

this analysis is shown in Table 3.  

Using the Kansas data set, the experiment was first carried out  

using untransformed signature extension, as a control case. The char

acterization of the successful signature extensions was accomplished,  
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TABLE  3.  LIST  OF  ANCILLARY  VARIABLES  

I.  GENERAL: 

Degree Days (10 Year Average)  

Land Use (% Agriculture)  

Precipitation (10 Year Average)  

Latitude  

Longitude  

Elevation  

II. PASS SPECIFIC (Calculated for Each Pass):  

Sun Angle  

View Angle  

Julian Date  

Crop Calendar (Robertson Scale) [4]  

Difference Between Sites in Mean of  

Soils Area in Landsat Space  

Difference Between Sites in Mean of  

Green Development Area in Landsat Space  

Haze Diagnostic Calculated by XSTAR from  

Yellow Shift of Data  

Difference Between Sites in Additive Factor  

Calculated by XSTAR  

Difference Between Sites in Multiplicative  

Factor Calculated by XSTAR  

Haze Value Calculated by XSTAR from  

Yellow Shift of Data  
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using a stepwise linear regression technique. The results of this  

stepwise linear regression are given in Table 4 below.  

TABLE 4.  RESULTS OF STEPWISE LINEAR REGRESSION OF UNTRANSFORMED  

SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION  

Cumulative Cumulative 

Important Factors Standard Error R
2 

DIFFERENCE BETWEEN TRAINING AND 

TEST SITE OF: 

Mean of Soils Region in Landsat 

Space, Biowindow 1 14.50 0.124 

Longitude 14.27 0.153 

View Angle, Biowindow 1 14.14 0.170 

XSTAR Additive Factor,, 

Biowindow 2 14.05 0.183 

Crop Calendar, Biowindow 2 13.98 0.192 

Sun Angle, Biowindow 2 13.82 0.212 

The final regression equation incorporating all of these factors  

was used to predict performance of untransformed signature extension  

between various pairs of sites, The predicted performance can be used  

to generate a stratification which meets training gain or performance  

criteria specified by the user. When the desired training gain was 1.2,  

four out of the 23 sites were classified by signature extension rather  

than local training, a savings of 20% in training cost. Using this 1.2  

training gain stratification the proportion estimation bias in this  

23 segment-sample is not statistically significant.  

This experiment was then repeated using XSTAR, in place of untrans

formed signature extension. Table 5 shows the results of the stepwise  

linear regression of XSTAR's results versus the ancillary information.  
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TABLE 5. RESULTS OF STEPWISE LINEAR REGRESSION OF XSTAR CORRECTED  

SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION  

Important Factors 

Cumulative 
Standard Error 

Cumulative 
R
2 

DIFFERENCE BETWEEN TRAINING AND 

TEST SITE OF: 

Mean of Green Development Region 

in Landsat Space, Biowindow 1 15.461 0.080 

Longitude 15.176 0.116 

Crop Calendar, Biowindow 2 15.031 0.134 

Latitude 14.937 0.146 

Sun Angle, Biowindow 2 14.853 0.158 

This regression was used to define stratification of the data as  

was done with the regression equation obtained for the untransformed  

signature extension case. Proportion estimation results for XSTAR  

corrected signature extension using the 1.2 training gain stratifica

tion again, does not have a statistically significant bias.  

When the above experiments were repeated using 1975-76 Landsat  

-data over 18 North Dakota segments, the resultant regression equations  

accounted for so small a portion of the total variance in field mean  

accuracy it was useless in determining a stratification of the data.  

The conclusion to be drawn from this result is that all of the eighteen  

North Dakota sites were within the same stratum, as far as could be  

discerned using our list of ancillary data.  

3.4.3 THE UTILITY OF STRATIFICATIONS OF THE DATA  

Section 3.4.1 illustrated that static data stratifications based  

on similarities between segments in average degree days and average  

precipitation yield a considerable improvement in field mean classifi

cation accuracy. Section 3.4.2 showed that other, often pass-specific  

ancillary variables could be useful in a data stratification, and that  
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such stratifications could be used to significantly lower the operating  

cost of a large area crop inventory system.  

It appears, therefore, that the stratification work done by UCB  

and JSC should be extended to include dynamic or pass-specific ancil

lary variables. These data stratifications should also be evaluated  

in a multisegment training environment.  

3.5 GREEN INDICATOR AND CROP DEVELOPMENT CLASSIFIERS  

The general approach taken by signature extension classification  

techniques has been to use some aspect of the wheat growth pattern as  

viewed by Landsat as a criterion for classification. Classifiers  

based on a green indicator calculate a "green number" from the Land

sat data, and claim that during some period of time only wheat pixels  

will display green numbers within a certain range. Crop development  

classifiers are more sophisticated; they employ a model of what wheat  

looks like to Landsat as-a function of time of year to classify wheat  

from non-wheat.  

3.5.1 TESTS OF SEVERAL CLASSIFIERS  

The performance of several green indicator classifiers was investi

gated using 1975-76 sample segment data over 23 Kansas blind sites  

(see Appendix 1.3 for a more complete description of this data set).  

The formulas for the green indicators tested are shown in Table 6.  

For each of these green development indicators a decision thres

hold was trained over all of the field means in all of the test sites,  

and the field mean classification accuracy was noted. This procedure  

was applied to the first biowindow and second biowindow passes sepa

rately, and then repeated using XSTAR haze corrected data. Table 7  

summarizes these results-for Bio indowe 1 and 2.  
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TABLE 6. GREEN DEVELOPMENT INDICATORS AND THEIR FORMULAS  

Name Formula*  

G CH 1  - CH 4  + 96 

TVI /(CH 4 - CH 2)/(CH 4 + CH 2) + 0.5 

Ratio 7/5 CH 4/CH 2 

Tasselled Cap Green (CHI x -0.28972) + (CH2 x -0.56199) + 

(CH3 x 0.599153) + (CH4 x 0.49070) 

TABLE 7. PERFORMANCE OF GREEN DEVELOPMENT INDICATORS  

Average Field Mean Accuracy (percent):  

Untransformed Data XSTAR Corrected Data 

Indicator Bio 1 Bio 2 Bio 1 Bio 2 

G 

TVI 

Ratio 

Tasselled Cap Green 

70 

77 

76 

76 

82 

81 

81 

80 

72 

76 

75 

.72 

84 

81 

82 

80 

CH1 through CH4 correspond to Landsat Bands 4 through 7.  
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These field mean classification accuracies imply that the green  

development indicators hold considerable promise as proportion esti

mators. Results of pixel-by-pixel proportion estimation over 23 seg

ments using the G indicator in Biowindow 2, and the TVI indicator in  

Biowindow 1 displayed a very large bias of about 10-16%. Further,  

the variance of the error in roportion estimation for these indica

tors was very large. This seemed to show that a more sophisticated  

approach was required than the "if it's that green then, it must be  

wheat" model employed by these green indicator classifiers.  

The Delta Classifier does use a more sophisticated model of wheat  

development. Accordingly, we used this technique to classify each of  

the 23 test sites, comparing the field mean classification accuracy  

of the Delta Classifier to ancillary information via a regression.  

It was concluded that such a classifier must include ancillary varia

bles in the decision rule, so that the stage of crop development can  

be more accurately known.  

3.5.2 CROP DEVELOPMENT INVESTIGATIONS  

An investigation into the properties of wheat development and  

discriminability was initiated with the purpose of determining what  

information was necessary to construct an accurate crop development  

classifier. The first step of this investigation was to determine  

what information was needed to discriminate wheat from non-wheat.  

Two questions were asked. First, what combinations of passes over a  

site are needed during the growing season? And second, is Landsat data  

two dimensional?, (i.e., do the first two channels of the Tasselled Cap  

transform, brightness and greenstuff, contain by far the majority of  

the information needed for spectral discrimination)?  

To investigate each of these .questions, 322 signature extensions  

were carried out using five acquisition dates from the 1973-74 data  

over 12 Kansas sites.  
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The data set contained passes from five dates; 20 October,  

20 April, 9 May, 27 May and 12 June. All combinations were tested  

for performance both locally and in signature extension. The best  

single date was 20 April, with 9 May and 27 May trailing in accuracy  

by 5 and 10% respectively. The combination of 20 October and 20 April  

proved to be the best combination of passes with no other combination  

approaching this accuracy.  

Investigating the information distribution in the Tasselled Cap  

transform it was confirmed that most of the information needed to dis

tinguish wheat from non-wheat is contained within the first two com

ponents of this transform, namely brightness and greenstuff. It was  

showt that the classification accuracy using these two channels was  

only about 3% less than the accuracy using all four Landsat channels.  

The results of this investigation guided us in the next step of  

the investigation, which was the development of a statistical model of  

wheat development. The data base used for this modeling effort con

sisted of field means and ancillary information about those fields,  

drawn from 74 multitemporal data sets over 39 Kansas ITS and blind  

sites. Appendix 1.4 gives a complete description of the sites and  

the ancillary information used.  

This empirical modeling has resulted in a pair of models which  

predict the green and brightness development of a wheat pixel during  

the second biowindow based on a statistical regression on the first  

biowindow Landsat signal with ancillary data.  

The green development model incorporates the following ancillary  

information (listed.in order of importance):  

 Number of days into the growing season when data was acquired 

 Amount of greenness displayed by green development arm of 

the Tasselled Cap  

 Crop calendar  

 10-year average of degree days 
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The brightness model incorporates these ancillary variables  

(again, in order of importance):  

- Average brightness of scene  

- Brightness displayed by green development arm of Tasselled Cap  

- Greenness displayed by green development arm of Tasselled Cap  

- Sun angle  

These two models were combined in a Development Model Classifier,  

in the same manner as the Delta Classifier incorporates a crop develop

ment model. The decision boundary of this classifier was then trained  

on the second biowindow of all 74 Kansas data sets, which resulted in  

an average field mean classification .accuracy of 78.1%. When the  

normal maximum likelihood classifier was trained on all 74 data sets  

the resulting accuracy was 75.4%, showing that inclusion of the ancil

lary information into the decision rule via the two models improved  

field mean classification accuracy.  

-In order to determine the stability of these models, the coeffi

cients of the models were redetermined using 81 fields from 12 randomly  

selected data sets. The coefficients of the models developed on only  

12 data sets were quite similar to the coefficients of the model  

developed using all 74 data sets.  

As a further test of similarity, the new models were incorporated  

into a Development Model Classifier and the coefficients,of the classi

fier were then trained over these same 12 data sets; thus the classi

fier was constructed using information from only 81 fields in 12 data  

sets. This classifier was then used to classify all 74 data sets,  

resulting in an average accuracy of 76.5%. Table 8 shows how the  

accuracies of several other classifiers compare to this accuracy.  

The results of this modeling appear encouraging enough to warrant  

further testing and development in the future. Of particular interest  

would be a model which was applicable throughout the crop year. Such  

a model could provide an ideal AI key, as well as the basis for a  

classifier.  
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TABLE 8. COMPARISON OF SEVERAL CLASSIFIERS  

Field Mean  

Number of Classification  

Landsat Accuracy  

Acquisitions (Average Over  

Classifier Used 74 Data Sets)  

Development Model Classifier  

(trained on 12 data sets) 2 (Biowindows 1,2) 76.5%  

Maximum Likelihood  

(trained on all  

74 data sets) 1 (Biowindow 2) 75.4%  

Delta Classifier 3 (Biowindows 1,2 70.1%  

or 3,4)  

Multisegment CAMS 4  74.0%  

3.6  PHASE I: CONCLUSIONS AND RECOMMENDATIONS  

The development of an accurate large area crop inventory system  

using signature extension techniques is a feasible goal. As we under

stand it now .such a system would employ haze and sun angle corrected  

data in a multisegment training and classification scheme which would  

be applied within some stratification of the data, Support for this  

view of signature extension is contained in the following discussion  

of conclusions about each of the four types of signature extension  

algorithms tested.  

Two examples of haze correction algorithms were tested: CROP-A [1]  

and XSTAR [2].  

CROP-A was tested in a unitemporal mode on data collected in  

1973,74 over ten sample segments in Kansas. Because of the uniformly  

low level of haze present in these segments, no conclusion could be  

reached about CROPrA's ability to compensate for haze. It was noted,  

however, that in some cases CROP-A made serious errors which actually  

degraded classification performance. For this reason CROP-A was deemed  

unsuitable for general application in large area crop inventories, and  

was dropped from further consideration.  

29  ORIGINAL  PAGB  'S 

op  pOOp. QUALIT 



LFORMERLY  WILLOW  RUN  LASORATORIES.THE  UNIVERSTY  OF  MICHIGAN 

The haze correction algorithm XSTAR was tested in a multitemporal  

mode on 1975-76 LACIE sample segment data over 23 blind sites in Kansas  

and 18 sample segments in North Dakota, providing a wide range of haze  

levels and other conditions for evaluation of the algorithm. It was  

found that this algorithm substantially improved signature extension  

classification accuracy when a sum-of-likelihoods classifier was used  

with an alien rejection threshold. Further, the accuracy of classi

fication using the XSTAR haze correction was substantially the same  

regardless of haze level or.differences between the test and training  

sites.  

An interesting and useful observation made during the tests was  

that when no alien rejection threshold was used in the sum-of-likelihoods  

classifier, untransformed signature extension achieved the same level of  

classification accuracy as XSTAR haze corrected signature extension.  

The explanation for this not totally expected result is that the wheat/  

non-wheat decision boundary is typically nearly parallel to the princi

pal direction of shifts in the data due to haze. Thus classification  

accuracy is often little affected by haze level differences between test  

and training sites given that no alien rejection threshold is used in  

the classifier, that the only class of interest is wheat and that the  

appropriate acquisitions are available.  

The training sample- selection strategy available for testing at  

this time was a preliminary version of Procedure B [3]. This training  

sample selection strategy was used to select six sample segments as  

training for all Kansas sample segments, a training gain of almost 12  

to 1 (12 recognition sites for each training site). Multitemporal pro

portion estimation results obtained by using the six selected sample  

segments as training for classification of 74 multitemporal data sets  

were extremely encouraging, and in fact were not statistically different  

from multitemporal local training and classification proportion estima

tion results (i.e., using all 74 data sets for training).  
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One of the major findings of the above study was that nearly all  

of the bias in the proportion estimates of the multisegment training  

and classification procedure resulted from the particular configuration  

of the signature set used for classification, rather than from peculi

arities of the recognition sample segments. This meant that the pro

portion estimation bias could be accurately corrected simply by esti

mating the bias on the original six training segments. The bias cor

rected proportion estimates of the multisegment training and classi

fication procedure were extremely accurate and had a low variance when  

compared to local training and classification. This finding may have  

important ramifications for reducing the cost and increasing the accu7  

racy of bias correction procedures.  

The third category of techniques and procedures examined was  

stratificatiof of the data. Two stratifications of the data were  

available, one carried out by the University of California, Berkeley  

[4] and another derived at JSC [5]. These stratifications were evalu

ated by comparing the performance of within-strata and across-strata  

signature extensions, both before and after XSTAR haze correction,  

using multitemporal sample segment data. Both of these stratifica

tions significantly and substantially improved signature extension  

classification performance.  

The primary beneficial effect of these stratifications seemed to  

be that they matched together segments with the same stage of crop  

development. It was shown that these stratifications could be improved  

by incorporating certain dynamic or pass-specific ancillary information  

about the segments into the stratification procedure. These data stra

tifications require further evaluation in conjunction with a multi

segment training and classification system.  

The fourth category of signature extension techniques examined  

was that of green indicator and crop development trajectory classifiers.  

It was found that such classifiers can be made robust enough to be  
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applicable to a broad range of sample gegments, and probably without  

needing to be retrained each year. However these classifiers also  

displayed an unacceptably high variance in proportion estimation  

accuracy, due to the existence of a fairly large number of sample  

segments with unusual development patterns.  

It appears that in order to make such classifiers sufficiently  

accurate for current day needs they will need to be modified to incorpo

rate sufficient ancillary information (such as a crop calendar) into  

the decision rule to account for sample segments with atypical develop

ment patterns. The crop development modeling undertaken by this task  

has been a first step towards solving this problem.  

A recommendation of this task is that a further evaluation experi

ment be carried out which closely examines the potential of the multi

segment training and classification approach to signature extension.  

Such an evaluation should also include an examination of the usefulness  

of haze correction and data stratification techniques in a multisegment  

environment.  
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PHASE II: EVALUATION OF MULTISEGMENT SIGNATURE EXTENSION  

PROCEDURES  

Phase I of this task addressed the evaluation of signature exten

sion techniques. The goals of the second phase of activity were two

fold. Of first concern is the evaluation of multisegment signature  

extension procedures. That is, an analysis of the effectiveness of  

systems that incorporate those techniques evaluated in Phase I. The  

second concern of this phase of activity relates to an analysis of the  

Analyst Interpreter's role in a multisegment signature extension  

environment. Phase II has been carried out with the expectation of  

continued test and evaluation of the signature extension approach  

through the next contract year. Three specific activities were carried  

out:  

1.  The definition and advanced design of an experiment to examine  

the overall signature extension approach  

2.  Preparatory phases to conduct such an experiment  

3.  Analysis of the nature of analyst interpreter errors and the  

sensitivity of the signature extension approach to analyst  

interpreter errors.  

4.1 BACKGROUND  

The LACIE Phase III operation employs a classification and men

suration strategy called Procedure 1 [11]. Procedure 1 provides an  

environment wherein a large number of domestic or foreign 5x6 mile seg

ments are classified using local training procedures. Crop proportion  

estimates for wheat are computed and bias corrected. Training is accom

plished by clustering all pixels within a segment. The clustering algo

rithm is seeded by a subset of labeled dots derived from 209 points that  

occur at the nodes of a lOxlO pixel grid superimposed on the LACIE segment  
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The clusters are named wheat or non-wheat by their association to  

another subset of the 209 points that have been labeled by an analyst  

interpreter using false color photo image interpretation techniques.  

These clusters are then used to classify every pixel in the segment  

from which they were derived using a sum of likelihood quadratic  

classifier. Proportion estimates are derived for wheat and non-wheat  

and bias corrected by multiplying the estimates using a performance  

matrix derived from a third subset of the 209 dots. The procedure  

is labor intensive in that each segment must be processed by an inter

vening analyst interpreter. Proportion estimates are, in addition,  

sensitive to AI labeling errors.  

The multisegment signature extension environment is one wherein  

an attempt would be made in reducing the need for local training.  

That is, to process certain segments automatically without an inter

vening ,analyst interpreter. A certain subset of segments would be  

designated training sites. Training data would be derived from these  

segments and used in classification throughout. Hence, specific seg

ments can be more intensely photointerpreted for training, hopefully  

with a resultant reduction in labeling error.  

The multisegment signature extension approach, however, poses  

a twofold requirement: an appropriate training segment selection  

approach, and a bias correction approach employing non-local perfor

mance expectations. Any operational system addressing the multisegment  

signature extension approach to large area crop inventories is operating  

under the one basic constraint that the smallest sampling unit is a  

5x6 mile LACIE segment.  

Research in signature extension has been based on selecting a mini

mal set of training segments within a given area stratification. This  

requires that a given area to be mensurated must first be stratified  

into partitions of relatively homogeneous class characteristics. A  

multisegment signature extension test and evaluation experiment must  
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examine proposed partitions for signature extension as well as classi

fication and mensuration procedures within the context of these parti

tions. Hence the overall objectives of this investigation will be to  

evaluate current UCB [4] and JSC [5] signature extension stratifica

tions to determine if these products:  

1.  Increase the efficiency of the multisegment training selec

tion technique termed Procedure B, and  

2.  Provide an efficient means for sampling to be used for  

classification and mensuration employing a Procedure I  

operation extended into a multisegment environment.  

4.2  ADVANCED MULTISEGMENT SIGNATURE EXTENSION EXPERIMENT DESIGN  

4.2.1 APPROACH AND DESIGN SUf4ARY  

The design of a multisegment signature extension experiment  

requires a specification of five basic components of an experiment.  

These components include:  

1.  The systems under test  

2.  The performance measures  

3.  The measurement procedures  

4.  The parameters, factors, and levels desired  

5.  The data sets.  

Each of these components are described in the following sections pro

vided to more specifically detail this experiment. Nn overview of the  

experiment is provided in the following.  

The overall signature extension approach to large area crop inven

tories operates within the basic constraint that 5x6 mile Landsat data  

segments are the basic sampling unit in estimating the proportion of  

crops within a region of interest. The experiment to be conducted will  

evaluate three procedures designed to function in a multisegment environ

ment. Each of these three procedures will be evaluated in light of speci

fied static stratifications of data.  
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The three procedures to be evaluated shall be termed 'Multisegment  

Procedure 1', 'Procedure B' and 'Modified Procedure B'. The third pro

cedure is a hybrid of the first two incorporating the training strategy  

of Procedure B and the estimation strategy of Procedure 1.  

The static data stratification to be examined includes: 1) a  

local strategy wherein each segment is its own stratum; this is equi

valent to the current Procedure I strategy; 2) fixed boundary strategy  

as defined by UCB and JSC; and 3) arbitrary strategy wherein all availa

ble segments are in one stratum. Hence we will examine strategies that,  

for m segments, define either m strata, or one stratum, or some number,  

n, between these extremes. The first strategy can be thought of as a  

'Baseline' strategy since it currently is LACIE operational.  

Each specified multisegment crop inventory procedure will be  

evaluated in light of each of the three categories of data stratifi

cation. The fixed boundary stratification strategy will, in addition,  

evaluate three approaches to training and classification for each pro

cedure: 1) within strata training, within strata or local classifica

tion, 2) within strata training, across strata or global classifica

tion, and 3) within strata training, weighted global or across strata  

classification. Figure I flowcharts the experiment as described to  

this point.  

In addition to the evaluation of the specific procedures in their  

overall performance with respect to ground truth and the current LACIE  

approach, the sensitivity of each procedure as a function of a number  

of parameters will be examined to some extent. Of particular interest  

is the behavior of these approaches in light of certain data prepro

cessing algorithms, specifically haze and sun angle external effects  

corrections and data compressions using the greenness and brightness  

channels of the Tasselled Cap transformation and/or BLOB spatial/spectral  

clustering. Another very important measure of each system is performance  

as a function of training gain. Other procedure-specific parameters will  

be analyzed as described in Section 4.2.5.  
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Performance  measures  of  interest  include  not  only  performance 

accuracy but also strata wide performance bas-6t on the distribution  

of performances from individual segments. Data to be employed will  

consist of LACIE blind sites in the Great Plains as described in  

Section 4.2.6.  

4.2.2 SYSTEMS UNDER TEST  

A multisegment signature extension classification and mensuration  

system employing space image data is comprised of four basic components:  

1. Data preprocessing requirements  

2. A training strategy  

3. A proportion estimation strategy  

4. Post classification bias correction strategy.  

The training strategy involves both the training sample selection  

strategy and signature determination. Keep in mind that the sampling  

strategy requires the selection of training pixels or fields con

strained to specific 5x6 mile segments within a given stratification  

of data. Signature determination is the process of establishing infor

mation representative of the classes of data or specific features of  

interest within strata. Various classes of signature determination  

strategies are available. One prominent strategy applies to statis

tical modeling of classes. This strategy assumes that the data is  

Gaussian or Normally distributed. Another strategy may employ analytic  

and empirical signature modeling. We shall restrict our analysis to  

statistical strategies.  

The systems to be considered in this test and evaluation of multi

segment signature extension procedures are illustrated in Table 9.  

38  



TABLE 9. PRINCIPAL PROCEDURAL STRATEGIES FOR TEST AND EVALUATION  

TRAINING  

DATA SIGNATURE PROPORTION POST BIAS  

PREPROCESSING SELECTION DETERMINATION ESTIMATION CORRECTION  

SUN ANGLE CORRECTION UCB STRATA PROCEDURE B WITHIN STRATA PERFORMANCE  

- Procedure B  MATRIX  
- Random Selection  

HAZECORECTIN CUSTEINGCORRECTION  
wRAZE CORRECTION  - Procedure B CLUSTERING  - Sum of Likelihoods (Procedure 1) 

 Procedure 1all pixels 
DATA COMPESSION JSC STRATA (209 dots) REGRESSION

•blobs  
 Field  Means  VS. ESTIMATE - BLOB - Random Selection - Fiel MeansEIM 

- Tasselled  Cap   Bos209  dots  (ERIN) 
- Procedure B - Blobs  

ACROSS STRATA REGRESSION VS. Fiels  ANCILLARY DATA 
YSTRATA 

FieldsARBITRARY Procedure  B(AP 
- Random Selection  

- Sum of Likelihoods  

- Procedure Ball  pixels0 

* blobs  

* 209 dots  

c 

0 
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Numerous components are specified. An operational procedure employs  

a subset of these components and may traverse different paths. For  

example, one approach may (1) employ haze corrected pixel data,  

(2a) Procedure B training selection strategy within U1CB stratifica

tion, (2b) determine signatures by clustering pixels, (3) employ sum  

of likelihoods classification, and (4) bias 'correct as in Procedure 1.  

It is not feasible to examine all possible paths through this array  

of procedural components. In addition, many systems with potential in  

a multisegment environment are not herein specified. For example, the  

proportion estimation strategies specified may rely on multitemporal  

acquisitions of data. Numerous multitemporal classifiers have been  

proposed. Further testing of these, however, is required outside of  

the multisegment framework. The systems proposed herein are -those  

that have been in our opinion tested adequately to warrant further  

examination in the multisegment environment.  

The performance of these procedures must be evaluated not only  

with respect to one another, but also with respect to a base line  

system. That system will be the standard Procedure 1 employed in a  

local or single-segment environment.  

The principal procedural strategies indicated in Figure 1 operate  

within a partitioning framework. These strategies primarily include  

Procedure B and a version of Procedure 1 adapted to the multisegment  

environment. A composite system wherein a Procedure B training segment  

selection strategy is employed and a Procedure 1-like estimation strategy  

is used in conjunction with the training strategy is another conceivable  

processing strategy to be tested. The next two sections are presented  

to provide information with regard to Procedure B and Procedure 1  

training strategies in a multisegment/partitioning environment.  
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4.2.2.1 Generalized Procedure 1 Training Strategy  

We have noted that the multisegment signature extension approach  

poses a training segment selection problem. Resultant classification  

is sensitive to variational differences between training and test seg

ments. Procedure 1 employs a single segment or local approach to train

ing and classification to eliminate those differences. Extending Pro

cedure 1 to a multisegment environment requires partitioning segments  

into 'like' groupings. The designation of these static stratifications  

using physical variables such as soil type and precipitation is an  

attempt to associate segments in a manner that would minimize the  

spectral differences between like classes in segments belonging to  

the  same strata. These strata can be used in two ways:  

1.  For Training Selection Purposes: To insure that all spec

tral classes are represented in choosing segments from every  

strata to be used across all segments in classification.  

2. For Classification Purposes: Segments would be classified  

using training data determined within their strata only.  

In either case the Procedure 1 training strategy must be carried  

out in a multisegment environment. The following is a generalization  

of the signature extraction strategy to which Procedure 1 can be easily  

adapted.  

Consider n strata and m segments where n < m. Segment s.. is  

the jth segment of the ith strata S.. Let the signature set for 1 

segment s.. be SIG(sij). Let the training data for stratum S. be T(Si).  

Call the Procedure 1 clustering function 1, then  

n 

SIG(sij) IT tkT(S ()  
k=l  

where w. is a weight for each stratum. 
1  
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if  

k i k 1  

(2) 
k  i  k =0 

then the strata are being used for classification purposes, i.e., the  

segment is classified using signatures computed within the stratum of  

which it is a member.  

If  

W.  =  to. for all i,j (3) 

then the strata are being used for training purposes only, i.e., a  

segment is classified using all signatures, but insuring that each  

stratum is represented by training data.  

The value of introducing this notation is twofold. First of all,  

the same signature extraction strategy currently employed locally in  

Procedure 1 can be employed in multisegment signature extraction.  

Procedure 1 is simply the case where each segment is its own stratum  

and wI is defined as in (2). Secondly in computing SIG(sij) (the sig

nature set to be applied to ,segment sij) the training data from stratum  

Si, (s. C  S.) may be weighted more than training data from other,  

strata. This recognizes that important information for any one seg

ment appears in every stratum, however, it is more likely that training  

data within the same strata would be more significant.  

4.2.2.2 Character of the Procedure B Training Selection Process  

The training segment selection strategy that would be employed  

in adapting Procedure I to a multisegment environment would likely be  

carried out through random selection of a number of segments to satisfy  

a training gain requirement. The accuracy and variance in the estimate  

as a function of training gain is an important factor to be measured in  

this experiment.  
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For a given training gain, one's confidence that a particular  

random selection of training segments is adequate would be closely  

related to the measured variance in the estimate given a different  

collection of training segments satisfying the gain requirement.  

Procedure B is an attempt to provide a systematic technique in train

ing segment selection that would insure that the segments selected  

for training are adequate at a level of confidence higher than random  

selection. This approach is based on the same philosophy as static  

stratifications of regions by use of physical variables. That phil

osophy being that there are natural groupings of data, and sampling  

should be carried out to insure representation of these natural group

ings. Whereas static stratifications base groupings on physical vari

ables, Procedure B groups data within strata dynamically as a function  

of measured spectral variables. These groupings are dynamic in the  

sense that as additional spectral information is added, for example  

additional temporal acquisitions, then the spectral strata 'boundaries'  

may shift. Sampling is carried out to insure representation within  

each natural spectral grouping. The efficiency of this automatic seg

ment selection approach in comparison to the random segment selection  

approach is of interest.  

4.2.3 PERFORMANCE MEASURES  

Evaluation of the multisegment signature extension procedures  

under test will be characterized by a set of performance measures.  

These can describe performance within a segment, within a stratifi

cation of data and across all strata. Performance measures can be  

descriptive .or analytic.  

4.2.3.1 Descriptive Performariie Measures  

Descriptive performance measures characterize a procedure in  

reference to the baseline system, in this case the LACIE Phase III  

Procedure 1. The three performance measures to be considered include:  

Nb 
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1.  The differences in classification error  

2.  The differences in wheat proportion error  

3.  An estimate of the overall training gain  

These performance measures provide a basis for comparison between 

Procedure 1  and signature extension procedures employing partitioning. 

4.2.3.2 Analytic Performance Measures  

Analytic measures characterize the performance of a particular  

signature extension approach in reference to the ground truth. A'pri

mary objective of error analysis is to estimate and describe the dis

tribution of errors over many data sets. An understanding of this dis

tribution provides insight to the functioning of the system under test  

and may provide post-classification corrective measures. Analytic  

measures to be considered include:  

1.  Bias in Proportion Estimate: The displacement of the mean  

of the predicted wheat proportion over a set of segments or  

strata from the true proportion.  

2.  Correlation in Proportion Estimate: The degree of corre

lation between predicted wheat proportion over a set of  

segments or strata to the true proportion.  

3.  Mean Square Error in Proportion Estimate: The sum,of the  

square of the distance of each estimate from the true pro

portion; this is a measure of the accuracy of the estimate  

without bias correction.  

4.  Variance in the Proportion Estimate: This measure is identi

cal to the mean square error except employed after bias cor

rection.  
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5.  R2: This measure is the square of the correlation coeffi

cient; R2 can be thought of as the percent of variation  

about a regression line that can be accounted for by the  

dependent variable in the regression equation.  

Figure 2 is a display of six hypothetical test results. Each  

illustrates the effectiveness of various analytic performance measures  

in describing the results. The ground truth proportion estimate is  

plotted for a set of segments versus the predicted estimates. 
The 450  

line indicates the correct estimate.  

Figure 2(a) illustrates a test result that is unbiased, highly  

correlated to the truth and with low variance in the estimate. Figure  

2(b) diagrams a biased result that is correlated with a high R about  

the dashed regression line. Figures 2(c) and 2(d) are both uncorre

lated results, however Figure 2(c) is not biased and with greater  

variance than Figure 2(d). Whereas the variance of Figure 2(d) is  

lesser, the mean square error could be greater. Figure 2(e) illus

trates a biased result that is highly correlated to the truth with a  

very low variance. This result could be bias corrected by simply  

shifting it toward the 45 line. Figure 2(b) could be similarly cor

rected, but would result in a higher variance in error. However, a  

multiplicative and additive correction would result in an equivalently  

low variance estimate. Figure 2(f) is somewhat similar to Figure 2(c).  

Both results are unbiased, and both have high variance in the estimates.  

However, whereas the results shown in Figure 2(c) are not well corre

lated to the truth, Figure 2(f) is negatively correlated. This infor

mation may give added insight in the analysis of the systems under test.  

4.2.4 MEASUREMENT PROCEDURES  

Section 4:2.2 indicated that an evaluation will be carried out for  

three procedures: multisegment Procedure 1, Procedure B, and a modi

fied Procedure B. Each of these procedures will in turn be evaluated  
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in light of four physical stratifications of data: local, UCB, JSC, and  

arbitrary partitions.  

.Any evaluation of the inherent value of static stratification  

in a multisegment environment will require that the measures of per

formance discussed in Section 4.2.3 are statistically significant.  

As a result a large number of classifications must be performed for  

a large number of segments with procedural parameters  

varied at each classification (see Section 4.2.5). This demands  

judicious selection of the data base (see Section 4.2.6) and a classi

fication strategy that minimizes cost.  

The Procedure B classification strategy is described in Refer

ence [12]. The sum of likelihoods classification strategy is summarized  

in the following. Appendix IV contains a more detailed specification  

of this strategy.  

The parameters varying most rapidly in the proposed evaluation  

are training parameters, for example, the number of training segments  

employed. Ordinarily this would require the determination of a set  

of signatures and computation of proportion estimates for each set of  

training parameters. A procedure has been devised and termed 'pre

classification' which delays the need for setting training segment  

selection parameters until after signature determination and after  

classifying the data set.  

The preclassification-procedure to be employed in the test and  

evaluation of signature extension procedures is as follows:  

1.  Select the set of segments potentially available for  

training.  

2.  Determine signatures from each training segment inde

pendently from others.  
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3.  Employ the following classification procedure::.  

a.  Classify each segment using the signatures.fro each  

other segment, determining a wheat and non-wheat like

lihood -(i.e., for m training segments, each segment is  

classified m times).  

b.  Select the subset of segments to he used for training.  

c.  Sum likelihoods from each training segment and deter

mine wheat pr6portion estimate.  

d.  For testing purposes, repeat (b) and (c) for each  

variation in the training segment selection process.  

Proportion estimation can be carried out for a variety of training  

segment sets, simply by summing likeiihoods corresponding to the appro

priate training segments. Clustering and likelihood calculation, the  

two  most complex operations computationally, do not have to be recom

puted for each different set of training data. Appendix IV describes  

how  this preclassification procedure is logically equivalent to a more  

standard approach.  

4.2.5 PARAMETERS, FACTORS AND LEVELS  

A number of conditions in the evaluation of specific multisegment  

signature extension procedures will be varied.- This is carried out in  

order to examine the sensitivity of the procedures to various para

meters. The underlying objective here is to understand not only that  

a specific approach is or is not successful, but to understand why as  

well.,  

Parameters of particular interest in this evaluation are listed  

and briefly described in the following.  

1.  Number of Training Segments: It is critical to evaluate the  
I 

performance of an approach as a function of training gain,  

that is, the ratio of the total ntimber of segments processed  
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to the number of segments used for training. The training  

gain is, a measure of the system's efficiency. Hence, the  

number of segments used for training must be varied. Not  

only will the number of training segments be varied, but the  

specific ones employed for a specific training gain will be  

as well. This is required in a Procedure 1 context in order  

to measure the variance in the estimate as a function of the  

random training segment selection strategy. Concerns associated  

with experiment cost effectiveness resulting from this require

ment have been addressed in Section 4.2.4 and in Appendix IV.  

2.  Preprocessing: Phase I of this project evaluated certain  

data preprocessing strategies and concluded that they may be  

of considerable value in a multisegment environment. The  

benefits of haze and sun angle external effects corrections  

and data compression in using the Tasselled Cap transformation  

and blobbing need to be evaluated in a multisegment signature  

extension environment.  

3.  Training Weights as a Function of Strata: Every segment to  

be classified may be so classified using training data from  

within the local strata in which it belongs as well as from  

other strata. Appendix IV discusses a weighting that will  

vary from segment to segment associating a level of confidence  

in the training data drawn from different strata as applied  

to a specific segment. Three sets of weights will be evalu

ated. The first associates a full confidence in training  

data from the local strata and a zero confidence level in all  

other training data. In effect physical stratification of  

the data is used not only for training but also for classifica

tion. A second weighting may employ an equal level of confidence  
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in training data independent of the strata from which it is  

drawn. A third weighting may employ a higher level of con

fidence in local stratum training data and a lesser level of  

confidence in other data. The third approach suggests that  

physical stratifications of the data are not truly static  

boundaries, but rather confidence thresholds. Hence a con

fidence weighting as a function of some distance measure may  

be appropriate. The nature of that distance measure is still  

to be investigated.

4.  The Number of BLOB-Clusters: This-parameter pertains to  

Procedure B. A blob-cluster, or B-cluster, is the spectral  

stratification of the data described in Section 4.2.2.2. It  

is a matter of investigation to analyze the sensitivity of  

Procedure B to the number of spectral strata employed.  

5.  The Random Draw of BLOBS for B-Cluster Labeling: The esti

mation mechanism in Procedure B requires that each B-cluster  

or spectral stratification be estimated by a technique wherein  

a random draw of BLOBS within the B-cluster are labeled and  

aggregated. This approach may be employed as well for the  

AI labeling of fields for Multisegment Procedure 1 training  

purposes as an alternative to dot labeling. The system's  

sensitivity to the number of the blobs using this approach  

is of concern.  

4.2.6 DATA SETS  

In an effort to attain statistically significant results, the  

data base for this experiment will contain a large number of LACIE  

blind site segments. However, in order to keep processing costs within  

reason, four compressions of the data will be considered: (1) the aug

mented AI Fields Data Base, (2) BLOB compression, (3> 209 dot samples,  

and (4) ground truth Fields Data Base.  
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Augmented Fields Data Base  

The augmented fields data base is described in Appendix I. This  

represents a set of segments for which an analyst interpreter desig

nated and labeled specific fields for training. Section 4.3 describes  

a process carried out to augment the data base with additional fields.  

This data base is drawn from Kansas and North Dakota representing both  

winter and spring wheat. Due to its availability, initial testing of  

measurement procedures and signature extraction should be carried out  

using this data base  

BLOB Compression  

BLOB.is a spectral-spatial clustering technique that groups data  

into field-like shapes. -It is of interest to us to analyze this data  

preprocessing technique to determine how accurately actual field shapes  

are estimated and more importantly, to measure the accuracy of crop pro

portion estimates based on BLOB classification. This technique is of  

particular interest in that it forms the basic unit of data in Procedure B.  

209 Dot Samples  

Upon overlaying a lOxlO pixel grid to a LACIE segment, 209 pixels  

are represented at the nodes of the grid. Currently in LACIE Phase III  

operations these '209 dots' are used in various stages including label

ing of samples, cluster seeding, cluster labeling and bias correction.  

The 209 dots for our purposes represent a reasonable random sampling of  

the segment to be used for proportion estimation of wheat and non-wheat.  

Ground Truth Data Base  

-A task is currently underway wherein a number of LACIE blind sites  

in the Great Plains are being processed to incorporate ground truth,  

stratification and ancillary information. These data are expected to  

be available within a six month period. As they become available, it  

is our intention to phase out the use of the augmented fields data  

base and replace it with these data statistically summarized on a  

field by field basis.  
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4.3  FIELDS  DATA  BASE  PREPARATION  AND  AUGMENTATION 

One 6f the important efforts in preparation for test and evaluation 

of multisegment signature extension procedures is the development of  

an adequate data base. The proper selection and labeling of training  

fields within each test site is an essential part of the development  

of this data base. The Fields Data Base, used for test and evaluation  

of signature extension algorithms of Phase I of this project will be  

used initially for the extraction of signatures and testing of multi

segment signature extension procedures. To insure that the AI Fields  

Data Base properly represents each segment, the following procedure  

was carried out-using LACIE Blind Site 1975-76, Day 315-Fields Data  

Base. This data included 38 Kansas and 18 North Dakota test-sites  

(see  Appendix 1.4 for a complete description of the data base).  

1. Compare AI field designations with large scale annotated  

ground truth high altitude photos and correct any AI  

labeling errors.  

2. Determine the degree to which AI field selection simulates  

random field selection on a segment by segment basis.  

3. Augment the fields data base to insure a simulated random  

selection process.  

4.3.1 LOCATING AI FIELD DESIGNATION ERRORS  

The AI designations ("wheat" or "other") of defined fields were  

checked against ground truth labels on aerial photographs of the scenes  

involved. This was done for 32 1975-1976 LACIE blind sites in Kansas  

aid 16 in North Dakota. For each segment three accuracy measures were  

computed. They were defined as follows:  

total no. of mis-labeled fields  
1. TOTAL ERROR =  total no. of defined fields 
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no. of fields labeled other when actually wheat  
no. of defined fields actually wheat  

= no. of fields labeled wheat when actually other 3. 'FALSE WHEAT  
no. of defined fields actually other  

A summary of the accuracy figures appears in Table 10. Analyst- 

Interpreter accuracy on the North Dakota segments was not as good as  

on the Kansas segments. This may be attributable to the presence of  

the confusion crop barley in North Dakota and to the practice of strip  

cropping. Two of the segments in Kansas, No. 1164 (68.4% false wheat)  

and No. 1860. (54.5% missed wheat) were found to have anomolously large  

error figures. The number of field designations changed per segment  

ranged from 0 to 12, averaging about 3.3 corrections per segment. An  

average segment contains about 30 fields,  

TABLE 10. SUMMARY OF AT ACCURACY MEASURES  

North Dakota Kansas  

Error Ave. Error Std. Dev. Ave. Error Std. Dev.  

Total 17".2% 6.7% 11.4% 8.1%  

Missed Wheat 26.7% 14.7% 20.0% 10.5%  

False Wheat 6.1% 5,5% 3.3% 7.4%  

MissedWet Ratio 4.4 6.4  

False Wheat  

One observes the AI makes far fewer mistakes of labeling other  

crops as wheat than the reverse mistake of labeling wheat as other.  

The ratio MISSED WHEAT/FALSE WHEAT is 4-4 in North Dakota and 6.4 in  

Kansas. This indicates the presence of a source of variation in the  

appearance of wheat which is misleading the AI. An unknown source of  

variation is not likely to make a crop other than wheat look like wheat.  
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The AI looks at the development of a crop at key points in time, the  

"biophases" of wheat,'and the pattern of development is- entral in the  

decision process. It is unlikely that small, random variations in the  

appearance of fields would cause a non-wheat crop to be shifted into  

this pattern. It is more likely to shift a wheat field beyond- the  

thresholds of the wheat pattern as. the Al conceives it. A statistical  

investigation exploring Al error for these segments is reported in a  

following section of this report.  

4.3.2 SIMULATING A RANDOM TRAINING SELECTION  

As has been described earlier, the Fields Data Base was selected  

to conduct the test and evaluation of signature extension algorithms  

in order to provide a compression of the data. This would both be  

representative of the individual segments and result in a cost effec

tive analysis. Initially it was acceptable to assume that the Analyst  

Interpreter could accurately represent the segments through field selec

tion. That is, the AI designated fields were representative of the  

segments it the sense that the variability in the data was accounted  

for. It became a concern, however, that introducing human interaction  

would bias representative selection. That is to say, the Analyst  

Interpreter was not properly simulating a random training field selec

tion process. A random field selection process-would insure, in a  

statistical sense, that the variability in each scene was properly  

sampled'. This concern led us to establish a procedure, termed CHECK,  

whose function is to establish how closely AI field designations simu

late random field selection. The following CHECK procedure was devised;  

1. -Histogram the multitemporal segment of data:  

Tasselled Cap brightness and green channels  

three bins per channel selected to separate  

observed modes  

2. Histogram AI designated training pixels using the same bins.  
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3.  Establish a criterion based on Step 1 as to which bins  

were significant.  

4.  Compare two histograms to determine whether all significant  

bins were represented by AI training pixels.  

5.  Use a histogram map (similar to cluster map) to select  

additional training to insure that each significant bin  

is represented by training pixels.  

Keep in mind that the purpose of carrying out this procedure was  

to insure that the AI training field selection process was not biased  

in simulating a random training field selection process. Random train

ing selection statistically insures that important clusters of data  

would be represented in proportion to their density. For example,  

should ten percent of a scene fall into a particular spectral class,  

random sampling of the scene would insure that, on the average, ten  

percent of the samples would fall into that spectral class. The histo

gram approach was used since important clusters of data would tend to  

fall into the same bins. By histogramming the data into bins, the AI  

field designation could be augmented by selecting samples from larger  

bins that were missed by the AI.  

Using data from two acquisition dates, four channels, there were  

81 possible bins or classes in which a pixel could fall, To decide  

which bins were most important to examine, the data was grouped accord

ing to size. The first group consisted of all bins containing more  

than 5% of the data, the second more than 1% of the data, the third  

and fourth groups were cut off at the 0,5% and 0.1% levels. Figure 3  

shows a plot of bin size vs, average percent of the test site included  

in each group. Only 25% of the data fall in bins containing over 5% of  

the pixels, but 83% of the pixels are contained in the 1% level group.  

Figure 4 is a plot of bin size vs. the number of bins within a group.  

The  number of bins per group ranges from three to 67.  
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The 1% level was found to be.the most optimum group to work with  

when using two dates, containing 83% of the data in approximately 31  

bins.  

Several observations were made when comparing the training histo

grams to the segment histograms on a bin by bin basis for 13 Kansas  

segments.  

In general if the bin contained n% of the segment data then it 

contained (n + 2.5)% of the AI designated training data. Cases where 

this was not true usually involved the larger bins containing greater 

than 7% of the data. In these cases if the bin contained n% of the 

segment then it might contain (n ±  n/2)% of the training. Thus larger 

bins were generally represented by AI designations. However bins con

taining less than 2.5% of the total data may be completely missed by 

AI training. This introduces a non-random character to the training  

data. This type of missed training was found in 7 of the 13 test sites.  

There was an average of 2.5 bins per segment not found in the AI desig

nated training sets, with as many as 11 bins not represented by train

ing in some segments,  

Using the histogram maps (Figure 5 ) and ground truth photos new  

fields were determined to complete the training set. On the example  

histogram map one can see definite field structure. The blank areas  

symbolize data in bins with less than 1% of the data. These areas are  

usually field boundaries and represent a mixture of vegetation types.  

The field-like structure of the histogram indicates that important bins  

that were not sampled by the AI are actually fields, Hence a better  

simulation of random training selection could be achieved by augmenting  

the Fields Data Base with fields representing important bins that were  

not represented by the AI fields. This was carried out for all of the  

segments in the test data base. Overall there were 23 new polygons  

added to the first 13 training segments examined, with as many as nine  

added to a single site.  
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4.3.3 FURTHER ANALYSIS USING CHECK  

CHECK provides a framework within which any training selection  

procedure may be examined to establish bias or non-random character

istics. It can also be used to examine the characteristics of the  

data as a function of the temporal dimensionality of the data. It is  

well known statistically that an increase in the dimensionality of the  

data provides not only the potential for more information, but also the  

need for more, or at least more accurate, training-sample selection in  

order to describe the information content of various classes of data.  

CHECK was used to examine the effectiveness of two training pro

cedures as a function of additional multitemporal data acquisitions.  

The two procedures include the AI training field designation, and samp

ling based on the selection of every tenth pixel in every tenth line  

of data. (The second procedure is not exactly equivalent to the train

ing procedure employed in the LACIE Phase II Procedure I system.) The  

purpose of this exercise was to establish how a fixed sampling of data  

behaves as new information is added.  

The CHECK procedure was carried out for data sets containing two, 

then'three and four multitemporal data acquisitions. The data was 

histogrammed into three levels in the Tasselled Cap brightness and 

green channels for each set of acquisitions. For two biophases, there 

were a possible 81 bins of data (34 or  three levels for each of four 

channels of data). Three biophases provided a potential for 36 or 

729 bins, and four biophases a potential for 6561 bins. Histograms 

were examined for bins containing 0,1, 0.5, 1.0 and 5.0 percent of 

the total number of pixels per segment. The 0.1% level was the only 

level wherein 80% or more of the data in each segment was represented 

for each set of acquisitions. 

A number of observations can be made in examining these histo

grams. Comparing the 209 point histograms to the segment histograms  

on a bin by bin basis for two biophases one finds a closer-to-randomly

59 



selected training set than represented by the AI selected fields. If  

a bin contained n% of the segment data then the bin contained about  

n + 1.5% of the 209 point training set, regardless of bin size. This  

is no surprise since the 209 points were selected by arbitrarily super

imposing a grid on the data set.  

Upon extending the CHECK procedure to three and four acquisition  

dates, employing these fixed sampling criteria leads to interesting  

results. Ffgure 6 illustrates three methods: wall-to-wall ground  

truth represented by the total number of bins, AI labeling,.and use  

of the 209 point grid. The 0.1% curves are presented since this covers  

the majority of data points in all three acquisition cases. Notice  

that as the number of time periods increases, increasing the dimen

sionality of the data, the amount of training required also increases.  

250 7 
A  

BINS CONTAINING  

200 0.1% OR MORE OF  

/" DATA "I STD. DEV.  

~/ 

/ /
150  /  / 

z /  /-

100  / / 

01 209  POINTS (bins represented by
0  -p more than 1 pixel) 

K-Al FIELDS '(bins represented by  

' more than 0.1% of data)  

23  4 

NUMBER OF TIME PERIODS  

FIGURE 6. NUMBER OF BINS CONTAINING 0.1% OR MORE OF DATA  

COVERED BY TRAINING AS DETERMINED THROUGH CHECK  
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The 209 point or AI labeling method does not adequately represent the  

data in and of themselves. Additional information must be provided.  

This is precisely what the LACIE Procedure I training selection  

approach attempts to address by augmenting the training selection  

based on 209 points with an associated clustering algorithm. The  

alternative approach would be to sample employing wall-to wall ground  

truth. Whereas wall-to-wall ground truth may not be a feasible approach,  

we plan to investigate the use of 209 points in cluster labeling as in  

Procedure 1 as well as a field seeking algorithm like BLOB in conjunc

tion with the CHECK procedure as a technique to determine representa

tive training fields.  

4.4 ANALYST INTERPRETER LABELING ERROR ANALYSIS  

Section 4.3 described activity that related to correcting Analyst  

Interpreter labeling errors in a number of 1975-76 LACIE Blind Site  

segments in Kansas and North Dakota that currently comprise the test.  

data base described in Appendix I. This was accomplished by comparing  

the crop labels of AI designated fields to ground truth annotated high  

altitude photography. An analysis of the nature of these labeling  

errors was of interest for several reasons.  

The Analyst Interpreter functions in a multisegment/multitemporal  

environment. The labeling of wheat and non-wheat is carried on a  

segment at a time, utilizing several false color Landsat images repre

senting various biophases in the wheat crop calendar. The AI currently  

is provided with false color imagery generated by a Production Film  

Converter employing a specific color coding technique [13]. These  

images are termed Product l's. In addition to these images, other  

aids are provided to assist the AI in understanding the local scene  

characteristics that may affect the apparent colors of wheat and non

wheat. However, multisegment signature extension is carried out by  

the AT each and every time the AI labels wheat or non-wheat using the  

non-segment specific, or global, information accumulated by experience.  
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The error analysis carried out attempts to quantitatively address  

questions pertaining to the influence of the technique employed in the  

generation of Product l's upon the AI's ability to correctly label  

wheat and upon subsequent classifications based on inaccurate signa

tures derived from mislabelled samples. Two specific concerns war

ranted our analysis of the Product 1. First of all, the product is  

generated using segment specific, not global, parameters, and secondly,  

external effects, like haze and sun angle, are not accounted for.  

4.4.1 APPROACH  

The analysis of the nature of Analyst Interpreter labeling errors  

was carried out in six stages:  

1.  Comparison of AI designations with ground truth labels and  

measurement of error rates. Section 4.3 described the AI error  

found to be present in 46, 1975-76 LACIE blind sites and the  

error statistics generated for each segment.  

2.  A brief consideration of the effect AI labeling errors have on  

accuracy of proportion estimation. Described in Section 4.4.2  

below.  

3.  A search for correlation between extent of labeling error and  

various segment specific ancillary variables. Described in  

-Section 4.4.3 below.  

4. Development of a data base with field means of Landsat data  

for three biophase acquisitions per segment and a technique  

for display of the data in color space. Described in Section  

4.4.4 below.  

5.  Diagnostic work relating color error with various acquisition  

and segment specific variables. Intended approach shown in  

Section 4.4.5.  

6.  Exploration of possible improvements in generation of false  

color imagery. Plans are indicated in Section 4.4.6.  
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Stages one through four have been completed at the time of this  

writing. Work on stages five and six is in progress.  

4.4.2 EFFECT OF LABELING ERRORS ON PROPORTION ESTIMATION  

Our consideration of the influence on proportion estimation of  

mislabeled training fields was not intended to be definitive. We  

wished to obtain a general idea, based on the data already at our  

disposal, of the variance in proportion estimation which might be  

attributed to mislabeling. As one indicator we considered segments  

with missed wheat error but no false wheat error. We plQtted missed  

wheat error versus the fraction of wheat in scene that was detected,  

i.e., the ratio of the proportion estimate in local classification  

mode, to the ground-truth proportion of wheat in the scene. Figure 7  

reveals a tendency for detected proportion of wheat to fall off quickly  

with missed wheat error. It suggests that for error greater than 24%  

about 60% wheat detection may be expected.' The missed wheat error  

statistic is only a crude measure of the amount of misinformation  

given to the classifier, which probably accounts for much of the  

scatter in Figure 7. Even so the missed wheat variable accounts for  

about 40% of variance in the detected proportion of wheat.  

4.4.3 CORRELATION OF LABELING ERRORS WITH ANCILLARY VARIABLES  

Analyst-Interpreter accuracy measures were regressed against the  

following set of segment specific variables:  

1. Ground truth percentage of wheat in the segment.  

2. Long term average for growing season of Degree-Day sum.  

3. Long term average for growing season of Precipitation  

4. Elevation.  

5. Latitude  

6. Longitude  
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In a somewhat unexpected result, we found AI accuracy not to be  

correlated with percentage of wheat in a segment. Figure 8 demonstrate  

the independence of missed wheat error from percentage of wheat in a  

segment. A study conducted by Coberly, Tubbs and Odell [13], indicated  

the Product I might be susceptible to color distortion in scenes with  

very little wheat and scenes dominated by wheat. This concern stemmed  

from the fact that bias and scale values used in generating the Pro

duct 1 are computed on the basis of variability in the contents of a  

scene. Logically, the amount of wheat in a scene is an important  

factor in how homogeneous the scene will appear. In the study cited,  

wheat and non-wheat signatures were used to generate artificial scene  

statistics, assuming different proportions of wheat, and these statis

tics were used to compute corresponding bias and scale values. These  

values indicated color distortion in scenes with little wheat (a lot  

of variability) and scenes largely composed of wheat (little varia

bility). The fact that AI error rates are not a function of propor

tion of wheat in a scene makes us suspect that the study cited was too  

simplistic in its assumptions. Proportion of wheat in a scene may be  

one factor in color error but in real life it is one among many. The  

conclusion of the study, that Product I is susceptible to distortion,  

is still valid. However, the range of factors involved and the sig

nificance of color shifts produced, have yet to be explored.  

The other variables tested also proved uncorrelated with the single  

exception of latitude. Latitude was found correlated to AI total error  

with r = -.60 at a significance level below 0.001. As Figure 9 shows  

this is not a tight correlation but it appears to be real.  

We  interpret this to mean there exists a factor which  

1.  Characteristically varies with geographic latitude of  

a segment and  

2.  Is capable of influencing AI accuracy in a fairly strong  

manner.  
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The crop calendar also varies characterisin the labeling process.  

tically with latitude because of climatic bhanges. Our first sus

picion in this matter is, therefore, that unrecognized inaccuracies  

in crop calendar adjustment prdcedure exist which are tied 
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4.4.4 DISPLAY OF DATA IN COLOR SPACE  

Effort was directed toward obtaining a display of field mean data  

in color space, i.e., a chromaticity diagram. The idea of this is to  

have a graphical portrayal of the distribution of colors of fields as  

they appear on the Product 1 false-color imagery. Distance in color  

space is an indicator of distinguishability between colors to the  

human eye. It was felt a display of the fields in color space would  

be a direct, insightful tool for addressing the labeling problem.  

Implementing the technique required three steps.  

1i.  A data base was established containing the following informa

tion for each segment (see Appendix V).  

a.  The mean value in each of Landsat bands four through  

seven for each defined field in the scene.  

b.  The ground truth designation of each field (wheat or  

non-wheat).  

c.  The AI label for each defined field.  

d.  The bias and scale factors used to transform the  

Landsat data before production of the Product 1  

imagery.  

2.  For each acquisition in the data base an affine transformation  

was applied to the field mean data of the Landsat channels,  

exactly as if the data were being prepared for input to the  

blue, green and red color guns of the PFC, viz:  

B  =   A1 X I  +  Bj 

G= A 2 X2  + B2 

R  =   A4X4  +  B4 

Here A, and B, "(i =  1,2,4) are the scale and bias factors for 

an acquisition as computed by current procedures [13]. After 

transformation any values of R, C, or B falling outside the 
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range 0-256 (the color intensity range of the PFC) are termi

nated to the appropriate end point.  

This data can be displayed on a two-dimensional chromaticity  

diagram after a normalization of the variables:  

r =  R/T  

g =  G/T  

T =  R+G+B (see Figure 11)  

It is not necessary to plot b (b = B/T) because of the restraint  

r+g+b =  1. 

3.  The (T, r, g) color space is not uniform because one cannot say  

there is a unique relationship, valid everywhere on the (r,g)  

graph, between distance and distinguishability of colors.  

There are transformations with which one can approximate a  

uniform color scale (UCS). The CIE 1960 UCS diagram is an  

example. It is defined as a projective transform of the CIE  

1931 (x,y)-chromaticity diagram (Figure 12). To map our (r,g,b)  

space to the standard (x,y,z) chromaticity space the following  

relations were employed [15]:  

0.
4 9 00 

0r + 0.31000q +  0.20000b 

0.66697,  +  1.13240g + 1.20063b' 

O.17 69 7r  + 0. 8 12 40g  + 0.01063b 

Y= 0.66697r  +  1.1 32 40g  +  1.20063b' 

O.O0000r +  0.01000, + 0.99000b 

+  1. 1324 00.66697,  y  +  1.20063b 

This transformation must be considered approximate in -our case because  

the colors of the PFC are not exactly the standard (R,G,B) primaries.  

We proceeded on the belief this would allow an improvement in uniform

ity  of the diagram if not optimum uniformity. The CIE UCS mapping is  

given by the following equations [14]:  
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4x 
-2x  + 12y + 3 

6y 
v  - -2x + 12y +  3 

Figure 10 displays the color ranges of the CIE X-Y chromaticity  

diagram. Figure 11 shows ellipses which represent statistical varia

tion of chromaticity matches. The length of the axes of the ellipses  

represent the distance in color space required to make two colors just  

distinguishable to the eye. Observe that this distance is much smaller  

in the blue area of the (x,y) diagram than in the green. Obviously  

this space is not uniform. After transformation to (U,V) space  

(Figure 12) the ellipses are more or less comparable throughout the  

diagram, indicating improved uniformity. Figures 13 and 14 show a  

Biowindow 2 LACIE segment in (r,g) space and in (U,V) space.  

4.4.5 FACTORS AFFECTING QUALITY OF THE PRODUCT 1  

Our approach to investigating the labeling problem has two basic  

hypotheses behind it:  

1.  The current method of generating Product l's introduces color  

errors which adversely affect the Analyst-Interpreters' ability  

to correctly label wheat and non-wheat in some instances.  

2.  An array of factors affect the quality of Product l's and  

these factors must be recognized before the production of  

any  standard Landsat film product.  

Statement I refers to color error. We understand this term along the  

following lines. Three criteria of film quality are proposed by Toyo  

Kaneko [16]. These include color level resolution, brightness, and  

color distortion. The first two are closely related and important for  

training field selection and delineation. The color distortion criterion  

is important for training field labeling [17]. Color distortion is the  
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most important criterion in dot labeling. We conceive of color dis

tortion as a change in hue, saturation, and brightness, i.e., colors  

of a given pixel, from time to time within a given segment. It should  

be thought of as a change in color from segment to segment of pixels  

with like reflectance. Color error is, therefore, defined for our pur

poses as a distortion of color from one segment or time period to  

another of two objects having the same reflectance. We are implying  

that the goal of any false color image display is to map objects of  

the same reflectance into the same color, regardless of place or time  

of acquisition, and make important differences between objects appear  

visible to the human eye.  

To make our work more direct and quantitative we intend that color  

error be given analytic measures. For example one might consider the  

distance in (U,V) color space of the average color of wheat in a scene  

from some defined reference point as a measure of color error. With a 

measure of color distortion in hand we will be in a position to address 

the question of what factors cause color shifting in Product 1 imagery -

and determine their relative significance. Among the variables we will 

want to include in this analysis are the following: 

a. haze level 

b. sun angle 

c. soil color 

d. crop calendar 

e. proportion of wheat in the scene 

f. color composition of wheat and non-wheat 

g. amount of clouds, water in scene. 

Most of these variables are acquisition specific, i.e., are different  

for each Landsat pass over a particular segment. It is understood that  

the AI need not have been considering any particular acquisition in his  

work. We are not looking for correlations between acquisition specific  
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variables and A! error rates; we endeavor to understand the Product I  

in ways which allow it to be generally improved. A reduction in label

ing error may then be anticipated.  

4.4.6 EXPLORATION OF POSSIBLE IMPROVE ENTS  

The technique of display described in Section 4.4.4 gives us a  

special vantage point from which to explore ramifications of suggested  

improvements in production of false color imagery. Some suggestions  

will arise out of the diagnostic work described in Section 4.4.5.  

Other possibilities which will be evaluated include the following:  

1.  Correction of data for haze level and sun angle before pro

duction of imagery.  

2.  Use of a different technique for computing bias and scale  

factors:  

a.  I1ocutt method  

b.  Kaneko method  

c.  Krauss method  

d.  New methods as our understanding suggests them.  

3.  Application of the Tasselled Cap transformation to the data  

prior to generation of imagery. The brightness, greenness  

and yellow dimensions of the data to be used as inputs to  

the green, red and blue guns of the PFC after scaling by one  

or another technique.  

4.4.7 DISCUSSION  

As a background to the discussion we present some (U,V) chromaticity  

diagrams of acquisitions available in our data set. In these figures  

wheat fields are designated by circles and non-wheat fields by tri

angles. A blackened-in circle or triangle indicates the AI mislabeled  

the field. Figures 15(a) and (b) show acquisitions of two segments in  

the second biophase. Figures 16(a) through (d) show biophases one and  

two for two segments. Figure 17 shows a complete 3 biophase history  

for one segment.  
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Looking at what we have thus far we can point to some disturbing  

things about Product 1 imagery. Figures 15(a), 15(b) and 16(b) show  

color space distribution of fields in three segments. Note how different  

the distribution of wheat color is between these segments, despite the  

fact the acquisitions were within one day of each other and the crop  

calendars are virtually identical. We have hypothesized this marked  

alteration in the wheat color signature from segment to segment is the  

result of using freely varying bias and scale values for scaling of  

data and not taking account of haze and illumination (sun angle) effects.  

The Analyst-Interpreter must interpret imagery using ancillary informa

tion, crop calendar estimates, historical agricultural statistics, and  

ground truth information. This is necessary to allow the AI to adjust  

the recognition of wheat to each segment and each acquisition. Because  

of the artificial variability of the Product 1 image, the presence of  

wheat and its approximate stage of development can never be addressed  

from the Product 1 image alone.  

Consider the interpretation problem of Segment 1164. The color  

distribution of fields in this segment are shown in Figures 16(a) and  

16(b) for acquisitions in biophases I and 2. Of the acquisitions made  

in 1975-76 on 1164, Julian date 124 stands out as the one to potentially  

distinguish wheat and non-wheat. There were no other acquisitions in  

the second or third biophases. This acquisition was at the same crop  

calendar point as the acquisitions of Figure 15. If one adopts the  

color signature of wheat displayed in Figure 15(a), (i.e., if one over

lays the chromaticity diagram of 1164 on 1171) it appears 1164 contains  

mainly wheat. If one adopts the color signature of 1166, Figure 15(b),  

it appears 1164 contains little or no wheat.  

The AI assigned the label of wheat to 70% of the fields in Segment  

1164. In fact, there were no wheat fields among the fields defined on  

1164.  
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Segment 1164 is not a special case of color distortion. It does  

not have extreme bias and scale values associated with it and could  

not be flagged by looking at these values. In this case the AI failed  

to find the proper boundary for interpreting the color of crops in this  

scene. This is an example of complete miscuing on the crop color sig

natures for a particular segment. This error is possible because of  

the artificial variability of the Product 1  which makes it necessary 

to tailor recognition of wheat to each segment and each acquisition 

on that segment. This raises for us the concern that even when this 

tailoring is basically successful the fit may be too unnecessarily 

tight or too loose. This lies in the realm of the individual AI's 

interpretation. It is a difficult tailoring task to perform on scant  

information about qualities of Product 1 imagery. We know the inter

pretation of false-color imagery can produce completely accurate label

ing of fields on some segments. It is our conjecture that a portion  

of the 21% average missed wheat error and 11% average false wheat error  

are due to difficulties in interpretation introduced by color signature  

variability in Product 1 imagery.  

A linear discriminant function was trained over all segments and  

three time periods, to see how well a universa wheat signature could  

be applied to individual segments. The result of applying the best  

linear universal discriminant to individual segments was essentially  

random classification. To illustrate the reason for this we have com

puted linear discriminant boundaries between wheat and non-wheat on a  

local, segment by segment basis, for 5 segments with virtually the same  

crop calendar at acquisition. Figure 18 shows how much these boundaries  

shift between segments.  

The technique of labeling fields by interpretation of false color  

imagery with shifting color signatures requires two things: 1) sub

stantial local information, ancillary data and ground truth comparison,  

and 2) self restraint on the part of the interpreter not to apply earlier  
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training where it might not be valid. We believe this necessity for  

restraint may contribute to inaccuracy anyway in the form of missed  

wheat errors.  

As an alternative to the above, we propose investigation be  

directed toward establishing a way of producing imagery with stable  

discrimination boundaries. We believe the techniques discussed in  

this section provide the proper tools and we feel the explorations  

envisaged ought to be carried out.  

In the data set we are currently working with we have field means  

data for 51 acquisitions. These acquisitions are spread among 32  

1975-76 Kansas segments and three time periods. The segment numbers  

along with date, crop calendar, and error statistics are listed in  

Appendix V. We feel the extent of this data set is only marginal for  

the analyses we would like to perform. We would hope to have a new,  

larger set of acquisitions made available to us at a future point in  

time. This would allow us to be more definitive about qualitative  

conclusions and would make quantitative analysis feasible.  

4.5  PHASE II: CONCLUSIONS AND RECOMMENDATIONS  

Phase II of this.project has concentrated on a twofold purpose:  

(1) the specification of an experiment design for the test and evalua

tion of overall signature extension procedures for large area crop  

inventory, and (2) an analysis of Analyst Interpreter wheat labeling  

errors.  

Phase I documented that the development of accurate large area  

crop inventory systems using signature extension techniques is a  

feasible goal. The evaluation of three such techniques has been speci

fied in the experiment design. These include a multisegment adaptation  

of Procedure 1, currently employed in LACIE as a local or single seg

ment procedure, Procedure B, developed at ERIM, and a modified version  

of Procedure B, incorporating the training selection strategy of Pro

cedure B and the classification strategy of Procedure 1.  
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In addition to the evaluation of these three overall procedures,  

a number of procedural parameters will be varied to determine the  

effect on classification results. These parameters include the number  

of segments used in training, and the incorporation of various data  

preprocessing techniques, specifically sun angle, haze effect correc

tions, and data compression strategies.  

A most important aspect in the analysis of these multisegment  

signature extension techniques is their performance as a function of  

the use of static stratifications of the data. Three sets of strati

fications will be employed including: (1) physical stratifications  

of the data based on ancillary variables as defined by UCB and JSC,  

(2) an arbitrary stratification wherein all segments are grouped into  

one stratum, and (3) a 'baseline' stratification wherein each segment  

is its own stratum, equivalently local or single segment training and  

classification.  

Preparatory stages in the execution of the experiment to evaluate  

these overall multisegment signature extension procedures included the  

development of a data set for purposes of initial evaluation. This  

data set was drawn from the Fields Data Base. One step in its pre

paration includes the correction of Analyst-Interpreter labeling errors.  

The ensuing analysis of these labeling errors revealed that classifica

tibn performance in a multisegment environment was sensitive to AI  

labeling errors.  

In an attempt to understand the nature of these errors in order  

to provide recommendations as to improved labeling techniques, it was  

determined that the current procedure used in production of the Landsat  

Product 1 false color imagery has certain undesirable characteristics.  

Specifically, the color of wheat differed substantially from segment  

to segment at the same stages in the crop calendar.  

It is recommended that the data base used in the analysis of AI  

errors be expanded to incorporate additional acquisitions for existing  
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segments as well as additional segments in order to establish a data  

base that can be analyzed adequately to establish statistical signifi

cance. In addition, the technique employed in the analysis of the  

Product 1 imagery is a most useful approach to the analysis of other  

false color image products. That technique employs a mapping of field  

means into color space coordinates transformed into a space wherein  

Euclidean distance is more closely correlated to the human eye's ability  

to discriminate colors. Hence analysis of an AI's ability to discrimi

nate wheat from non-wheat can be carried out statistically. A compari

son of various image production techniques in this fashion would be of  

great value. It was also observed that the presence of haze or clouds  

in a scene may adversely affect image products. Techniques to reduce  

haze effects and screen clouds should be incorporated into the image  

production process.  
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APPENDIX I  

DATA PREPARATION  

The preparation of an adequate data base for the evaluation of  

signature extension algorithms was one of the major activities of this  

task. This activity had two separate phases. First, 1973-74 data was  

prepared to allow us to begin our first testing immediately. Later  

when 1975-76 LACIE sample segment data was received, together with the  

fields data base, activities were begun. to prepare a large, comprehen

sive data base which included ancillary information about the sample  

segment and the specific passes in the data set.  

Because the preparation of data was an ongoing activity, this  

appendix has been organized to reflect the state of the data base used  

for testing at the end of each of four periods covered by this  

report. Thus experiments conducted during the third quarter will refer  

to Section 1.3 of this appendix for a complete description of their data.  

I.1  FIRST PERIOD  

The Landsat data used during the first period consists of ten  

1973-74 LACIE sample segments over Kansas, mainly in the Southwest Crop  

Reporting District as shown in Figure I-1. Two of the sample segments  

are Intensive Study Sites (ITS) with wall-to-wall ground truth as deter

mined by ground teams, and the remaining 8 sample segments are Statis

tical Reporting Service (SRS) sites with field labeling determined by  

NASA/JSC analysts based upon examination of the imagery itself. Imagery  

from several Landsat passes over each of these sites is available, and  

these images have been registered to each other. Table I-I shows the'  

sample segments, how the ground truth was obtained, and the dates of  

imagery collection used in the tests reported here.  
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TABLE I-1. FIRST PERIOD DATA BASE  

Sample Ground Acquisition  
Site Name Segment No. Truth Dates Used  

Morton 1042 ITS 5/8, 5t26  

Finney 1034 ITS 5/8, 5/26  

Graham 1018 SRS 5/8, 5/26  

Lane 1026 SRS 5/8, 5/26  

Scott 1029 SRS 5/8, 5/26  

Grant 1036 SRS 5/9, 5/27  

Kearny 1040 SRS 5/9, 5/27  

Haskell 1065 SRS 5/9, 5/27  

N. Stevens 1045 SRS 5/9, 5/27  

S. Stevens 1045 SRS 5/9, 5/27  

1.2 SECOND PERIOD  

During the second period, 1973-74 multitemporal LACIE sample  

segments over 12 sites in Kansas were prepared. Figure 12 shows  

their spatial distribution (two of the sites are in Stevens County).  

Four of these sample segments -- over Ellis, Saline, Morton, and  

Finney -- are Intensive Test Sites with wall-to-wall ground truth as  

determined by ground teams, while the remaining eight sample segments  

are SRS sites with field labeling determined by NASA/JSC analysts based  

upon examination of the imagery itself. Data from several Landsat  

passes over each of these sites is available, and has been registered  

to each other. Table 1-2 shows the sample segments, and the dates of  

imagery collection used in the tests reported here.  
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TABLE 1-2. 1973-74 MULTITEMPORAL LACIE SAMPLE SEGMENTS  

Sample  

Site Name Segment No.  

Morton 1042 10/23/73, 5/9/74, 5/27/74, 617/74  

Finney 1034 10/23/73, 4/20/74, 5/8/74, 5/26/74  

Saline 1114 10/20/73, 4/18/74  

Ellis 1106 10/21/73, 5/26/74, 6/12/74  

Graham 1018 10/4/73, 4/20/74, 5/26/74  

Lane 1026 10/4/73, 4/20/74, 5/26/74  

Scott 1029 10/4/73, 4/20/74, 5/26/74  

Grant 1036 10/23/73, 5/9/74, 5/27/74  

Kearny 1040 10/23/73, 5/9/74, 5/27/74  

Haskell 1065 10/23/73, 5/9/74, 5/27/74  

N. Stevens 1045 10/23/73, 5/27/74, 6/14/74  

S. Stevens 1645 10123/73, 5/27/74, 6/14/74  

.1.3 THIRD PERIOD  

After receipt in December 1976 of a large data set consisting of  

the 75-76 LACIE sample segments over the U.S., together with the Fields  

Data Base as of Day 315, the following data base was prepared.  

The Landsat data used consisted of 75-76 Landsat data over 21  

Blind Sites and two Intensive Test Sites (ITS) in Kansas. These 23  

sites represented all of the Blind Sites and ITS sites in Kansas with  

cloud-free passes in early Biowindow one, and in Biowindow two. Only  

these two passes were used in any of the experiments described in this  

report, although a pass from each of the remaining biowindows was also  

prepared. These four passes were merged to form multitemporal data  

sets, and then screened to eliminate areas covered by cloud, cloud  

shadow or water in any of the four biowindows.  
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Signatures were computed for each of these 23 sites, and a data  

tape consisting of field means was also produced. The Fields Data  

Base as of Day 315 was used in these steps.  

The final step in data preparation was to prepare a list of  

ancillary information for each of the sites. The types of ancillary  

information and the range of each ancillary variable appears below in  

Table 1-3. Figure 1-3 shows the distribution of these sites in Kansas.  

1.4 FOURTH PERIOD  

The fourth period data base consisted primarily of 74 data sets  

over 38 sample segments in Kansas (35 blind sites and 3 intensive test  

sites) and 18 data sets over 18 sample segments in North Dakota. Each  

of the data sets consists of four acquisitions of 75-76 LACIE sample  

segment data, one from each crop development biowindow whenever possible.  

Only the first two biowindows of the Kansas data and the first three  

biowindows of the North Dakota data were ever used. Along with the  

Landsat data is ancillary data pertaining to the sample segment, and  

to the various Landsat acquisitions used in the data set.  

The fields data base as of Day 315 was used to provide the field  

designations which were used in lieu of ground truth in our evaluations.  

Tables 1-4 and I-5 show the ranges of important ancillary variables for  

the winter wheat and spring wheat data, respectively. The ancillary  

variable called "crop calendar" is the Robertson crop calendar, and the  

variable "gamma" is the haze factor calculated by XSTAR [2]. The haze  

levels represented in these data sets span a fairly broad range.  
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TABLE  13.  ANCILLARY  VARIABLES  AND THEIR  RANGE 

Ancillary Variable Range  

GENERAL:  

Degree Days (10 Year Average) 2060 - 2470 

Land Use (% Agriculture) 10%  100% 

Precipitation (10 Year Average) 7.2" - 12.9" 

37.10 - 39.20 
Latitude 

Longitude 94_9 - 101.50 

Elevation 900'  3350' 

PASS SPECIFIC (Calculated for Each Pass): 

Sun Angle 56 0 67o; 350 - 460 

View Angle -5.5  4.5; -6.0  4.00 

Julian Date 294 - 349; 87 - 127 

Crop Calendar (Robertson Scale) 0 - 0; 2.76 - 3.66 

CALCULATED FROM DATA:  

Difference Between Sites in Mean of  

Soils Area in Landsat Space 0 - 37.73; 0 - 48.65  

Difference Between Sites in Mean of  

Green Development Area in Landsat Space, 0 - 35.77; 0 - 60.72  

Raze Diagnostic Calculated by XSTAR 

from Yellow Shift of Data -1.36 - 0.86; -4.26  0.73 

Difference Between Sites in Additive  

Factor Calculated by XSTAR 0 - 19.06; 0 - 17.04  

Difference Between Sites in Multipli

cative Factor Calculated by XSTAR 0 - 0.14; 0 - 0.42  

Haze Value Calculated by XSTAR from 

Yellow Shift of Data -0.06  0.03; -0.22  0.03 
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TABLE  14.  RANGE  OF  ANCILLARY  DATA 

Winter Wheat (Kansas) Data  

DEGREE DAYS 1910 - 2525 ELEVATION 900'  3350'  

PRECIPITATION (INCHES) 1 - 15 LATITUDE 37,0  39,70  

% AGRICULTURE 5 - 100 LONGITUDE 94.80  101,50  

BIOWINDOW 1 

JULIAN DATE 291-90 CROP CALENDAR 0  3,3 SUN ANGLE 460 - 680 GAMMA -.08  .23 

BIOWINDoW 2 

JULIAN DATE 90-138 CROP CALENDAR 3.0  3,6 SUN ANGLE 350  460  GAMMA -,5  .19 

BIOWINDOW 3 

JULIAN DATE 135-163 CROP CALENDAR 3.3  4,8 SUN ANGLE 310  360 GAMMA -.22  .19 

BIOWINDOW 4 

JULIAN DATE 163-200 CROP CALENDAR 4.5  6.0 SUN ANGLE 310  340 GAMMA -.25  .17 



TABLE 1-5. RANGE OF ANCILLARY DATA 

Spring Wheat (North Dakota) Data 

DEGREE DAYS 

PRECIPITATION (INCHES) 

% AGRICULTURE 

2360 - 2520 

7.8 - 9.2 

5 - 100 

ELEVATION 

LATITUDE 

LONGITUDE 

950'  2600' 

46.20  48,80 

96,70  103,80 

TJ PERiD 1GA 

JULIAN DATE 127-131 SUN ANGLE 330  390 GAMMA -. 11 .12 

JULIAN DATE 144150  SUN ANGLE 330 -390 GAMMA -.5 

JULIAN DATE 164-186 SUN ANGLE 330  390 GAMMA -.41 - ,14 

IM DATE4S3 

JULIAN DATE 198204  SUN ANGLE 3370 - 390 GAMMA -. 1-.18 0 
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APPENDIX  II 

CLASSIFICATION ACCURACY USING COMPRESSED DATA  

COMPRESS is an optional data compression procedure within PROCAMS.  

The object of data compression is to greatly reduce the processing time  

required to run portions of PROCAMS and therefore reduce the cost of  

processing the data. COMPRESS computes a mean value for the pixels  

contained within each training field.  

This data compression normally is performed after the preprocess

ing and training stages of PROCAMS and before classification.  

However, before we begin to conduct extensive experiments on com

pressed data, we would like to know whether or not it is valid to draw  

inferences about results for normal uncompressed data from results  

obtained using compressed data.  

To answer this question we examined two different types of classi

fication: local classification and signature extension results using  

untransformed signatures from another site. Both compressed and uncom

pressed data were used for each type of classification. Nine LACIE  

sample segments from 1973-74 Landsat data over Kansas were used for  

this test. Most of the sample segments are from the Southwest Crop  

Reporting District of Kansas, all are from western Kansas.  

Table II-1 shows local classification accuracy for Morton and  

Finney Counties, early in May and late in May. A comparison of average  

classification accuracy on compressed and uncompressed data is given.  

The difference between average classification accuracy using compressed  

and uncompressed data is 1.2%. The standard deviation of the difference  

in classification accuracy using fhe compressed and uncompressed data  

is 2.78%.  
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TABLE II-I.  LOCAL CLASSIFICATION ACCURACY (Compressed  

vs Uncompressed Data)  

Classification Accuracy  

Site Compressed Uncompressed 

Morton Early May -96 91 

Finney Early May 97 98 

Morton Late May 92 90 

Finney Late May 97 98 

Average: 95.5 94.3 

Table 11-2 shows signature extension results using untransformed  

signatures from" remote sites. The classification accuracy is given  

for compressed and uncompressed data for each of twenty cases. Six  

of the signature extensions are from the early May data and fourteen  

from the late May data. The average of the difference in the classi

fication accuracy between'compressed and uncompressed data is 7.9%.  

The standard  deviation of the difference between classification accu

racies is 6.89%. The correlation coefficient between the compressed  

and uncompressed data is 0.856. This correlation is significant at  

the 0.0005 level.  

These results would tend to support the belief that inferences  

can be drawn about the overall performance of various algorithms on  

normal uncompressed data from the results of tests of these algorithms  

on compressed data.  
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TABLE  112.   UNTRANSFORMED  SIGNATURE EXTENSION RESULTS COMPARING 

COMPRESSED  AND  UNCOMPRESSED  DATA 

Accuracy  

(M)  

Not  

Site From Site To Time Period Compressed 'Compressed  

Morton Finney Early May 91  93  

Morton Grant Early May 60  85  

Morton Haskell Early May 78  88  

Finney Morton Early May 76  80  

Finney Grant Early May 71  90  

Finney Haskell Early May 100  99  

Morton Finney Late May 54 50  

Morton Graham Late May 61 72  

Morton Grant Late May 69 75  

Morton Haskell Late May 77 86  

Morton N. Stevens Late May 82 87  

Morton S. Stevens Late May 57 66  

Finney Morton Late May 53 55  

Finney Graham Late May 64 75  

Finney Lane Late May 85 84  

Finney Scott Late May 87 97  

Finney Grant Late May 54 75  

Finney Haskell Late May 64 79  

Finney N. Stevens Late May 55 61  

Finney S. Stevens Late May 50 49  

Average:  69.4 77.3  
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APPENDIX  III 

DESCRIPTION OF THE PROCAMS TEST BENCH  

A  signature extension algorithm cannot stand alone; it requires 

data quality control programs, signature extraction techniques, a. 

classifier and other related procedures and processes to form a com

plete classification system. For the testing of signature extension 

algorithms, the classification system PROCAMS was used as the test 

bench into which vartous,techniques were incorporatedfor evaluation. 

PROCANS, whose development was begun by ERIM during the FY76 contract 

period, was designed to be a state-of-the-art test bench for-a wide 

range of data processing algorithms, including signature extension 

algorithms. 

The PROCAMS system consists of several modules which can be  

grouped into five general subsystems: preprocessing, data compression, 

training, signature transformation, and classification. A brief des

cription of the five subsystems of PROCAMS follows, together with a 

flow chart (Figure Il1). 

The preprocessing portion of PROCAMS consists of set-up programs,  

data quality algorithms, and, optionally, a haze correction technique.  

Originally there were two routines which performed the function of pre

paring the data for PROCAMS. These are PRECAMS, a subroutine to set  

up the header record with information needed for subsequent processing,  

and SUBTIME, a subroutine which selects the spatial and temporal sub

set of the data which is to be processed and modifies -the header infor

mation accordingly-. Data quality algorithms include subroutine BADLINE,  

which detects and flags bad data lines using a data channel which is  

appended for just this purpose, and subroutine CLOUD which identifies  

and similarly records pixels which cotrespond to clouds, cloud shadow,  

and water. These four programs were later replaced by one program  

called SCREEN [18]. The final (aid optional) stage of the prepro

cessing is haze correction.  
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Data compression is an optional step in PROCAMS which is used to  

lower processing costs when several passes through the data are antici

pated. Two types of data compression were used in PROCAMS.  

The first data compression technique computes the average  

signal values over each field to produce a mean value or "average pixel".  

This subroutine, called COMPRESS, yields data compression ratios of up  

to 100 to 1. This technique is applicable only when fields have been  

defined.  

When proportion estimation results are desired, the data may be  

sampled randomly to achieve an effective data compression.  

The third step of PROCAMS (training) is implemented in ERIM's  

clustering algorithm CLUSTR.  

The fourth subsystem in PROCAMS (signature transformation) is  

signature extension, a role which is filled by the cluster matching  

routine CROP-A developed by ERIM.  

The final portion of PROCAMS consists cf the classification and  

tabulation programs. PROCAMS uses a sum-of-likelihoods decision rule  

for its classifier, similar to the one used in the LACIE classification  

and mensuration subsystem. Properly trained, this classifier has been  

shown to perform nearly as well as any classifier'yet designed.  
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APPENDIX IV  

TWO APPROACHES TO MULTISEGMENT PROCEDURE 1 

This appendix addresses the classification technique to be used  

in evaluating static stratification in a multisegment environment. We  

have termed this approach 'preclassification'.  

Overall Objective  

Develop an experiment design-which will efficiently and effec

tively evaluate static stratification of space image data in a multi

segment signature extension environment for the purpose of large area  

crop inventory.  

Environment and Training Selection  

The current LACIE Procedure 1 provides an environment wherein a  

large number of segments are classified using local training procedures  

and crop proportion estimates computed by pixel count.  

The  multisegment signature extension environment is one wherein  

an attempt would be made in reducing the need for local training. A  

certain subset of segments would be designated training sites. Clusters  

would be computed from-these segments, labeled according to their associ

ation to training dots, and used in classification throughout. Hence,  

specific segments can be more intensely photointerpreted for training,  

hopefully with a resultant reduction of labeling error.  

The multisegment signature extension approach, however, poses a  

training segment selection problem. The resultant classification is  

sensitive to variational differences between training and test segments.  

The  designation of static stratifications of segments using variables  

such as soil type and precipitation is an attempt to associate segments  

in a manner that would minimize the spectral differences between like  

classes in segments belonging to the same strata. These stratifica

tions-can then be used in one of two ways:  

1.  For training selection purposes: To insure that all spec

tral classes are represented in choosing training segments  

from every strata to be used across all segments in classi

fication.  

2.  For classification purposes: Segments would be classified  

using signature clusters determined within their stratum  

only.  
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These two applications of static stratification in multisegment  

signature extension can be generalized.  

Consider n strata and.m segments where n < M.  

Segment s.. is the jth segment of the ith stratumS.. 
13 1  

The signature set for segment s.. is SIG(si).  

The training data for stratum S. is T(Si). i  

Call the clustering function iT, then  

n  
SIG(s  TT w  T (S 

k=l  

where o. is a weight for each stratum. 

If for k  i  Wk= 1 

k  i  Wk=0. 

then Case 2 above is implied, i.e., the segment is classified using  

signatures computed only within its own stratum.  

If  

.= W. for all i,j 
1 3  

then Case I is implied, i.e., a segment is classified using all signa
tures, but insuring that each stratum is represented.  

The value of introducing this notation lies in that the weights  

Ok can vary anywhere between the two cases. For example, it may be  

useful to use stratification for training and in computing SIG(sij)  ,  

weighting the training data from stratumi (T(Si) more than for other  

strata. This recognizes that important information for any one segment  

appears in every stratum, however, it is more likely that training within  

the same stratum would be more significant.  
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Terminology  

For purposes of further discussion, reference will be made to  

three partitions of data: (1) within segment, all pixels from a 5x6  
mile LACIE segment; (2) within stratum, all segments within a defined  

stratification of segments; (3) within universe, all segments.  

Problem  

Any evaluation of the inherent value of static stratification in  
-a multisegment environment will require measures of performance that  

are statistically significant. These measures may include: (1) within  
segment classification accuracy, (2) within stratum classification accu

racy, and (3) within universe classification accuracy. Each of these  
measures may be determined as a function of training gain. As a result,  
a large number of classifications must be performed for a large number  

of segments, varying the training data at each classification. The  
cost of such an experiment could be prohibitive. What legitimate  

training and classification algorithm should be employed to maximize  

testing efficiency? In other words, what logical extension of Pro
cedure 1 into a multisegment environment will be required to evaluate  

static stratification?  

Two Approaches to Multisegment Procedure 1  

The following pages document two approaches to extending Pro

cedure 1 into a multisegment environment. The second approach is  
called preclassification and is described to be logically equivalent  

to the first approach. The first approach is a straightforward exten

sion of Procedure 1. Before getting into the details of each, consider  
the following graphics in order to group the salient aspects of each  

approach.  

The first approach combines the training data first, extracts  

signatures from the combined training data set, then estimates propor

tions for wheat and non-wheat. Preclassification differs in that infor
mation from the training segments is not combined until after likeli
hoods are calculated. The particular advantage of this approach for  

test and evaluation purposes lies in the fact that training segment  

selection does not have to bd carried out first. The details of these  
two approaches are described in the following sections.  
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APPROACH 1  

Consider the following approach:  

1. Select training segments from each strata  

2. Merge training segment data together  

3. Cluster the training pixels into subclasses  

4. Calculate proportion estimates using sum of likelihoods.  

First note that in an evaluation experiment, using this approach  
would result in clustering and classification of data each time training  

parameters are changed.  

However, the procedure is a straightforward extension of Procedure 1.  

Important decisions must be made along the way.  

1. Weighting Training Segments Due to Random Selection Process  

First of all, the selection of training segments must be carried  

out in a manner that would simulate the random selection of training  

fields. On an average the number of randomly selected fields would be  

in like proportions from stratum to stratum as a function of the total  
number of fields in each stratum. For example, suppose the universe of  

data is comprised of two strata, each with ten fields. If six of those 

fields were to be selected at random from the twenty, one would,expect 
each  stratum  to  be  represented  by  three.  To simulate  this,  training  seg-
ments should be drawn from each strata in like proportions. Suppose, 

however, that two strata contained 8 and 6 segments respectively. If 

the training gain desired was 3.0, i.e., one-third of each strata required 

for training, the first stratumwould require 2.7 segments, the second 2 

segments. Since the selection of 2.7 segments is not possible, one may 

round and select 3 segments. In order to reflect this adjustment affecting 

the random character of the selection, weights need to be assigned to the 

training data as follows: 

For segment sij, the jth segment - the ith stratum, Si,  

Let s.. be a training segment  

Let t. be the number of segment in the ith stratum and t. the  

number of training segment in the ith stratum.  
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LEIM  

Each segment s.. is assigned the weight: 
13  

t. 

ti1 

Recalling the earlier defined weight w . in the definition of a 1  

set of training clusters, we can extend its definition to  

i =  0i 

where V is related as mentioned to the classification technique employed.  

This more fully discussed in what follows:  

2. Weighting Training Segments With Respect to Classification Segments  

As was mentioned earlier, data stratification could be used for pur

poses of training only, or for purposes of classification as well. The  

technique employed is related by a factor p. of the weight w. assigned to  
1 1  

each pixel of training data. If you recall, if pi = I for all segments  

in strata i, then classification of segment si, is determined only by  

those signature clusters defined fromstratum S.. However, this weight  
may be adjusted to better represent one's confidence in the training data  

available in each stratunwhen applied to an arbitrary segment. This  

approach implies that the classifier has no confidence in applying signa

tures derived from data from other stratum. Another approach is to employ  

equal levles of confidence. An interim approach may be to establish con

fidence levels empirically. For example, for purposes of our test and  

evaluation the experiments constructed in FY77 provide within stratum and  

across strata classification results.  

The weight V. may be assigned so that segment s.j from stratum S.  

would have associated weights Vk and pi"  

pk =  average error in signature extension Sk Si for all k 0 i 

Pi = average error in signature extension Si S.  

(i.e., segments extend within stratum)  
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Pk is applied to training data from Sk  

Pi is applied to within stratum training data  

Note that these weights would vary from segment to segment. Since  
clusters are computed before classification, each strata would require  
a different set of signature clusters rendering this approach impracti
cal for test and evaluation purposes and making it clumsy for an opera

tional system.  

3. Weighting Clusters in Sum of Likelihoods  

Training pixels within training segments can be selected using a  

technique that attempts to insure representativeness, much as the CAMS  

AI training selection approach, or selected randomly, as in the Pro
cedure 1 209-point technique. The former requires that each derived 
cluster be weighted equally in classification when computing sum of 

likelihood. That is, pixel i  is wheat if 

for m wheat clusters and n non-wheat clusters with likelihoods  

P and PN respectively  

1m I n 

n  XPiW  >  PjN
i=l  j=1 

However random selection of training pixels requires that:  

x  is wheat if 

n  m  

SniPiw  >  njPN 
i=1 i JJ  

where nk is the number of pixels in cluster k. That is to say, clusters  
are not equally weighted but in proportion to the number of samples they  

represent.  
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APPROACH 2 (Preclassification)  

Consider the following alternative approach:  

1.  Select training segments from each stratum  

2.  Cluster the training pixels into subclasses independently  

from each training segment  

3.  Employ the following classification procedure:  

i.  Classify each segment independentlyusing the  

clusters from each other segment, determining  

a wheat and non-wheat likelihood (i.e., for  

m training segments, each segment is classified  

m times).  

ii.  Sum likelihoods from each training segment to  

determine wheat proportion estimate.  

This approach offers two advantages for the test and evaluation of multi

segment signature extension.  

First of all, determination of likelihoods can be performed before  

training segments are selected. Clusters can be computed for every seg

ment and applied in classifying every other segment. Proportion estimation  

can be carried out for a variety of different training segments, simply by  

summing the computed likelihoods corresponding to the training segments.  

Clustering and likelihood calculation does not have to be recomputed for  

each different set of training data.  

More graphically, consider the following situation: given 5 train

ing segments each pixel 3Z would have a vector associated with it as  

follows:  

('   5W'  P'N) 

where:  

_k is  the n channel mean vector  

9W are wheat likelihoods corresponding 
to each of  

5 training segments  

are non-wheat likelihoods corresponding to each of  N 5  training segments  
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Using Segments 2 and 3 as training i would be wheat If  

PW2  + PW3 > PN2 + PN3  

Using Segments I and 5 as training x would be wheat if  

PW4  + PW5 > 
PN4 + PN5  

A second advantage is that the weighting factor P can be applied  

at classification, i.e., tally time to reflect a stratum training con

fidence level. For example, if Segments 2 and 3 in the above example  

were representatives of strata i and j, then apixel 3 from stratum Si  

would be wheat if:  

"iPW2 + "jPW3 > I iPN2 + PjPN3  

What needs to be established is whether this technique appropriately  

simulates the first approach. The essential difference is that in the  

first approach clusters are determined for all training pixels at once,  

rather than separate sets of clusters for each training segment. A sub

class appearing in two segments would be represented at tally time by  

two clusters, whereas only one cluster would appear using Approach 1.  

We shall assume that the selection of training is done randomly.  
as follows:* Algebraically, the procedure is  

1.  Determine the likelihood that E is wheat given each training  

segment.  

Given n training signatures SIG(sij) for the jth segment of the  
ith-stratum  

then the likelihood that a pixel 3:belongs to the wheat (or non

wheat)  signature  sigi  is  pW  Isigi  )  or  pN(x9sigi) 

The sum of likelihoods that 7 is wheat is given by Pw(XISIG(sij))  

where:  
n 

pw(  ISIG(s ij)  =  X nkpW  (XIsigk ) 
k=l  

where nk is the number of training pixels in sigk  

Shown for wheat, similarly for non-wheat.  
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The total number of training wheat pixels in.SIG(sij) is given by  

n 

Nn 
k=l k  

2. Determine x is wheat given all training segments.  

Let a set of m training segments be represented by {s. ..  

Let the signatures derived from these training segments be SIG{s.j}.  

Then the likelihood that a pixel i is wheat is given by  

PW(XISIG{sij }) 

where  

m 

I SIG(sij)= y k  tkWw
P (x-SI~fs1) 

pw(iISI G{s~iS  )  =  k=  mfkwxII~~ 

k11w 7VWk-

where wk is the weight earlier aefined in Approach 1. 3 is wheat if  

Pw(XISIG{sij )  > PN(XISIG{sij  }) 

Approach 2 is an appropriate simulation of the Approach 1 under the  

assumption of random selection of training pixels within a segment.  

Differences in the trainiig-procedures are accounted' for by weighting,  

at classification, each computed cluster subclass by its number of  

pixel members. Hence, using Approach 2, a subclass appearing in two  

segments, though represented by two clusters, are weighted in such a  

way so as to contribute the same likelihoods as the corresponding  

single cluster that would have been computed using Approach 1.  

ORIGINAL  PAGB  1S 
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APPENDIX V  

DESCRIPTION OF DATA EMPLOYED IN ANALYST-INTERPRETER  

LABELING ERROR ANALYSIS  

The following tables, V-i to V-3, list the LACIE Blind Site 

Acquisitions for three biowindows employed in the Analyst-Interpreter-

Labeling Error Analysis described in Section 4.4. Pertinent 

ancillary information is also encoded in these tables as well as 

summarized  in  table  V4. 

TABLE V-1. BIOWINDOW ONE ACQUISITIONS  

Segment Julian Crop* Missed Wheat False Wheat 

Number Date 1975 Calendar Fraction Fraction 

1035 312 0.0 0.28 0.12 

1041 312 0.0 0.28 0.12 

1154 311 0.0 0.03 0.02 

1163 327 0.0 0.18 0.0 

1164 326 0.0 0.0 0.70 

1165 326  0.0 0.0 0.07 

1166 327 0.0 0.16 0.10 

1167 327 0.0 0.28 0.0 

1171 364 0.0 0.13 0.0 

1172 328 0.0 0.28 0.0 

1176 364 0.0 0.44 0.0 

1179 364 0.0 0.20 0.0 

1181 345 0.0 0.08 0.0 

1852 295 0.0 0.20 0.05 

1854 295 0.0 0.28 0.0 

1865 349 0.0 0.20 0.0 

1880 311 0.0 0.15 0.0 

1882 311 0.0 0.33 0.0 

1883 328 0.0 0.0 0.0 

1887 311 0.0 0.07 0.0 

*  0.0 implies information not available. 
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TABLE  V2.  BIOWINDOW  TWO  ACQUISITIONS 

Segment Julian Crop Missed Wheat False Wheat 

Number Date Calendar Fraction Fraction 

1020 128 3.17 0.09 0.0 

1035 127 3.40 0.28 0.12 

1041 127 3.40 0.28 0.12 

1154 090 2.76 0.03 0.02 

1163 124 3.61 0.18 0.0 

1164 124 3.52 0.0 0.70 

1165 124 3.61 0.0 0.07 

1166 124 3.52 0.16 0.10 

1167 124 3.52 0.28 0.0 

1171 125 3.50 0.13 0.0 

1184 124 3.66 0.23 0.0 

1851 127 3.22 0.28 0.06 

1861 128 3.30 0.17 0.08 

1865 127 3.42 0.20 0.0 

1884 125 3.50 0.18 0.0 

1886 127 3.46 0.27 0.07 

1887 127 3.35 0.07 0.0 

TABLE V-3. BIOWINDOW THREE ACQUISITIONS  

Segment Julian Crop Missed Wheat False Wheat  

Number Date 1976 Calendar Fraction Fraction  

1019 164 4.60 0.07 0.0  

1163 142 3.98 0.18 0.0  

1167 142 3.93 0.28 0.0  

1169 144 4.00 0.27 0.35  

1180 141 4.11 0.24 0.02  

1854 154 4.14 0.28 0.0  

1857 154 4.10 0.33 0.10  

1861 164 4.55 0.17 0.08  

1865 136 3.58 0.20 0.0  

1880 127 3.34 0.15 0.0  

,1882 152 4.15 0.33 0.0  

1887 135 3.55 0.07 0.0  
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TABLE V-4. DESCRIPTION OF ANCILLARY DATA  

Variable N Minimum Maximum Mean Std Dev 

1. Segment 39 1019.0 1988.0 . 

2. Number of Wheat 

Fields 39 0.0 32.0 12.4 6.32 

3. Number of Other 
Fields 39 9.0 46.0 21.0 8.42 

4. Number of Missed 

Wheat Fields 39 0.0 8.0 2.05 1.97 

5. Number of False 

Wheat Fields 39 0.0 12.0 0.90 2.11 

6. Fraction of Missed 

Wheat 38 0.0 0.44 0.16795 0.128 

7. Fraction of False 

Wheat 39 0.0 0.706 0.04912 0.126 

8. Fraction of Total 

Error 39 0.0 0.706 0.103 0.125 

9. Number of Fields 39 17.0 75.0 33.4 12.7 

10. Julian Date 1 39 294 127 ...... 

11.  Julian Date 2 39 311 128 .. 

12 . Ju l  an Date 3 3 9 364 199 .... .. 

13. Degree-days 38 1910.0 2540.0 2245.7 146.38 

14. Crop Calendar 1 39 0.0 3.4 0.49 1.07 

15. Crop Calendar 2 39 0.0 3.66 2.7 1.32 

16. Crop Calendar 3 39 0.0 6.0 4.0 0.90 

17. GAMMA 1 38 - 0.6 0.22 0.03 0.07 

18. GAHM& 2 37 - 0.22 0.20 0.01 0.D7 

19. GAMMA 3 38 - 0.26 0.14 - 0.03 0.09 

20. Elevation 39 0.0 3500.0 1882.1 826.11 

21. THETA 1 39 35.0 69.0 ...... 

22. THETA 2 39 35.0 68.0 --

23. THETA 3 39 31.0 68.0 ...... 

24. Precipitation 39 0.0 15.0 7.9 4.40 

25. Land Use 39 0.0 4.0 2.3 1.67 

26. Latitude 39 37.0 39.70 38.3 0.80 

27. Longitude 39 94.8 101.80 98.4 2.06 

28. Haze Diagnostic 1 39  1.36 4.61 0.53 1.44 

29. Haze Diagnostic 2 39 4.26 3.67 0.21 1.39 

30. Haze Diagnostic 3 39  4.45 2.96 0.71 1.76 
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ATTN: Dr. Harry W. Smedes (1). 

U.S. Department of Interior  

Geological Survey  

Water Resources Divisibn  

901 S. Miami Ave.  

Miami, Florida 33130  

ATTN: Mr. Aaron L. Higer (1)  

University of California  

School of Forestry  

Berkeley, California 94720  

ATTN: Dr. Robert Colwell (1)  
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Environmental Remote Sensing,  

Applications Laboratory  

Oregon State University  

Corvallis, Oregon 97331  

ATTN: Dr. Barry J. Schrumpf  

U.S. Department of Interior  

Director, EROS Program  

Washington, D.C. 20242  

ATTN: Mr. J. M. Denoyer  

U.S. Department of Interior  

Geological Survey  

GSA Building, Room 5213  

Washington, D.C. 20242  

ATTN: Mr. W. A. Fischer  

NASA Wallops  

Wallops Station, Virginia 23337  

ATTN: Mr. James Bettle  

Purdue University  

Purdue Industrial Research Park  

1200 Potter Drive  

West Lafayette, Indiana 47906  

ATTN: Dr. David Landgrebe  

ATTN: Mr. Terry Phillips  

ATTN: Dr. Marvin Bauer  

ATTN: Dr. Philip Swain  

U.S. Department of Interior  

EROS Office  

Washington, D.C. 20242  

ATTN: Dr. Raymond W. Fary  
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U.S. Department of Interior  

Geological Survey  

801 19th Street, N.W.  

Washington, D.C. 20242  

ATTN: Mr. Charles Withington (1)  

U.S. Department of Interior  

EROS Office  

Washington, D.C. 20242  

ATTN: Mr. William Hemphill (1)  

Chief of Technical Support  

Western Environmental Research Laboratories  

Environmental Protection Agency  

P.O. Box 15027  

Las Vegas, Nevada 89114  

ATTN: Mr. Leslie Dunn (i)  

NASA/Langley Research  

Mail Stop 470  

Hampton, Virginia 23365  

ATTN: Mr. William Howle (1)  

U.S. Geological Survey  

Branch of Regional Geophysics  

Denver Federal Center, Building 25  

Denver, Colorado 80225  

ATTN: Mr. Kenneth Watson (1) 

NAVOCEANO, Code 7001  

Bay St. Louis, MS 39520  

ATTN: Mr. J. W. Sherman, III (1  
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U.S. Department of Agriculture  

Administrator  
Agricultural Stabilization and  

Conservation Service  

Washington, D.C.  

ATTN: Mr. Kenneth Frick (1)  

Pacific Southwest Forest & Range Experiment  

Station  

U.S. Forest Service  

P.O. Box 245  

Berkeley, California 94701  

ATTN: Mr. R. C. Heller (i)  

University of Texas at Dallas  

Box 688  

Richardson, Texas 75080  

ATTN: Dr. Patrick 1. Odell (1)  

Department of Mathematics  

University of Houston  

Houston, Texas 77004  

ATTN: Dr. Henry Decell (i)  

Institute for Computer Services and  

Applications  

Rice University  

Houston, Texas 77001  

ATTN: Dr. M. Stuart Lynn (i)  

U.S. National Park Service  
Western Regional Office  

450 Golden Gate Avenue  

San Francisco, California 94102  

ATTN: Mr. I. Kolipinski (I)  
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U.S. Department of Agriculture  

Statistical Reporting Service  

Room 4833, South Bldg.  

Washington, D.C. 20250  

ATTN: G. F. Hart/W. H. Wigton (2)  

U.S. Department of Agriculture  

Statistical Reporting Service  

Washington, D.C. 20250  

ATTN: Mr. H. L. Trelogan, Administrator (1)  

Ames Research Center  

National Aeronautics & Space Administration  

Moffett Field, California 94035  

ATTN: Dr. D. M. Deerwester (i)  

Goddard Space Flight Center.  

National Aeronautics & Space Administration  

Greenbelt, Maryland 20771  

ATTN: Mr. W. Alford, 563 (1)  

ATTN: Dr. J. Barker, 923 (i)  

Lewis Research Center  

National Aeronautics & Space Administration  

21000 Brookpark Road  

Cleveland, Ohio 44135  

ATTN: Dr. Herman Mark (1)  

John F. Kennedy Space Center  

National Aeronautics & Space Administration  

Kennedy Space Center, Florida 32899  

ATTN: Mr. 4.P. Claybourne/AA-STA (1)  

NASA/Langley  

Mail Stop 214  

Hampton, Virginia 23665  

ATTN: Mr. James L. Raper (1)  
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Texas A&M University  

Institute of Statistics  

College Station, Texas 77843  

ATTN: Dr. H. 0. Hartley (1)  

Texas Tech University  

Department of Mathematics  

P.O. Box 4319  

Lubbock, Texas 79404  

ATTN: Dr. T. Boullion (1)  

University of Tulsa  

Math-Sciences Department  

600 South College  

Tulsa, Oklahoma 74104  

ATTN: Dr. William A. Coberly (1)  

S&D - DIR  

Marshall Space Flight Center  

Huntsville, Alabama 35812  

ATTN: Mr. Cecil Messer (1)  

Code 168-427  

Jet Propulsion Laboratory  

4800 Oak Grove Drive  

Pasadena, California 91103  

ATTN: Mr. Fred Billingsley (1)  

NASA Headquarters  

Washington, D.C. 20546  

ATTN: Mr. W. Stoney/ER (1)  

ATTN: -Mr.- Leonard Jaffe/ER (1)  

ATTN: Mr. M. Molloy/ERR (1)  

ATTN: Mr. James R. Morrison/ERR (1)  

ATTN: Ms. Ruth Whitman/ERR (1)

127  



ZAIM FORMERLY WILLOW RUN LASORAYORIES. THE UNIVERSITY O MICHIGAN 

NAME"  NUMBER  OF  COPIES 

Mr. James D. Nichols 

Space Sciences Laboratory, Room 260 

University of California 

Berkeley, California 94720 

(1) 

Texas A&M University 

Remote Sensing Center 

College Station, Texas 77843 

AfTN: Mr. J. C. Harlan (I) 

U.S. Department of Agriculture 

12th & Independence, SW 

Room 3745-S 

Washington, D.C. 20250 

ATTN: Mr. Clark Ison 

LACIE Project Office (FAS) 

(i) 

University of Arkansas 

Mathematics Department 

Fayetteville, Arkansas 72704 

ATTN: Dr. Jack D. Tubbs (i) 

U.S. Department of Agriculture 

Foreign Agricultural Service 

Washington, D.C. 20250 

ATTN: Dr. Howard L. Hill (1) 

University of California 

Remote Sensing Laboratory 

129 Mulford Hall 

Berkeley, California 94720 

ATTN: Ms. Claire M. Hay (i) 

IBM 

1100 NASA Road One 

Houston,, Texas 77058 

ATTN: Mr. R. E. Oliver/Code 56 (i) 
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