
An Evaluation of the Suitability of FPGAs
for Embedded Vision Systems

W. James MacLean
Department of Electrical & Computer Engineering,
University of Toronto, Toronto, Ontario, M5S 1A1

maclean@eecg.toronto.edu

Abstract
Reconfigurable hardware, in the form of Field Pro-
grammable Gate Arrays (FPGAs), is becoming increasingly
attractive for digital signal processing problems, including
image processing and computer vision tasks. The ability
to exploit the parallelism often found in these problems, as
well as the ability to support different modes of operation on
a single hardware substrate, gives these devices a particu-
lar advantage over fixed architecture devices such as serial
CPUs and DSPs. Further, development times are substan-
tially shorter than dedicated hardware in the form of Appli-
cation Specific ICs (ASICs), and small changes to a design
can be prototyped in a matter of hours. On the other hand,
designing with FPGAs still requires expertise beyond that
found in many vision labs today.

This paper looks at the advantages and disadvantages of
FPGA technology, its suitability for image processing and
computer vision tasks, and attempts to suggest some direc-
tions for the future.

1. Introduction
Perhaps motivated by the high computational complexity of
many computer vision algorithms, there have been many at-
tempts to create hardware implementations to achieve high-
performance vision systems. The target applications have
ranged from localization and pose estimation of parts in
manufacturing settings, to biometric identification in bank-
ing applications, and depth estimation and target tracking
for navigation systems and robotic control. Hardware im-
plementations have been of three main varieties; DSP with
special interfaces for video and other sensors, Application
Specific ICs (ASICs, or sometimes “custom ICs”), or imple-
mentations based on reconfigurable hardware such as Field
Programmable Gate Arrays (FPGAs). The latter technol-
ogy has matured considerably over the past decade as chip
densities and die sizes have increased, and as special fea-
tures and development tools have simplified the task of de-
signing for FPGAs. Certainly FPGA devices have been de-
signed with embedded systems in mind, and are currently

targeted at the automotive, communications and other in-
dustries: here the advantage is being able to design a wide
range of devices with a small stock of actual devices, and to
be able to refine and upgrade the designs without substan-
tial time and financial burden. It is the intent of this paper to
examine the current state of this technology, and assess its
viability for implementing computer vision systems. Fur-
ther, future directions will be suggested in order to develop
a solid basis for such implementations to advance.

1.1. Previous Work
Perhaps the most common computer vision algorithm im-
plemented using FPGAs is that of stereo disparity estima-
tion [6, 28, 19, 30, 8, 13]. The PARTS reconfigurable com-
puter [28] consists of a 4 × 4 array of mesh-connected
FPGAs with a maximum total number of about 35,000 4-
input LUTs. A stereo system was developed on PARTS
based on the census transform, which mainly consists of
bit-wise comparisons and additions [30]. Kanade et al. [19]
describe a hybrid system using C40 digital signal proces-
sors together with programmable logic devices (PLDs, sim-
ilar to FPGAs) mounted on boards in a VME-bus back-
plane. The system, which the authors do not claim to be
reconfigurable, implements a sum-of-absolute-differences
along predetermined epipolar geometry to generate 5-bit
disparity estimates at frame-rate. In Faugeras et al. [8], a
4 × 4 matrix of small FPGAs is used to perform the cross-
correlation of two 256 × 256 images in 140 ms. In Hou
et al. [13], a combination of FPGA and Digital Signal Pro-
cessors (DSPs) is used to perform edge-based stereo vision.
Their approach uses FPGAs to perform low level tasks like
edge detection and uses DSPs for higher level integration
tasks. In [6] a development system based on four Xilinx
XCV2000E devices is used to implement a dense, multi-
scale, multi-orientation, phase-correlation based stereo al-
gorithm [9] running at frame-rates. In [7], optic flow es-
timation (using Lucas & Kanade’s flow algorithm) is im-
plemented on an FPGA system. It is worth noting that not
all previous hardware approaches have been based on re-
configurable devices. An ASIC-based design, the Acadia

1



I/O pad

Programmable
routing

Logic Block

(a)

4−input

LUT

Input

Clock

Flip−flop
D Out

(b)

Figure 1: (a) Architecture of a generic FPGA. All FPGAs
include the basic elements shown here. Newer FPGAs may
also include embedded memory blocks, dedicated multi-
plier blocks, and even processor cores. (b) Simplified ar-
chitecture of a logic block showing one, four-input lookup
table (LUT). Each LUT can synthesize any four-input logic
function, and may also be specialized for implementation of
memory and shift registers. Newer FPGAs may contain as
eight or more LUTs in a single logic block.

Vision Processor, is reported in [27, 3]; this system per-
forms a number of “front-end” vision processing tasks such
as stereo and motion estimation, and feature enhancement
using either Gaussian or Laplacian image pyramids. An-
other system, the SRI Small Vision Module, is described in
[21]; this DSP-based system is dedicated to stereo disparity
estimation. An interesting trend worth noting is the use of
commodity graphics hardware to implement stereo dispar-
ity estimation [29] and a general purpose vision processor,
with projective flow as a sample application [10].

There are certainly more hardware-based, and even
FPGA-based, implementations of vision algorithms than
there is space to list here. The important thing to note is
that numerous attempts have been made to use FPGA in
implementations, yet there is no sense yet of wide-spread
acceptance of this technology in the vision community.

2. Basic FPGA Architecture
A Field-Programmable Gate Array is a device containing
logic circuitry whose function and interconnectivity can be
altered by downloading a bit-stream that describes the de-

sired connection/configuration pattern. This allows a user
to program the chip by interconnecting the logic in a man-
ner that achieves the desired functionality. The functional-
ity can be changed by downloading a new bit-stream, al-
lowing the same device to be re-used for different applica-
tions. All FPGAs consist of three major components [2]:
1) Logic blocks; 2) I/O blocks; and 3) programmable rout-
ing, as shown in Figure 1 (a). A logic block (LB) is a local
collection of logic circuits, and can be programmed to per-
form a desired operation via the bit-stream. To implement
a circuit on an FPGA, each logic block is programmed to
perform a small part of the total logic required by the cir-
cuit and each I/O block is programmed to act as an input or
output, as required. The programmable routing is also con-
figured to make the necessary connections between logic
blocks, and from logic blocks to I/O blocks.

The processing power of an FPGA is directly propor-
tional to the processing capabilities of its logic blocks and
the total number of logic blocks available in the array. Cur-
rently, most commercial FPGAs use logic blocks that con-
tain one or more Lookup Tables (LUTs), typically with at
least four-inputs. A four-input LUT can implement any bi-
nary function of four logic inputs. Figure 1 (b) shows the ar-
chitecture of a simple logic block containing one four-input
LUT and one flip-flop for storage. Logic blocks are some-
times designed to allow them to be efficiently used as local
memory and shift registers, and they generally contain ded-
icated carry circuitry in order to simplify implementation of
adders and multipliers.

The two leading manufacturers of FPGA devices are Al-
tera Corporation [5] and Xilinx Inc. [15]. A look at their
respective websites will give details on the current state-
of-the-art for FPGAs, the Stratix-IITM family from Altera
and the Virtex-4TM family from Xilinx. These devices, in
addition to the features described above, have dedicated cir-
cuitry to assist in DSP applications (such as special mul-
tiplier blocks), hard-processor cores (e.g. PowerPC on the
Virtex-4 family) and soft-processor cores (e.g. NIOS on the
Stratix-II family), large amounts of on-chip memory, dedi-
cated interface circuitry to simplify access to off-chip mem-
ory, and high-speed serial and parallel I/O capabilities. Ta-
ble 1 gives a brief comparison between the top-end devices
in the two families.

The amount of logic circuitry along with the other fea-
tures of modern FPGAs makes programmable hardware
a viable and efficient solution for accelerating complex
image-processing and computer vision applications. For de-
signs that are too large to fit on a single FPGA, a group
of FPGAs connected with a programmable interconnection
network can be used.

It should be pointed out that implementing floating-point
arithmetic operations on FPGAs is very expensive in terms
of the number of logic elements required. Therefore it is of-

2



Stratix-II Virtex-4
Logic Elements Up to 179,400 Logic Elements Up to 200,000 Logic Cells

Embedded Memory Up to 9 Mb Up to 10 Mb
Clock Speed 250 MHz (500 MHz internally) 500 MHz

DSP Support Up to 96 per device: Up to 512 Xtreme DSP slices
dedicated multipliers dedicated multipliers
(8 9×9 or 4 18×18 or 1 36×36 per block) (18×18, two’s complement)
configurable for multiply & accumulate configurable modes for multiply & accumulate
Clocks up to 420 MHz Clocks up to 500 MHz

DSP Development DSP BuilderTM System GeneratorTM

Processor Cores NIOS (soft) PowerPC 32-Bit (hard) ×2
Other HardCopyTM to facilitate migration EasyPathTM to facilitate mass production

to ASIC of low-cost, pre-programmed FPGA devices,
“on-the-fly” partial reconfigurability

Table 1: A comparison of features between Altera’s Stratix-II family and Xilinx’s Virtex-4 family.

ten necessary to work with fixed-point representations when
implementing algorithms. Also, operations such as multi-
plication, and even more so division, can be costly if used
too freely. Careful design is needed to minimize the number
of these operations.

The use of floating-point will undoubtedly increase as
the capacity of FPGA devices increases. The advantage
of floating-point becomes apparent when operating on data
with large dynamic range [11], although often filters and
other signal processing primitives need only operate on
very limited ranges. Gaffar et al. [11] compare fixed-
and floating-point for a number of applications, including
an FIR filter, a discrete cosine transform1 (DCT), and a
ray tracing computation. For the FIR filter their analy-
sis shows that floating-point only becomes more efficient
for a dynamic range of 10

12 or greater, and in the case
of the DCT they report that the fixed-point implementa-
tion uses only 10% of the number of LUTs and flip-flops
as the equivalent floating-point implementation, although
the latter consumed fewer embedded multiplier blocks. In
[18] the authors describe parameterizable IEEE-compliant
floating-point adders and multipliers, done in a high-level
hardware language to make them portable across different
FPGA architectures. The designs, being parameterizable,
can be used in different applications to provide the desired
level of precision with minimal resource utilization. In [7]
a custom floating-point unit is implemented to efficiently
provide a division operation for the final stages of a Lucas-
Kanade optic flow implementation. The authors cite the dy-
namic range of the data at the point of division as being
large enough to make the use of floating-point more efficient
than fixed-point. Finally, Underwood [26] claims that peak
floating-point performance is growing faster on FPGAs than
it is on CPUs, suggesting that there may come a time when

1The DCT is a core part of JPEG image compression, for example.

floating-point operations on FPGAs are not only common,
but even preferred over CPU implementations in some high-
performance computing applications. For the remainder of
this paper the discussion will assume that most vision al-
gorithm implementations using FPGAs will use predomi-
nantly fixed-point arithmetic.

2.1. FPGA/DSP Design Tools
Design tools to assist DSP design with FPGAs fall into two
main categories: GUI development environments that inte-
grate with Matlab’s Simulink, and Intellectual Property (IP)
libraries. The development environments, DSP BuilderTM

for Altera and System GeneratorTM for Xilinx, allow the
designer to select glyphs representing functional modules
from libraries and graphically interconnect them to achieve
the desired functionality. The glyphs provide the means to
parameterize the functions, for example the number of data
points to be used in an FFT. Since fixed-point arithmetic is
standard, modules to convert between different precisions
are included in the libraries. Library modules are as simple
as up/down-sampling blocks or FIR filter blocks or complex
arithmetic, and as sophisticated as Reed-Solomon or Viterbi
coding/decoding blocks or numerically-controlled oscilla-
tors. Both environments provide support for multi-clockrate
designs, allow for direct inclusion of supported FPGA hard-
ware boards in the simulation loop to allow the designer
to simulate directly on the target FPGA device as soon as
possible, and they allow for “bit-true/cycle-true” simulation
of the design, meaning that it should be possible to know
the state of every signal for every clock cycle during design
simulation. The user can write their own custom blocks di-
rectly in VHDL or Verilog for inclusion in designs2. Most
of the IP modules (or “cores”) are aimed at the commu-
nications industry, and only very simple image-processing

2At present, such blocks cannot be simulated in Matlab.

3



operations such as basic edge detection are currently sup-
ported. Higher-level computer-vision cores are available
from third-party suppliers, for example SBS Technologies
[14].

3. Evaluation
In this section, the advantages and disadvantages of FPGAs
for computer vision implementations will be discussed.

3.1. Advantages
The obvious main advantage of FPGA-based design is the
flexibility to exploit the inherently parallel nature of many
vision problems. For example, many vision algorithms re-
quire the repeated application of the same local operation,
such as application of a convolution mask, to every region
in an image. In a serial processor this can be quite time
consuming, but in an FPGA multiple convolutions can be
taking place simultaneously. Compared to ASIC designs,
the design-implement-test-debug cycle can take place on
the order of hours and not months, and making small mod-
ifications to an existing design is a relatively simple task.
Also in comparison to ASIC hardware, less actual hardware
is needed if the system is to support multiple, mutually-
exclusive modes of operations. In the FPGA design the sys-
tem can be reconfigured in a matter of milliseconds whereas
separate hardware is required for each aspect of the ASIC
implementation. In this sense the FPGA design is like soft-
ware in that it mimics the ease with which one program
can be stopped and another started. However, FPGAs have
shown greater throughput in many problems, and can go
places fast serial processors cannot (for example, radiation
considerations may prevent fast CPUs from being usable in
space robotics, whereas the relatively slower clock speed of
FPGAs makes them less susceptible to such problems. Here
the added bonus of a smaller hardware footprint also gives
FPGAs an advantage over ASICs).

Modern design tools, as described in Section 2.1, makes
design using FPGAs closer to that of software than it has
sever been in the past. Although the process of logic syn-
thesis and signal routing from a high-level description may
take several hours in the case of a large design, it is still
fast and simple enough to allow significant progress to be
made in relatively short time frames. Further, the software-
engineering concepts of developing and testing modules
stand-alone, and then assembling the modules into a final
system and doing integration testing, is applicable to FPGA
design. This style of development allows relatively shorter
synthesis times, speeding up the process. The use of pre-
packaged modules in a graphical design environment means
that system design and testing may be carried out directly
by the individuals knowledgeable about the algorithm to
be implemented, and not just a specialized hardware engi-

neer. It is also true that designing with FPGAs is much less
expensive in terms of design tools and hardware test-beds,
allowing smaller companies, and even individuals, to pur-
sue design objectives that were previously only accessible
to larger companies.

Finally, in the case of embedded systems intended for
commercial use, modern FPGAs provide protection from
reverse engineering through the use of encrypted configura-
tion bit-streams.

3.2. Disadvantages
Perhaps the single biggest disadvantage to using FPGAs
for any sort of digital signal processing is the practical re-
quirement to implement algorithms using primarily fixed-
point arithmetic. As was noted earlier, while FPGAs are
capable of implementing floating-point arithmetic, in many
cases this requires far too much of the available resources
to be feasible, especially if the operation is being replicated
many times to take advantage of the speed-up a parallel ar-
chitecture can provide. Most vision research produces al-
gorithms that rely on the availability of floating-point arith-
metic. While it is always possible to convert such algo-
rithms to fixed-point, it requires a labour-intensive analysis
of the minimum precision required at each stage in the algo-
rithm’s data flow, and then a decision as to how to balance
this precision against the available resources of the target
FPGA devices [6]. What is worse, should the design later
be re-targeted to a device with a different capacity, then the
analysis may need to be re-done. It is probably true that
many algorithm designers give little thought as to the re-
quired level of precision for the algorithms they design, and
it only merits attention when the algorithm becomes nu-
merically unstable even on a floating-point processor. On
a more positive note, the attention paid to DSP applica-
tions by FPGA manufacturers may well mean that native
support for some (limited) amount of native floating-point
support may be a feature found on FPGAs in the not-too-
distant future. DSP processors once made a similar migra-
tion from fixed- to floating-point. Another disadvantage of
FPGA-based designs lies in the finite resources of target de-
vices, alluded to above. Unlike a general purpose worksta-
tion, when you run out of resources on the target device,
you are done. It is possible to design multi-FPGA systems
to increase resource availability, but then the designer, at
least at present, has to contend with the design and resource
overhead of partitioning the algorithm and transferring in-
termediate results between the different FPGA devices. At
present, this often requires more understanding of digital
logic design than the high-level design tools would appear
to require.

In a direct comparison to ASIC devices, ignoring the is-
sue of cost and design time lines aside, implementations us-
ing FPGAs are typically less efficient due to the overhead

4



on the device for the configuration circuitry, including I/O
and the SRAM cells required to hold the current design.
This leads to larger device sizes and larger power consump-
tion. The ASIC design process also allows optimization of
the circuitry to allow for faster clock speeds than found on
FPGAs. This slower clock speed may be an advantage, as
seen in the previous section.

The last major disadvantage is the design process itself.
While it is getting easier all the time, it is still true that de-
veloping any system on an FPGA usually requires some
savvy when it comes to digital design. Unlike software,
where issues related to the target platform are now well hid-
den from the software developer, FPGA based design still
requires some knowledge of the concepts of clock signals
and propagation delays, and familiarity with logic elements
such as FIFOs, registers, flip-flops, and the architecture of
adders, multipliers and the like. The designer may need
to be familiar with pipelined multipliers, for example, to
understand the trade-off between the number of logic ele-
ments required to implement the multiplier and the num-
ber of clock cycles required for the multiplier to produce
an answer. This may further bring up the issue of multi-
clock designs, and converting between different clock rates
at various points in the data pipeline. That being said, FPGA
manufacturers are looking to expand potential markets for
their products, and are keenly aware of the need to make the
design process as simple and robust as possible.

3.3. Moore’s Law?
Perhaps one of the most contentious issues in the debate
over software- vs. FPGA-based implementations is that of
Moore’s Law [25], which states that the speed of computer
systems tends to double roughly every 18 months. Why
bother with hardware-based designs when we can wait a
while until general purpose processors are fast enough to
do the job? There are a number of responses to this view-
point. First, if we can do something today with an FPGA,
why wait? FPGA-based design is becoming easier (and thus
faster) all the time, so often we can have what we want
sooner. It is worth pointing out that many FPGA implemen-
tations offer speed-ups of one to two orders of magnitude.
This would suggest that Moore’s law could leave us wait-
ing 5 to 10 years for a fast enough processor. Also, even if
general purpose CPUs become fast enough to implement a
particular algorithm, then as suggested in Section 3.1, there
may be environments where an FPGA-based implementa-
tion is still more suitable. Finally, it should be pointed out
that Moore’s Law applies to FPGAs just as it applies to se-
rial CPUs, so that when CPUs are fast enough to imple-
ment a certain algorithm, FPGAs will be capable of imple-
menting even more computationally intensive algorithms. If
Underwood [26] is correct, FPGAs may surpass traditional
CPUs in performance for some types of computations.

4. Research Directions
Having weighed the advantages and disadvantages, and
with a slightly optimistic outlook on the future, it is the au-
thor’s opinion that FPGAs have an important role to play
in the design of future embedded vision systems. This sec-
tion will consider some of the obstacles that still need to be
overcome in order to realize this potential.

Work needs to be done on the automated analysis of
the required precisions for converting a given algorithm to
fixed-point [6]. This should be tied to the type and num-
ber of target devices, and the problem of partitioning an
implementation across these devices. Some work has al-
ready been done in this area [4, 11], with the latter present-
ing a system that computes appropriate bit-widths (as well
as automatically selecting between fixed- and floating-point
arithmetic) given C++ or System Generator files as input,
although no mention is made of automatic partitioning of an
algorithm across multiple FPGA devices, or even choosing
bit-widths to accommodate the finite resources of a partic-
ular target device. It is very likely that this research will be
undertaken by researchers in the FPGA and DSP commu-
nity regardless of what happens in the vision community.

Related to the analysis of precision and algorithm par-
titioning is the issue of scalability of designs. More con-
cretely, if you would like to implement a particular al-
gorithm on a particular device, how do you answer the
questions, “What is the best I can do with the available
resources?”, and given performance specifications “Are
the given resources minimally sufficient?” As vision re-
searchers will be implementing their own algorithms, they
will have to deal with this issue. It is highly desirable that
designs can be made scalable to fit different devices of dif-
ferent capacities, and be easily transportable across differ-
ent families of devices. Again, guidance on this issue will
come from FPGA experts.

Given the availability of embedded hard- and soft-
processors, and given that there will always be aspects of vi-
sion systems that are more appropriately done in software,
vision systems implemented on FPGAs will need to take
advantage of embedded processors to optimize the perfor-
mance and flexibility of the implementation. The correct
balance will depend on the algorithm being implemented.
Soft-processor cores are particularly of interest, since they
can be customized for the task at hand, and can be instanti-
ated multiple times in a single FPGA device.

Perhaps the biggest undertaking that will facilitate im-
plementation of vision systems on FPGAs is the develop-
ment of a library of interchangeable vision cores that could
be used in high-level design environments. These cores, or
modules, would need a model for direct communication be-
tween them. Such models exist, e.g. in the SIMPPL archi-
tecture [24], each module has a programmable controller to
simplify (1) direct data communications between modules,

5



and (2) modifying the module’s internal functionality with-
out changing the interface to adjoining modules. When data
needs to be shared among multiple modules, then an archi-
tecture such as the Open Core Protocol (OCP) [1] simplifies
connecting modules to buses by providing a standard inter-
face to each module, and then different cores to connect to
a variety of supported standard bus architectures. The ob-
vious question then becomes, “What modules would you
build?” A useful library would likely include modules for
image acquisition from a variety of standard camera inter-
faces, multi-scale/pyramidal image representations, feature
detectors (e.g. Harris corner features [12], SIFT features
[22, 23], and other affine-invariant features), stereo mod-
ules, optic flow modules, particle filter frameworks, egomo-
tion estimation, generic segmentation/clustering modules
(to do colour- or motion-based segmentation).

An example of how such modules might work together
is as follows: a feature detector can feed features to a mod-
ule that segments point correspondences based on 3-D mo-
tion, where the latter is based on recovering R and ~T from
an E-matrix egomotion module. The feature detector itself
may rely on a multi-scale image representation module. An-
other example is the design of “smart-sensors”, for example
a sensor that outputs not only images but lists of tracked fea-
tures to a general-purpose processor for higher-level analy-
sis.

A longer term goal might be the study of “on-the-fly”
reconfiguration of FPGA devices. In [20] an architecture
is proposed for processing of multiple data-streams where
each data stream can be initiated, terminated & reloaded
without interruption of the other data streams. Such dy-
namic re-configuration may prove useful in clustering im-
plementations that need to support splitting and merging of
clusters, to give one example. Modern FPGA families sup-
port such reconfiguration for a variety of purposes, includ-
ing recovering from configuration errors where a configura-
tion bitstream becomes corrupt, and part of the device has
to be re-configured to restore proper operation [17, 16].

5. Summary and Conclusions
This paper provides a brief overview of the current state-
of-the-art of FPGA technology, including the available re-
sources to facilitate design on these devices. The major ad-
vantages are reconfigurability, and the ability to exploit par-
allelism in vision problems thus leading to substantial per-
formance improvements. The major disadvantages are con-
version of algorithms to fixed-point representations, hard
resource limitations and lack of portability of designs be-
tween devices3, and the relatively more complicated design
process as compared to software. The role of Moore’s law

3This problem is rapidly disappearing as IEEE standards are adopted
by third-party manufacturers of synthesis tools.

in the debate about which technology to choose has been
considered. In the final analysis FPGA technology looks
promising, but a number of issues need to be addressed.
These are: automation of analysis for fixed-point precisions
required and the task of partitioning algorithms across mul-
tiple devices, taking advantage of hard/soft-processor cores
to include software elements to the design, development of
standard and interchangeable modules to facilitate building
more complex systems, and possible research into systems
that re-configure themselves as a normal part of their oper-
ation.

Acknowledgments
The author would like to thank the following for valuable
discussions related to this work: James Clarke, Paul Chow,
Ahmed Darabiha, Frank Dellaert, Frank Ferrie, Allan Jep-
son, Jim Little, Divyang Masrani and Jonathan Rose.

References
[1] VSIA homepage. Online: http://www.vsia.org.

[2] Steve Brown, R. Francis, Jonathan Rose, and Zvonko
Vranesic. Field-Programmable Gate Arrays. Kluwer Aca-
demic Publishers, May 1992.

[3] Peter J. Burt. A pyramid-based front-end processor for
dynamic vision applications. Proceedings of the IEEE,
90(7):1188–1200, July 2002.

[4] M. L. Chang and Scott Hauck. Precis: A design-time pre-
cision analysis tool. In 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages
229–283, April 2002.

[5] Altera Corporation. Altera homepage.
http://www.altera.com/.

[6] Ahmad Darabiha, Jonathan Rose, and W. James MacLean.
Video-rate stereo depth measurement on programmable
hardware. In Proceedings of the 2003 IEEE Computer Soci-
ety Conference on Computer Vision & Pattern Recognition,
volume 1, pages 203–210, Madison, WI, June 2003.

[7] Javier Dı́az, E. Ros, S. Mota, F. Pelayo, and E. M. Ortigosa.
Real-time optical flow computation using FPGAs. In Pro-
ceedings of the Early Cognitive Vision Workshop, Isle of
Skye, Scotland, June 2004.

[8] Olivier Faugeras, Bernard Hotz, Hervé Mathieu, Thierry
Viéville, Zhengyou Zhang, Pascal Fua, Eric Théron, Lau-
rent Moll, Gérard Berry, Jean Vuillemin, Patrice Bertin, and
Catherine Proy. Real time correlation-based stereo: Al-
gorithm, implementations and applications. Technical Re-
port Research Report 2013, INRIA Sophia Antipolis, August
1993.

[9] David J. Fleet. Disparity from local weighted phase corre-
lation. In International Conference on Systems, Man and
Cybernetics, volume 1, pages 48–54, 1994.

6



[10] James Fung and Steve Mann. Using multiple graphics
cards as a general purpose parallel computer: Ap-
plications to computer vision. In Proceedings of the
17th International Conference on Pattern Recogni-
tion, pages 805–808, Cambridge, UK, August 2004.
Online: http://www.eyetap.org/papers/
docs/procicpr2004/.

[11] Altaf Abdul Gaffar, Oskar Mencer, Wayne Luk, and Peter
Y. K. Cheung. Unifying bit-width optimisation for fixed-
point and floating-point designs. In 12th IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM
2004), pages 79–88, Napa, CA, April 2004.

[12] Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proceedings Fourth Alvey Vision Confer-
ence, pages 147–151, Manchester, United Kingdom, 1988.

[13] K. M. Hou and A. Belloum. A reconfigurable and flexi-
ble parallel 3d vision system for a mobile robot. In IEEE
Workshop on Computer Architecture for Machine Percep-
tion, New Orleans, Louisiana, December 1993.

[14] SBS Technologies Inc. SBS technologies homepage.
http://www.sbs.com/.

[15] Xilinx Inc. Xilinx homepage.
http://www.xilinx.com/.

[16] Xilinx Inc. Xapp216 v1.0: Correcting single-event upsets
through virtex partial configuration, June 2000.

[17] Xilinx Inc. Xapp151 v1.6: Virtex series configuration archi-
tecture user guide, March 2003.

[18] Allan Jaenicke and Wayne Luk. Parametrised floating-point
arithmetic on FPGAs. In IEEE Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 897–900,
May 2001.

[19] Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano,
and Masaya Tanaka. A stereo machine for video-rate dense
depth mapping and its new applications. In Proceedings of
the 15th IEEE Computer Vision & Pattern Recognition Con-
ference, pages 196–202, San Francisco, June 1996.

[20] Lev Kirischian, Irina Terterian, Pil Woo Chun, and Vadim
Geurkov. Re-configurable parallel stream processor with
self-assembling and self-restorable micro-architecture. In
Proceedings of International Conference PARELEC-2004,
Dresden , Germany, September 7-10 2004.

[21] Kurt Konolige. Small vision systems: Hardware and im-
plentation. In Proceedings of the Eighth International Sym-
posium on Robotics Research (Robotics Research 8), pages
203–212, Hayama, Japan, October 1997.

[22] David G. Lowe. Object recognition from local scale-
invariant features. In Proceedings of the Seventh Interna-
tional Conference on Computer Vision, pages 1150–1157,
Kerkyra, Greece, 1999.

[23] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:90–110, 2004.

[24] Lesley Shannon and Paul Chow. Simplifying the In-
tegration of Processing Elements in Computing Sys-
tems using a Programmable Controller. In IEEE
Symposium on Field-Programmable Custom Com-
puter Machines (FCCM’05), April 2005. To appear,
http://www.eecg.toronto.edu/˜pc/research/
publications/shannon.fccm2005-submitted.pdf

[25] Ilkka Tuomi. The lives and deaths of Moore’s law.
http://www.firstmonday.dk/issues/issue7 11/tuomi/, 2002.

[26] Keith D. Underwood. Fpgas vs. cpus: Trends in peak
floating-point performance. In 12TH ACM International
Symposium on Field Programmable Gate Arrays (FPGA
2004), pages 171–180, February 2004.

[27] G. van der Wal and P. Burt. A VLSI pyramid chip for mul-
tiresolution image analysis. Int. Journal of Computer Vision,
8:177–190, 1992.

[28] J. Woodfill and B. Von Herzen. Real time stereo vision on the
parts reconfigurable computer. In 5th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
pages 201–210, 1997.

[29] R. Yang and M. Pollefeys. Multi-resolution real-time stereo
on commodity graphics hardware. In Proceedings of the
2003 IEEE Conference on Computer Vision and Pattern
Recognition, pages 211–218, Madison, Wisconsin, June
2003.

[30] R. Zabih and J. Woodfill. Non-parametric local
transforms for computing visual correspondence.
In Proceedings of the 3rd European Conference
on Computer Vision, pages 150–158, May 1994.
http://www.cs.cornell.edu/rdz/Papers/Archive/neccv.ps,
http://www.cs.cornell.edu/rdz/Papers/Archive/nplt-
journal.ps.gz.

7


