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An Evasive Maneuvering Algorithm for UAVs  
in Sense-and-Avoid Situations 

David Hyunchul Shim 
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South Korea 

1. Introduction    

Highly autonomous unmanned aerial vehicles (UAVs) will need advanced flight 
management systems that will actively sense the surrounding environment and make a 
series of intelligent decisions to accomplish the given mission with minimum intervention 
from remotely located human operators. In near future, it is expected that UAVs will be 
found as a ubiquitous surrogate for manned vehicles in such fields as airborne sensing, 
payload delivery, and ultimately aerial combat. In that process, UAVs must be integrated 
into civilian or military airspaces along with other manned and unmanned aerial vehicles. 
However, such level of autonomy is yet to be fully developed. Reportedly, a German tactical 
UAV named LUNA had a close encounter with an Afghan Airline A300B4 in the sky over 
Kabul, Afghanistan on August 30, 2004. Attributed to a failure of the nearby air traffic 
control tower to follow standard procedures, two vehicles occupied the same airspace at the 
same time, no farther than 50 meters when closest. The UAV operator managed to 
command an evasive maneuver just a split second before impact. The strong wake of 
A300B4 blew the UAV into an unrecovered dive as seen by the onboard video system in Fig. 
1. As exemplified in this rare but alarming event, the collision avoidance has to be 
incorporated into the flight management system especially when the vehicle is flying in a 
crowded airspace or at low altitudes where many obstacles such as terrain and buildings 
pose threat to safe flight. 

 

Figure 1. A near-miss incident of a UAV and A300 airplane (August 2004) 

There are also increasingly many occasions that UAVs have to fly at a lower altitude where 
they are not free from collisions from obstacles such as terrain, buildings or power lines. In 
order for a UAV to avoid any imminent collision with other vehicles or such obstacles, it 
should be capable of sensing and tracking of objects, collision prediction, dynamic path 
planning and tracking. When the trajectories of objects on potential collision courses are 
predicted, a collision-free trajectory should be computed in real-time. There are a number of 

A300 
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research results for real-time path planning (Bellingham et al, 2003; Dunbar et al, 2002; 
Milam et al, 2002). In the context of emergency evasive maneuver, however, one would 
expect that the vehicle may need to maneuver at its full dynamic capability, i.e., maximum 
turn rate, acceleration/deceleration, or climb/descent. In such cases, the inputs to control 
surfaces may saturate or the vehicle states, such as roll angle or cruise velocity, may reach 
the acceptable limits. In order to compute a plausible trajectory that the vehicle can actually 
fly along without exceeding its dynamic range, a proposed method should be capable of 
taking such limits into account when computing an evasion trajectory. In this article, we 
introduce a nonlinear model predictive control (NMPC) based approach, which can be 
applied to nonlinear dynamic systems with state constraints and input saturation, unlike 
most control theories available as now. One drawback of MPC is, as often pointed out, the 
heavy numerical load, which is now considered well within the reach of the latest CPU 
technology as demonstrated in (Shim & Sastry, 2006). 
In this article, we present an MPC-based collision avoidance algorithm for safe trajectory 
generation and control of constrained nonlinear dynamic system with input saturation in 
real-time. We also introduce an active sensing method using a laser scanner.  We consider a 
number of scenarios with moving vehicles or obstacles in the surroundings. The proposed 
approach is validated by a series of realistic simulations and experiments including a head-
on collision and a flight in an urban canyon. 

2. Real-time evasive Maneuvering using Model Predictive Control 

In this section, we present the formulation of an NMPC-based approach for real-time safe 
trajectory generation during an evasive maneuver for avoiding collision. We consider 
scenarios that, when a UAV flies to a given destination, a collision with nearby flying or 
stationary obstacles are anticipated. The position information of obstacles is assumed to be 
directly measured or available from other sources including active communication with 
cooperating agents or an eye-in- the-sky. 

2.1 NMPC Formulation 

Suppose we are given a nonlinear time-invariant dynamic system such that  

 ( 1) ( ( ), ( ))x k f x k u k+ =  (1) 

 ( ) ( ( ))y k g x k=  (2) 

where ∈ ⊂ ∈ ⊂,x un nx X u U .{ {  The optimal control input sequence over the finite receding 

horizon N is obtained by solving the following nonlinear programming problem: 

 Find *( ), ,..., 1u k k i i N= + − such that (3) 

*( ) arg min ( , , )u k V x k u=  

where  

 
1

( , , ) ( ( ), ( )) ( ( ))
k N

i k

V x k u L x i u i F x k N
+ −

=

= + +∑  (4) 
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where ( , ),L x u is a positive definite cost function and F is the terminal cost. Herein, 
*( ),u k ,..., 1k i i N= + −  is the optimal control sequence that minimizes ( , , )V x k u  such that 
* *( , ) ( , , ( , )) ( , , )V x k V x k u x k V x k u= ≤ , ( )u k U∀ ∈ . The cost function term L is chosen as 

 ( ) ( )
1

1 1
( , ) ( ) ( , )

2 2

on
Tr r T

l
l

L x u x x Q x x u Ru S x P x η
=

= − − + + +∑  (5) 

The first term penalizes the deviation from the original course. The second term penalizes 

the control input. ( )S x  is the term that penalizes any states not in X as suggested in (Shim et 

al, 2003). Finally, ( , )v lP x η is to implement the collision avoidance capability in this NMPC 

framework: ( , )v lP x η is a function that monotonically increases as 2|| || 0η− →v lx , where 

3

vx ∈{ is the position of the vehicle and ηl  is the coordinates or l-th out of total on  

obstacles being simultaneously tracked.  
The control input saturation can be facilitated by enforcing  

 
max max

min min
( )

⎧ >⎪
= ⎨

<⎪⎩
i i i

i

i i i

u if u u
u k

u if u u
 (6) 

during optimization. In this manner, one can find the control input sequence that will be 
always within the physical limit of the given dynamic system. We employ the optimization 
method based on indirect method of Lagrangian multiplier suggested in (Sutton & Bitmead, 
2000). 

Vehicle Dynamics

 MPC supervisor

MPC Optimization Path planner

-

Navigation 

Sensors

 

Figure 2. Flight control system architecture with MPC and explicit feedback loop 

 When an optimal control sequence is found at each epoch k, the control law is given as  

  ( )* *( ) ( ) ( ) ( )u k u k K y k y k= + −  (7) 

where K is a explicit feedback control gain, which can be found by approaches such as in 

(Shim, 2000). With *( ),u k ,..., 1k i i N= + − , one can find *( )y k  by solving recursively the 

given nonlinear dynamics with 0( ) ( )x i x i=  as the initial condition. Ideally, if the dynamic 

model used in the prediction in the optimization problem is identical to the actual dynamics 
and there is no disturbance, the plant would behave as predicted. In the real world, such 
assumptions cannot be justified due to the inevitable model mismatch, disturbance, and 
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many other reality factors satisfied. Therefore, with a tracking feedback controller in the 
feedback loop, the system can track the given trajectory reliably in the presence of 
disturbance or modeling error. The architecture of the proposed flight control system is 
given in Fig. 2.  

2.2 Obstacle Sensing  

For effective collision avoidance, it is very important to detect the location of obstacles of 
concern in an accurate and timely manner. Such information can be supplied by a preloaded 
map or information sent by other cooperative neighboring vehicles. However, such 
information may not be accurate, up-to-date, or always available if communication is lost. A 
local sensing is favored since it can provide up-to-second information. Obstacle detection 
can be done using active or passive sensors such as radar, laser scanners, or mono or stereo 
cameras and the choice depends on many factors such as operating condition, accuracy, and 
detection range. The laser scanning computes the distance to an object by measuring the 
time of flight (TOF) of the laser beam to make a round trip from the source to the reflected 
point on an object. The operation is straightforward and the measurement is very accurate, 
so it is suitable for short-range detection. However, as the detection range depends on the 
intensity of the light that radiates from the laser source, the range is limited by the 
maximum allowable intensity of the beam. Active radar has similar attributes since it 
operates in a similar principle. The resolution of radar sensing depends on the wavelength 
of radio wave used. Recently gigahertz-range radars are often used for its more accurate 
imaging capability at the expense of shorter detection range. Active sensing may not be 
desired when a covert operation is required.  
Camera-based detection is attractive as it is a passive detection and the imaging device is 
usually much cheaper and smaller than comparable radar or laser sensors. However, cameras 
do not directly give the ranging information. A stereo camera system may be used to measure 
the distance by the parallax, but it is useful only when the objects are close enough. Optic flow 
can be also used for short-range detection (Rydergard, 2004; Hrabar, 2005). For long-range 
detection, the pixel area occupied by the obstacle can be the only visual cue to sense the 
existence and range. The resulted accuracy is usually much lower than the active sensing 
methods mentioned above. In this article, we choose to use a laser scanner for obstacle sensing. 
A laser ranging sensor consists of a laser source, a photo-receptor and a rotating mirror for 
planar scanning. An accurate timing device measures the time lapse from the moment the 
laser beam is emitted to the moment the laser beam reflected on an object returns to the 
receptor. A rotating mirror reflects the laser beam in a circular plane, allowing for two-
dimensional scanning.  At each scan, the sensor reports a set of measurements that supplies 
the following measurement set: 

 { }( , ), 1,...,L n n measY d n Nβ= =  (8) 

where ,n nd β  and measN  represent the distance from an object, the angle in the scanning 

plane, and the total number of measurements per scan, respectively. Each measurement, i.e., 
the relative distance from the laser scanner to a scanned point in the laser-scanner 
coordinate system, can be written into a vector form such that 

 ( )/ | cos sinL L L
D L n n n nd β β= +X i j  (9) 
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where Li  and L
j  are orthonormal unit vectors in XL and YL directions on the scanning 

plane, respectively. D, L, B, and S represent scanned data, laser scanner, vehicle body 
coordinate system, and spatial coordinate system, respectively as shown in Fig. 3.  

obstacle

SZ

SX

S
Y

/D LX
1 1

( , )
i i
d β+ +

( , )i id β
laser scanner

S

B
X

B
X

LX

LZ

BY

BZ

/L BX

LY

α

S

D
X

 

 

Figure 3. Coordinate transformation for laser scan data (left), a scanning laser mounted on a 
helicopter UAV (right) 

The calculation of the spatial coordinates of detected points involves a series of coordinate 
transformations among three coordinate systems: body coordinate systems attached to the 
laser scanner and to the host vehicle, and the spatial coordinate system, to which the vehicle 
location and attitude are referred.  
Each measurement vector in the laser scanner-attached coordinates is first transformed into 
the vehicle body coordinates and then the spatial coordinate system as following: 

 

/
/ /

/ /
/( )

S S L L
D L D L

S B B L L
D Lα

=

=

X R X

R R X
 (10) 

/ ( )B L αR  is the transformation matrix from the laser body coordinate L to vehicle body 

coordinate B where α is the tilt angle with respect to the vehicle body coordinate system. 
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/S BR  denotes the transformation matrix from vehicle body coordinates to spatial 
coordinates.  Finally, the spatial coordinate of the obstacle is found by: 

 
/ /

/ / /
/ /( )

S S S S
D D L L B B

S B B L L S B B S
D L L B Bα

= + +

= + +

X X X X

R R X R X X
 (11) 

Using (11), one can find the spatial coordinate of sampled points on obstacles by combining 
the raw measurement vector with the position, heading, and attitude of the vehicle, which 
are available from the onboard navigation system of the UAV. It should be noted that the 
detection accuracy in the spatial coordinate system not only depends on the laser scanner’s 
accuracy itself, but also on the accuracy of the vehicle states.  
To ensure conflict-free navigation in an airspace filled with obstacles, the laser scanner 
should scan the surroundings wide enough to find conflict-free trajectory. For example, if 
the laser scanner is installed to scan the area horizontally, an actuation in the pitch axis is 
necessary so that the scanner can cover the frontal area sufficiently higher than the rotor disc 
plane and lower than the landing gear. Fig. 3 shows an actuated laser scanner mounted on a 
helicopter UAV (Shim et al, 2006). The scanner is mounted on a tilt actuator with an 

encoder, which provides the tilt angle α  in / ( )B L αR . Fig. 4 shows visualizations of laser scan 

data, which is obtained by (11). As can be seen, the shapes of objects can be accurately 
detected and reconstructed. 

   

Figure 4. Point cloud of obstacles sensed by a laser scanner shown in Fig. 3 (left: scanning of 
ground-based objects of area shown in the inset image;  right: scanning of a UAV airborne) 

2.3 Trajectory Generation 

For collision avoidance, we choose ( , )v lP x η  in (5) such that  

 
1

( , )
( ) ( )

v l T
v l v l

P x
x G x

η
η η ε

=
− − +

 (11) 

where G is positive definite and 0ε >  is to prevent ill conditioning when 
2

0.vx η− →  One 

can choose { , , },x y zG diag g g g= 0ig >  for an orthogonal penalty function. The penalty 

function (11) serves as a repelling field and has nonzero value for entire state space even 

power lines

trees

Host UAV
power pole
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when the vehicle is far enough from obstacles. The crucial difference from the potential field 
approach here is that we optimize over a finite receding horizon, not only for the current 
time as in the potential field approach. For obstacle avoidance, we consider two types of 
scenarios: 1) a situation when the vehicle needs to stay as far as possible from the obstacles 
even if no direct collision is anticipated and 2) a situation when the vehicle can be arbitrarily 
close to the obstacle as long as no direct conflict is caused. For the second situation, (11) can 

be enacted only when min2vx η σ− → , where minσ  is the minimum safety distance from 

other vehicles. 
Since MPC algorithms optimize over the receding finite horizon into future, the predicted 

obstacles’ trajectory over ,..., 1k i i N= + − is needed in (11). It is anticipated that the inclusion 

of predicted obstacle locations in the optimization will produce more efficient evasion 
trajectory if the prediction is reasonably accurate. If the obstacle detection system is 
capable of estimating the current velocity in addition to the position of an obstacle, one can 

predict ( )l kη  by extrapolating it over Np steps, namely prediction Horizon, using an equation 

such that 

 ( ) ( ) ( )( 1)l l lk i k tv k iη η+ = + ∆ −  (12) 

It is noted that the prediction can be done in more elaborated way using a Kalman filter 
(Watanabe et al, 2005) if the dynamic characteristics is known at least partially in advance.  
In this research, we propose a dual-mode strategy for the MPC-based collision avoidance 
system. In normal condition, we choose a parameter set that achieves good tracking 
performance. When the obstacle prediction algorithm using (12) predicts that a bogey may 

approach the host vehicle’s future position within a cautionary margin cσ  such that 

( ) ( )l p p ck N y k Nη σ+ − + < , the MPC-based controller is switched to the evasion mode. The 

parameter set in (5) is then tuned for effective evasive maneuver to generate a conflict-free 
trajectory by lowering penalties on the large deviation (=tracking error) from the original 
course or an aggressive maneuver with large control effort if necessary. The control effort is 
also less penalized to allow for more aggressive maneuver. This approach is illustrated in 
Fig. 5. Optionally, if the predicted future trajectories of the host vehicle and bogeys get 

closer within the absolute safety margin a cσ σ< , the proximity penalty gain can be 

increased to allow for more clearance margins.  

, , ( ) ( )

,... 1

l c

p

l k k y k

k i i N

η σ∃ ∃ − <

= + −

, , ( ) ( ) ,( 0)

,... 1

l c

p

l k k y k

k i i N

η σ α α∀ ∀ − > + >

= + −
 

Figure 5. State transition diagram for flight mode switching algorithm 
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In the following section, we apply the proposed MPC algorithm for (a) one vehicle versus a 
non-cooperating vehicle and (b) one vehicle in an environment with obstacles. 

3. Simulation and experiment results 

3.1 One on One Situation 

In this scenario, we consider a UAV cruising at 3m/s at 10 meters above the ground. 
Without loss of generality, we use a dynamic model for a rotorcraft UAV based on Yamaha 
R-50 industrial helicopter (Shim, 2000), whose specification is given in Table 1. The bogeys 
are staged to moves along a straight line at a constant altitude and speed at various incident 
angles. The detection range is simulated to be 50 meters based on a typical laser scanner and 
100 meters for a hypothetic vision-based system. We investigate a fraction of these 
combinations of the factors mentioned above, which would highlight the performance of the 
proposed approach so that we may have the insight to the behavioral patterns and 
characteristics of the algorithm with a realistic detection.  
In this scenario, we consider the case when a UAV encounters a bogey at various speed and 
incident angle. The horizon N is set to 100 with 40 ms of sampling time, so the prediction 
horizon spans over 4 seconds. For fixed obstacles, stationary obstacles 12 meters away can 
be considered in the optimization when cruising at 3 m/s. As expected, the moving 
obstacles will impose more challenges in detection and finding a safe evasion trajectory in a 
short time.  
First, we consider the following cases: a bogey cruising towards the UAV at 2 m/s, 5 m/s, 

15 m/s and 30m/s. The cautionary margin 50cσ = m and the absolute safety margin 

10aσ = m. We judge the vehicles collide when the distance from each other is less than 5 m.  

In Fig. 6, an example when a bogey closes in at 10 m/s, with 0° incident angle (head-on 

collision). As can be seen in the figures, the host UAV maintains sufficient margin, which 

decreases as low as 8 m/s, well above the minimal distance. For comparison, we consider 

when the horizon N is much shorter to demonstrate the advantage of the receding horizon 

approach. The simulation result when N is shortened to 20 (=0.8sec) and all other 

parameters are fixed as before is given in Fig. 5 as well. The result shows that the UAV 

manages to escape the collision, but the vehicle goes into a violent transient motion during 

the close fly-by interval.  It is attributed that the short horizon length does not allow a 

sufficient time to predict the collision and then steer the vehicle away from the collision 

course. We also note the heading of the vehicle is implicitly determined by the optimization. 

In the following examples, we consider a set of different approach velocities and incident 

angles. 

In Fig. 7, a number of approach velocities are tested. In Fig. 7-(d), the vehicle passes the 
bogey with 7m distance, which is considered as a bare minimum.  It is expected that a 
longer horizon length will help to avoid the obstacle with a more sufficient margin.  In Fig. 
8, the trajectory planner shows a reliable performance in computing safe trajectories when 
the bogey flies in at various incident angles. In overall, the MPC-based collision avoidance 
algorithm demonstrates a satisfactory performance in various scenarios. 
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  (a) N=100    (b) N=20 
 
Figure 6. A head-on collision scenario with different horizon lengths, N=100 and 20.  

 ( 3m/s,cruiseV = 10m/s, =0bogeyV α= c ) 
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Figure 7. Various cruise velocity 2,5,15,30m/scruiseV =  of host vehicle with 10m/sbogeyV =  
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 (c) =135α c  (d) =180α c  

Figure 8. Various incident angles =45 ,90 ,135 ,180 ,α c c c c  3m/scruiseV = with 10m/sbogeyV =  
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In order to validate the proposed algorithm experimentally, two helicopter UAVs (Table 1) 
are deployed in a collision course (Fig. 9 and 10). Two vehicles are initially flown manually 
30 meters apart and commanded to trade their position while flying at 1.2 m/s. Then the 
MPC algorithm running on a notebook computer with Pentium 1.8 GHz CPU computes safe 
trajectories for each vehicle in MATLAB/Simulink environment. At each sampling time of 
100 ms, each vehicle communicates with the centralized trajectory planner but not directly 
each other over a wireless channel to report the current position and receive a new 
waypoint. The experiment was performed in four separate occasions and the vehicles could 
fly to their own destination while avoiding collision. An experiment result set is shown in 
Fig. 10. It can be seen that the separation in the middle was about 12 meters from center to 
center of the vehicles and less than 9 meters from tip-to-tip.  

 

Figure 9. Mid-air collision avoidance between two rotorcraft UAVs using real-time MPC 

 

Figure 10. Trajectories of two UAVs Experiment result of Trajectories of of dynamic path 
planning for collision avoidance 
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Base platform Yamaha R-50 Industrial Helicopter  

Dimension 0.7 m(W) × 3.5 m (L) × 1.08 m (H) 

Rotor Diameter 3.070 m 

Weight 
44 kg (dry weight) 

20 kg (payload including avionics) 

Engine 12 hp, 2 cycle air-cooled gasoline engine 

Operation Time
Fuel: 40 minutes 

Avionics: 200 minutes 

Onboard 
Systems 

CPU: AMD K6 400MHz PC104 
Boeing DQI-NP INS 

NovAtel GPS MillenRT-2 
IEEE 802.11b Wireless Ethernet 

Ultrasonic altimeters 
SICK laser range finder (LMS-200) 

Capabilities 
Preloaded waypoint navigation 
Interactive waypoint navigation 

Trajectory tracking mode 

Table 1. Specification of a testbed UAV  

3.2 Obstacle Avoidance 

In this section, we apply the proposed MPC-based algorithm to the navigation problem in a 
cluttered environment such as urban canyons. An obstacle sensing system is assumed to be 
combined with the avoidance algorithm. In this scenario, in place of using the current and 
linearly extrapolated position information of moving obstacles, the position of the nearest 

obstacle is used in (11).  In other words, we need to find min
OX , the vector from the reference 

position to the nearest point on an obstacle such that 

 min

2
( ) arg min .

O obs

O ref O ref
S∈

= −
X

X X X X  (13) 

Whilst the position of other vehicles can be treated as a point, obstacles cannot be effectively 
described as a point. Rather, they have complex shapes. Also, as the MPC algorithm solves 
over the finite horizon, the nearest obstacle from a future position of the vehicle in the 
prediction session changes. Theoretically, (13) demands a perfect knowledge on all obstacles 
in the surrounding environment, which assumes an ideal sensor capable of omni-directional 
scanning with infinite detection range through any other obstacles. Also, during the 
optimization, a hypothetic sensor should be moving along the trajectory of the state 
propagation over a finite horizon at each iteration step. Obviously, any realistic sensors 
would not provide such information. Finally, if the MPC algorithm is used as a reference 
trajectory generator, due to the inevitable tracking error, the range data is measured at the 
physical location of the vehicle, not on the reference trajectory. Therefore, in order to 

provide min
OX  to the MPC-based trajectory generator during the optimization, it is important 

to maintain a local obstacle map caching recent measurements from onboard sensors. 
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Figure 11. Finding nearest points at each state propagation during prediction (left) and local 
map building method for the nearest-point approach avoidance (right) 

At each scan, the sensor provides measN  measurements of the scan points from the nearby 

obstacles. Due to the imperfect coverage of the surroundings with possible measurement 

errors, each measurement set i
OX  is first filtered, transformed into local Cartesian 

coordinates, and cached in the local obstacle map repository. A first-in, first-out (FIFO) 
buffer is chosen as the data structure for the local map, whose buffer size is determined by 
the types of obstacles nearby. If the surrounding is known to be static, the buffer size can be 
as large as the memory and processing overheads permit. On the other hand, a more 
dynamic environment would require smaller buffer to reduce the chance to detect obstacles 
that may not exist anymore.  
In order to solve (13), the measurement set in the FIFO is sorted in ascending order of 

2

i
O ref−X X  for all i

OX  in the local obstacle map, where 1 Ci N≤ ≤ . Prior to be registered in the 

database, any anomalies such as salt-and-pepper noise should be discarded. Also, the 
measurements are examined for any small debris, such as grass blades or leaves blown by the 
downwash of the rotor. Such small-size objects, not being serious threats for safety, are 
ignored. In order to eliminate these anomalies, we first discard measurements out of minimum 
and maximum detection range. Then we apply an algorithm that computes a bounding box 
that contains a series of subsequent points in the FIFO where the distance between the adjacent 
points in the sorted sequence is less than a predefined length. Then, if the volume of the 
bounding box is larger than a threshold of becoming a threat, the coordinates of the nearest 
point in the bounding box is found and used for computing (9). The procedure of the local 
obstacle map building method proposed above is illustrated in Fig. 11.  
The proposed obstacle avoidance algorithm was validated in an actual flight test using the 
same helicopter UAV used in Section 3.1. The experiment design is carefully scrutinized for 
the safety: it is performed in a field with portable canopies simulating buildings, not with 

real ones. The canopies, measuring 3 × 3 × 3 meters each, are arranged as shown in Fig. 11. 
The distance between one side to the next adjacent side of canopies is set to 10 meters in the 
north-south direction and 12 meters in the east-west direction so that the UAV with 3.5 
meter long fuselage can pass between the canopies with minimal safe clearance, about 3 
meters from the rotor tip to the nearby canopy when staying on course. 
For validation, an MPC engine originally used for the collision avoidance experiment 
introduced above is modified for urban navigation problem. The MPC engine is augmented 

min
OX

www.intechopen.com



Aerial Vehicles 

 

634 

with the local map builder using the laser range finder’s data. The MPC with the local map 
building algorithm is implemented in C language for speed and portability. As shown in 
Fig. 12, the MPC path planner demonstrated its capability to generate a collision-free 
trajectory based on the original trajectory with intentional overlapping with buildings.  

 

Figure 12. Aerial view of urban navigation experiment (dashed: given straight path, solid: 
actual flight path of UAV during experiment) 

On-board System

Range

Measurements

Laser Range Finder

Ground Computer

Data Display 

and Logging

Local

Map Builder

Nearest

Obstacle Info

Range 

Measurements

Obstacle-free

Trajectory

Vehicle States
BEAR

Flight Management

System

Computation

Results

MPC

Path Generator

  

Figure 13. Overall system structure used in the experiments (left) and a snapshot of three-
dimensional rendering during an urban exploration experiment (right) 

A number of experiments for urban flight were performed. For obstacle detection, the 
vehicle is equipped with an LMS-200 from Sick AG, a two-dimensional laser range finder. It 
has 80 meters of detection range with 10 mm resolution. The scanner’s measurement is sent 
to the flight computer via RS-232 and then relayed to the ground station running the MPC-
based trajectory generator in Simulink. The trajectory generation module on MATLAB/ 
Simulink and the ground monitoring/commanding software were executed simultaneously 
on a computer with Pentium 4, 2.4 GHz with 512 MB RAM running Microsoft Windows XP. 
The laser scanner data is processed following the procedure described above. In Fig. 13, a 
three-dimensional rendering from the ground station software is presented. The display 

shows the location of the UAV, the reference point marker, min
OX  to a point in the local 

obstacle map at that moment, and laser-scanned points as dots. During the experiments, the 
laser scanner was able to detect the canopies in the line of sight with outstanding accuracy, 
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as well as other natural and artificial objects including buildings, trees and power lines. The 
processed laser scanned data in a form of local obstacle map is used in the optimization (5). 
The trajectory is then sent via IEEE 802.11b to the onboard flight management system at 
10Hz. The overall system structure used in the experiments is shown in Fig. 13. The tracking 
layer controls the host vehicle to follow the revised trajectory. In the repeated experiments, 
the vehicle was able to fly around the obstacles with sufficient accuracy for tracking the 
obstacle-free trajectory, as shown in Fig. 12(solid line).  

4. Conclusion 

In this article, we presented a collision avoidance algorithm for UAVs using nonlinear 
model predictive control. The preview mechanism of receding horizon control is found ideal 
for such cases when the obstacles are moving. The proposed algorithm was also applied to 
obstacle avoidance problems, where onboard sensors combined with updated local map 
was combined with the MPC solver to compute conflict-free trajectories. Both cases are 
validated first in simulation and then in realistic experiments using helicopter UAVs. In 
each set of experiments, the proposed NMPC-based algorithms were able to run in real-time 
for computing conflict-free trajectories. The proposed algorithm will be further extended to 
vision-based sensing as well as the avoidance problems of fixed-wing UAVs. 
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