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AN EVEN BETTER REPRESENTATION
FOR FREE LATTICE-ORDERED GROUPS

BY

STEPHEN H. McCLEARY

Abstract. The free lattice-ordered group Fn (of rank r¡) has been studied in two
ways: via the Conrad representation on the various right orderings of the free group
Gv (sharpened by Kopytov's observation that some one right ordering must by itself
give a faithful representation), and via the Glass-McCleary representation as a
pathologically o-2-transitive /-permutation group. Each kind of representation yields
some results which cannot be obtained from the other. Here we construct a
representation giving the best of both worlds—a right ordering (Gn, <) on which the
action of Fv is both faithful and pathologically o-2-transitive. This (Cn, <) has no
proper convex subgroups. The construction is explicit enough that variations of it
can be utilized to get a great deal of information about the root system & of prime
subgroups of F. All á^'s with 1 < tj < oo are o-isomorphic. This common root
system &j has only four kinds of branches (singleton, three-element, &j, and ^„ ),
each of which occurs 2"° times. Each finite or countable chain having a largest
element occurs as the chain of covering pairs of some root of &j.

1. The Conrad representation has been used most extensively by Arora and
McCleary [1], who studied centralizers of certain elements of F. The Glass-
McCleary representation was exploited (and partially developed) by McCleary in [7],
to which the present paper is a sequel. Familiarity with [7] (but not [1]) is assumed.

The Conrad representation [2] proceeds as follows: Given any right ordering
(Gv, <) of the free group Gv, the right regular representation <p of G preserves the
order (but is not in general an /-permutation group). By the freeness of Fv on the free
generating set x (which generates G^ as a group), <p can be extended to a unique
/-homomorphism into A((Gr <)) (i.e., to a unique action on the chain (G , <)),
namely

w$ = ( V f\Wij)<p = V A>vp-^   i      j ' '      j
We shall refer to this as the natural action of Fn on (G^, <). When this action is a
representation (i.e., faithful), we shall call (Gv, <) a representing right ordering.

Another kind of action of Fv is usual transitive action on the chain F /P of right
cosets of a prime subgroup P (namely (Pf)w = P(fw)). When this action is a
representation, P is called a representing subgroup of F .

-
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82 S. H. MCCLEARY

Kopytov's sharpening [4] of Conrad's representation begins with the assumption
that Fn has some transitive representation (known originally only for infinite tj, but
now known for all tj > 1 [7]). We shall make use of his proof that there must then
exist a representing right ordering (Gn, <), so we give (a somewhat streamlined
version of) the proof here (Theorem 2), and then point out a very short route to the
Conrad representation.

Inspection of the results which can be obtained only from the Conrad-Kopytov
representation (and not from the Glass-McCleary representation) reveals that only
one crucial feature of the representation is used: Every e # w g Fv maps to a
nonidentity element in some transitive action on a chain ß in which no (image of a)
group word e ¥= g g Gv fixes any point. (That ß is a right ordering of Gv does not
matter.) The fact that this feature holds already for Conrad's representation explains
why Kopytov's sharpening has not heretofore proved useful, and why we need a
further sharpening to make it useful here.

This led to the search for a pathologically o-2-transitive representation (Fv ß)
having this additional property. In fact, the property turns out to force ß to be a
right ordering (Gv, <) of G . Thus success in this search amounts to proving the
" best of both worlds" theorem (Main Theorem 3).

Finally we modify the proof of this result to describe the root systems & (Main
Theorems 4A-4C.) Theorem 4C, the version with tj > to0, along with many other
results, requires that tj be regular and assumes the Generalized Continuum Hypothe-
sis. (The cardinal number tj is regular if, as an initial ordinal number, it has no
cofinal subset of cardinality less than tj.)

Observe that whereas most previous results about free /-groups have been ex-
pected, even "obvious", this is far from true of the present results.

2. The best of both worlds. We begin by describing Kopytov's approach [4] which
starts with a transitive representation (Fv, ß) (see [7]) and constructs a representing
right order (G,,, «;).

Lemma 1 (Kopytov). In any transitive action (Fv, ß), even Gn acts transitively on ß.

Proof. Let a, ß g ß. Then aw = ß for some w = V, Ayvv,7 g Fv (wtJ g Gv). Now
ß = a(V,Ayw,y) = max(.min-aw,-• = aw¡>j> for some wrj>.

Theorem 2 (Kopytov). Let (Fv, ß) be a transitive representation of F = Fv, and let
Fa be the stabilizer subgroup of some a G ß. Pick any right ordering (Fa n Gv, ^) of
the free group Fa n Gr Then a right ordering (Gv 4:)ofGri is given by

gi<g2~ {agi < ag2, oragf = ag2ande < g^1).

The natural action ofFn on (Gv <) is faithful. Moreover, the sets Aß= {g g Gv\ag =
ß} (ß G ß) are the classes of a convex congruence 'if (with Aa = Fa D Gv), and the
representation (Fn,^) coincides with (Fv, ß) under the identification ß <-> Aß.

Proof. Clearly (G , < ) is a right ordering. The relation

gi ~ g2 *=* »£i = "#2
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FREE LATTICE-ORDERED GROUPS 83

is a convex congruence # in the right regular representation of Gv on the chain
(Gv, <), and the action of Gv on "^coincides with its action on ß (identifying ß g ß
with A^, with the aid of Lemma 1). These two statements apply also to the natural
action of F,, on (G^, <). For if gx, g2 g Gv, then if Aßgx meets Aßg2, then
A/jg, = Aßg2. Then for w S F„, Aßw = A^A/v,,) = max.min^A^ = Aßwrj,
(another ^-class) = Aßw v = Aßw. Since (Fv, ß) is faithful by hypothesis, so is
(F„,V) and thus also (F^(G„, <)).

The shortest route to Kopytov's representation is to prove just enough of [7,
Theorem 1] to get a transitive representation of Fr This saves only a bit, but for
Conrad's representation, there is a much shorter route. Theorem 2 remains valid for
transitive actions, the conclusion being that the kernel of the action (FV,(GV, <)) is
contained in the kernel of (F , ß). Thus it suffices to note that the prime subgroups
P of F afford a collection of transitive actions whose kernels have trivial intersec-
tion! ([7, Theorem 1] is completely bypassed.) Of course, Conrad's approach is still
needed for the more general notion of an /-group free over a given po-group.

How explicit is the construction in Theorem 2 of the right ordering (Gv, <) and
the representation of Fv thereon? No more explicit than the given transitive represen-
tation (Fv, ß), certainly. But unfortunately, the points ß of ß are replaced by the
perhaps complicated o-blocks A^. We shall entirely overcome this second obstacle by
arranging about (Fv ß) that Aa = Fa n G^ be {e}, i.e., that no nonidentity group
word fix a. Then the natural representation of Fv on (G , <) will coincide with
(Fv, ß). By simultaneously making (F, ß) pathologically o-2-transitive, we will get
the best of both worlds!

As an extra bonus, we bypass Theorem 2. The right ordering (Gn, <) becomes
simply

gi <g2 ** «gi < ag2,

and obviously the action (FV(GV, <)) coincides with the given representation
(Fv ß) and thus is also a representation.

Incidentally, the preceding argument shows that the transitive représentions of F
for which no nonidentity group word fixes any point coincide with the natural
representations of F on representing right orderings (Gv < ).

Main Theorem 3. Let 1 < tj < w0, or (with G.C.H.) let tj be regular. Then there
exists a right ordering (GL, <) on which the natural action of K is both faithful and
pathologically o-2-transitive. (Gv, <) must be o-isomorphic to Q //tj < w0, and may be
taken to be an a-set (tj = ua)ifr\is regular.

Proof. We shall modify the proof of [7, Theorem 1] so that no e ¥= g g G fixes
any point, and Theorem 3 will follow. Having ßg = ß (g a reduced group word ¥= e)
would produce a loop, i.e., a nonempty sequence of x * x-arrows (reduced in the
obvious sense) such that the head of the last coincides with the tail of the first. Here
an x-arrow from y to 8 is also thought of as an x~narrow from 8 to y. We want our
specifications to be loop-free.

First we treat tj < w0. We retain the specifications made in the first part of the
proof of [7, Theorem 1], through the building of all the bridges, and including the
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84 S. H. MCCLEARY

g = xyxy

Figure 1. A loop

specification that (-l)x*1 = 0, but we change the specifications which guarantee
o-2-transitivity. For convenience, we change notation: We write x as x, we let
y = x *1 (replacing xr¡¡ by x'1 produces another free generating set), and we let x be
any other element of x. Also, we negate all the numbers involved in the specifica-
tions and then shift them one to the left (see the negative half of the line in Figure
2).

Next we make further specifications as shown in the positive half of the line in
Figure 2. Let qx,q2,... be a strictly decreasing sequence of rationals (all less than 1),
with qn 10. We specify that:

(a) Ijc = 1 + qx,
(b) Ox = 1 + q2,
(c) (n + q2„-x)x = n + 1 + q2n + x, n>\,
(d) (n + q2n)x = n + 1 + q2n + 2, n > 1,
(e) ay = a — 1 for all a > 1 which are integers, or which differ by an integer from

some qn.
Regardless of what further specifications we make, the resulting (transitive) action

of F on the orbit ß = OF,, will be faithful because of the specifications retained from
[7], We claim that (F,, ß) will be o-primitive. Let A be a nonsingleton o-block
containing 0, and thus also containing points above 0. Specifications (a)-(e) make

so that

0x"y" = q2n    and    lx"y" = q2n,

0(x"yn A e) = 0    and    l(x"y" A e) = q2„.

Thus the elements x"y" A e fix A and move 1 down arbitrarily close to 0, making A
contain 1. Since ny'1 = n + 1 (n > 0), A must be cofinal in ß, so that A = ß.
Therefore (F,,ß) is o-primitive. But every o-primitive representation of F, *s
pathologically o-2-transitive [7, Proposition 13].

Previous
specifications

The v-arrows (below the line)
move points down by one.

i
12

| 1+<?1
l+<72 l+<?4

Figure 2
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FREE LATTICE-ORDERED GROUPS 85

So far we have created no loops: There are none in the specifications retained
from the proof of [7, Theorem 1] because diagrams are loop-free, and none are
created by (a)-(e) because the qfs are strictly decreasing. To finish specifying the
free generators without accidently forming any loops, we enumerate the set of
ordered pairs (a, z), where a g Q and z is a free generator or the inverse of one.
Proceeding inductively, we specify a z-arrow with tail at a (unless one has already
been specified, either earlier in the induction or prior to the induction).

The only limit points (rational or irrational) of the specified points are the
nonnegative integers; and if they-arrows are deleted, there are no limit points at all.
Thus of the tails of z-arrows below a, let ßL be the largest (ßL = -oo if there are no
such tails); and of the tails of z-arrows above a, let ßv be the smallest (ßv = + oo if
there are no such tails). This makes sense unless z = y and l<aGZorz=y~1
and 0 < a g Z, and in these cases a z-arrow with tail at a has already been
specified. As the head of the z-arrow with tail at a, we choose any point 8 # a which
has not previously been specified (as an end of any arrow at all), and which is
greater than the head ß'L of the z-arrow with tail at ßL (no restriction here if
ß, = -oo) and less than the head ß'v of the z-arrow with tail at ßv. The above
remark about limit points guarantees the existence of such a 8, and the choice of 8
preserves consistency of z-arrows.

For each z g x, this construction specifies an o-automorphism z of Q (onto Q
because of the inclusion of z'1 in the induction). There were no loops before we
began the induction, and the induction cannot produce a loop because the last
arrow, which completed the loop, would have had as its head an already specified
point, contrary to the above choice of 8. Restricting to ß = OF,,, we complete the
construction for tj = w0. Of course, in any o-2-transitive representation (F,,ß), ß
must be countable and dense in itself, and thus o-isomorphic to Q.

Now let tj be regular. Write tj as ua, and in the above argument, replace Q by an
«-set A [3, p. 187], using the G.C.H. (For tj = w0, the G.C.H. is not needed.
Alternately, the previous argument can be applied.) Select a set 3 of pairwise
disjoint open intervals A of A whose union is coinitial in A, and such that the order
type of 3 is the reverse of the ordinal number ua. Select a one-to-one correspon-
dence between the set of nonidentity elements of Fn and the set 3, and for each
e ¥= w g F specify within the corresponding A a diagram showing e # w. Since
some A's lack immediate successors, the bridging must be modified. Let A0 be the
greatest A g 3. For each A0 ¥= A g 3, pick xA g x which does not appear in the
diagram for any A > A' g 3 (by the regularity of ua, fewer than coa x 's so appear)

Z _2 z

-¿--t^-t^---^-
ßl <*   ßu Pi 6 P'u
»_—v_I

No tails of
z-ariows here

FIGURE 3
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86 S. H. MCCLEARY

and make the xfs distinct. Form an xA-arrow from any point of A 0 to any point of
A. Let y be a free generator moving up the greatest point p in the diagram within A0
(replace y by y"1 if necessary). We specify a y-arrow moving p up to some point
artificially denoted by "0".

Instead of (a)-(e), we proceed as follows: Within A+= (X g A|À > 0}, pick a
descending copy A D of the ordinal number <oa having inf 0, and entirely above it an
ascending copy AA of ua having no upper bound. Select a one-to-one correspon-
dence between AA and x. For each X g AA, specify that the corresponding xx move
it down to the corresponding point X' of AD, and move 0 up to any point between X'
and the next largest point of AD. Then xx A e will fix 0 and move X to X', which will
guarantee the o-primitivity of the representation (whether or not X, X' G OF,,), and
thus the pathological o-2-transitivity.

"Enumerate" as in the finite case, using ua instead of t¿0. When specifying a
z-arrow with tail at a, let ß'L be the sup in A of the heads of z-arrows whose tails lie
below a, and ß'y its dual. Since ß'L is the sup of a set of cardinality less than a>a (by
regularity), and ß'v dually, the properties of a-sets guarantee that there exist points
of A between ß'L and ß'y. Again by regularity and the properties of a-sets, no point
of A except 0 is a limit point of already specified points (although there may be
other limit points in A), as we can choose a head for the z-arrow which preserves
consistency.

Since (G , < ) is o-isomorphic to A, this concludes the proof of Theorem 3.
Admittedly the right order (G , <) obtained from the representation (F, ß) of

Theorem 3 by setting
gx < Si ** «gi ** otg2

is far from being explicit. However, the rest of this paper is devoted to the idea that
we have enough control over the representation to learn a great deal about prime
subgroups of Fv.

3. The root system of prime subgroups of F. Let 0* denote the root system of
prime subgroups of F. Here we include tj = 1 and tj = 0. Fx = Z EB Z, so 3àx has
three elements, two minimal and one lying above them. F0 = { e}, so 3s0 is singleton.

& has F as its largest element. Its branches are the connected components of
^ \ { Fv}• For P e ^„>^(P) wil1 denote {Q g 0>^\Q < P}.

The roots of & are the maximal subchains. Within each root the set of covering
pairs is dense, and the bottom halves of these covering pairs are the values within
that root. Given that for finite tj every branch of ^ has a largest element [7,
Corollary 16], we shall find that every conceivable chain occurs as the chain of
covering pairs (equivalently, of values) within some root of ^.

Let 31 n c & denote the root system of representing subgroups of Fv, together with
Fn itself. (For finite tj, it was not known until [7] that Fv even has any representing
subgroups, i.e., any transitive representations.) [7, Corollary 16] established that for
finite tj, every branch of & containing any representing subgroups at all consists
entirely of representing subgroups, so that 31 consists of some set of entire branches
of (P (together with F at the top). In fact, f%n is exceedingly much like 9V
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FREE LATTICE-ORDERED GROUPS 87

Main Theorem 4A. For finite tj > 1, all the root systems 0* are o-isomorphic to
each other, and also to the root systems 31 r For this common root system 3sf

(1) Card(3»f) = 2"°.
(2) Each branch contains a (unique) largest element.
(3) Every branch is o-isomorphic to 0>^, 0>l, 3*j, or 330>o (no two of which are

o-isomorphic); and there are 2U° branches of each type.
(4) For P G 0>f, £C(P) is o-isomorphic to 0>o, &x, 3>f, or 0>a<¡.
(5) The chains of covering pairs in the roots of 0*¡ are precisely the finite and

countable chains having largest elements.

Main Theorem 4B. For &„ :
(1) Card(^o) = 2"».
(2) The isomorphism types of the branches are 3*0, 3*x, 9>j, 9* , and 2"° types (each

of cardinality 2"°) having no largest element. Each of these types occurs 2W° times.
(3) For each P G 3*a(¡, &( P) is o-isomorphic to 0>o, 0>x, 3sf, or 3>Uo.
(4) The chains of covering pairs in the roots of '0*a are precisely the nonempty finite

and countable chains.
(5) The above statements apply verbatim to 3la (the lists in (3) and (4) still being

3»0, 3»x, 3>f, 3>„o rather than 3r0, 3tx, 3tf, 0t^).

Main Theorem 4C. Let tj > <o0 be regular.
(l)Caxd(3»rf) = 2\
(2) The o-isomorphism types of the branches of 0* are (a) &Q, 3*f, 3s¡ and 0}

(<o0 < p. < tj), (b) 2V types of cardinality 2*1 and cofinality p. (for each regular u such
that <o0 < u < tj), (c) perhaps some types of cardinality tj and cofinality tj. Each type
occurs 2V times, except perhaps for the types in (b) with u < tj, and even these occur at
least tj times.

(3) For each P g &n,<e(P) is o-isomorphic to&o, 0>x, 0>f, or^ (w0 < u < tj).
(4) Every chain of cardinality at most tj occurs as an upper ray of the chain of

covering pairs of some root of33v.
(5) The above statements apply verbatim to 31 .

We need many a lemma. The first one generalizes certain aspects of Theorem 2.
Let H be a (not necessarily normal) subgroup of Gr By a right ordering of Gv/H we
shall mean a total order (Gv/H, <) of the set Gv/H of right cosets Hg (g g Gf)
which is preserved by right multiplication by elements of G . (When H = {e}, this is

Figure 4. The branches of 9*,, each of which occurs 2"° times
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88 S. H. MCCLEARY

the usual definition of a right ordering of Gr) The natural action of F on (Gv/H, < )
will mean the unique extension of the action of G^ to an action of F .

For K a subgroup of Fv we denote by l(K) the /-subgroup generated by K.

Lemma 5. Let P be a prime subgroup of Fv, and H a subgroup of P n G . Then given
any right ordering ((P n Gf)/H, <), there exists a unique right ordering (Gv/H, <)
for which

(a) The sets ((P n Gf)g)/H are the classes of a convex congruence (é'in the natural
action ofFv on (Gv/H, < ).

(b) The action of F^ on W coincides with its action on F /P ( under the identification
((P n G„)/H <- Pg)).

(c) The action of l(P n Gf) on ((P n Gf)/H, <) coincides with its action on
((P n G„)/H, *).

Proof. The only candidate for such a right ordering of G^/H is
Hgi < Hg2 «

{Pgx < Pg2 in F„/F or else,Pgx = Pg2 and H =S Hg^1 in (P n G„)/7/).

This order is well defined. For if Hgx = Hgx and // =i Hg2gx1, then Hgfgf1 =£
(¿fg2gi'1)gigi'1 since the curly order is preserved under right multiplication by H,
i.e., H *í Hg2gx1; and the rest is clear. We have a right ordering satisfying (a). By
Lemma 1, Gn acts transitively on F^/P, justifying the identification in (b). Now the
actions in (b) coincide for Gn and thus also for F . The same holds in (c) for P Pi Gv
and thus also for l(P n Gn), given that the two orderings of (P n Gf)/H coincide
because the action of P n G^ preserves the curly order.

Lemma 6. Le/ P be a prime subgroup of F . Then l(P n G^) w a free l-group, with
P Pi G^ ///e subgroup (freely) generated by some free generating set x' of l(P n G^).
P/u« /-group rank(/(P nG,)) = group rank(P n G^).

Proof. In view of Lemma 5, this follows from [2, Theorem 3.9]. However, we give
here a proof in the spirit of our other results.

Pick a free generating set x' for the free group P n G^, whose rank we denote by
p. If ju = 0, the lemma is trivial. If p. = 1, the free generator x is incomparable with e
in F (this is true of all nonidentity elements of Gf) and thus freely generates
l(P n Gf). Accordingly we suppose p. > 1.

We want to show that every /-group word w in x' which is not the identity in the
free /-group F °n x' is not the identity even when the sups and infs are taken in the
given F. By Theorem 2 (since p > 1), w<p ¥= e in the natural representation cp of Fv
on some right ordering (P n G, =S). We apply Lemma 5 to extend (P n G,,, =<) to a
right ordering (G , <) on which the natural action i// of F, has P n G, as an o-block.
For h g P n G„ and thus also for h g /(P n G„), the restriction (//»/'JKP O Gn) =
hep. Since w(j> =£ e, we have w\p + e and thus w + ein F .

Lemma 7. Let P be a prime subgroup of F. Then the root system ¿¡?(P) is
o-isomorphic to the root system of all prime subgroups of l(P O Gf); and thus to 9*^,
where p = /-group rank(/(P n Gn)) = group rank(P n Gf).
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FREE LATTICE-ORDERED GROUPS 89

Proof. Denote the two root systems by if and 3T; respectively. The map Q -» Q
n l(P n Gf) sends if into .^and preserves order. In the other direction, let Q' g 3T.
Right order (P n G )/(g' n G,,) according to its identification with the chain
l(P n G„)/g'   (i.e.,   (g' n G„)g ++ Q'g,   which   works   because   for   h g

C'A - Ô'( V A*/;) ['*y e * n G,] = V AQ'g.j = g'g,y

for some g,<7<). Extend this right order to a right order (GV/(Q' n G,,), <) in the
manner afforded by Lemma 5 (with H = Q' n Gf). In the natural action tp of F on
(GV/(Q' n G„), <), let Q" be the stabilizer of the point Q' n G„. By (a) and (b) of
Lemma 5, A = (P n G )/(g' n G ) is an o-block of this action, and since the
action coincides with the action of F on E^/P (with A «-» P), the stabilizer of A is P.
Since the point Q' n G„ lies in A, g" c P. This makes g" g ^. We map g' -» g".
This map from J7" to if preserves order for the same reason that Q" ç P.

Let g G if, and let g' = g n /(P n G,). The right ordering (G/(g' n G„), <)
used to form g" coincides with chain F/g (via (g' n G^)g <-> gg). This is true by
construction within (P C\ Gf)/(Q' C\ Gf), where (Q' C\ Gf)g ** g'g <-» gg (an arbi-
trary element of P/Q). Elsewhere it follows from Lemma 5 (part (b) and the
definition of the right ordering). Hence the stabilizer Q" of the point g' n G is g,
as desired.

Each g' G^"is the stabilizer of the point g' in the action of l(P n Gf) on
/(in G^)/g'. By (c) of Lemma 5, g' D g" n /(P n G,) 2 g', making g" n
l(P C\ Gf)= Q'. Therefore our two mappings are inverses of each other.

Lemma 8. A prime subgroup P of Fv is minimal if and only if P n Gn = {e}.

Proof. P is minimal iff if(P) = P iff group rank(P n Gf) = 0, by Lemma 7.

Lemma 9A. Let 1 < tj < u0. For each 0 < p < w0, F^ /zos precisely 2"° representing
maximal prime subgroups P for which l(P C\ G ) is a free l-group of rank p. For each
such P, the representation (F, F /P) is pathologically o-2-transitive.

Remark. This establishes that Gv has 2"° representing right orderings.
Proof. For the necessity that (F, F/P) be pathologically o-2-transitive, see [7,

Proposition 13]. Clearly the number of such P's is no more than stated. We
construct the desired P 's by varying the proof of Theorem 3.

First we consider the case tj = 2 and p = co0 and construct a single P. Let x and y
be the free generators of F = F2, and let hp = xpypx~py~p (p > 1). The h ¿s freely
generate a subgroup H (of rank w0) of G2. (For any reduced group word in the hfs
the number of alternations between powers of x and powers of y increases as each
additional generator is used in forming that group word.) Pick an irrational number
r slightly greater than 1. We begin with the same specifications from the proof of [7,
Theorem 1] that were used in the proof of Theorem 3, modified in the same way;
except that we make (-l)y = 0 instead of vice versa, and we replace Q by the
subchain Q © Qr of R, which of course is also countable and dense in itself.
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To make the stabilizer F0 have the properties desired of P, we make additional
specifications to force F0n Gv = H. For (a)-(d), x is to move each specified point
up by 1, and y is to move each specified point up by r. For each n g Z+, we specify:

(a) x at each m «■ 0,...,« — 1,
(b)y at each n + mr, m = 0,...,n - 1,
(c)jc-1 at each n + nr - m, m = 0,...,« - 1,
(d)y-1 at each« + nr — n — mr = (n — m)r, m = 0,...,n — 1.

For n = 1, this is illustrated in Figure 5. The (a)'s for the various «'s specify x (with
considerable redundancy) at every n > 0; and the (d)'s specify y at every nr, n > 0.
Since r is irrational, no point except the n 's and nr's is involved in more than one of
these specifications.

For each hp, we have produced a loop beginning at 0. This will make H ç F0 n Gr
As further specifications are made later in the proof, we shall arrange that
, . No arrow ever reconnects two points already connected by
(*) ■•some pre-existing sequence of arrows.
We claim that this will force every reduced group word g g F0 O G to be also a
group word in the hp's, so that H = F0r\ Gr

Suppose it turns out that g gives a sequence of arrows beginning at 0 and
returning to 0. Since there are no loops in the specifications carried over from the
proof of [7, Theorem 1], (*) guarantees that g begins with x or y rather than x'1 or
y'1. Otherwise, some sequence of arrows given by a reduced group word and
beginning with an x'1- ory_1-arrow at 0 would return to 0. Then the arrow in this
sequence which was specified last would have reconnected two already connected
points, violating (*). We suppose the former, the latter case being similar. Thus
g = xqy ±1 • • • for some q > 1. But if we had y'1, the fact that y'1 is not specified
at q by any (b) or (d), together with (*) and the fact that g is reduced, would make it
impossible ever to return to 0. Thus g = xqy ■ ■ ■. Similarly, the next several letters
must be y's, so that g = xqyq ■ ■ ■, and then the next several must be x~x% so that
g = xqyqx'q ■ ■ • = xqyqx'qk for some k g G . Finally there are two possibilities:
y ±1. However, we write g = xqyqx'qy'qyqk = hqyqk. We havey^A: g P0 n Gv, and
by induction on the length of g,yqk g H, making gEi/ and proving the claim.

In order to make the powers of hx = xyx^y'1 move 1 down arbitrarily close to 0
(which they leave fixed), we make some further specifications (with y still moving all
specified points up by r, but with x moving points up by various amounts). We
specify that

(e) x'1 move 3 + r down by more than one (but not move it past 2, to maintain
consistency with the previous x-arrows). Letting ßx = 1, this makes ß2 = ßxhx =
ß^yx^y-1 = (3 + r)x-lyl < (2 + r)y-x = 1 = ßx.

Figure 5
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(0 x move/?,(/' = 2,3,...) up between 1 and 1 + 1//' (arranging that /3,x < /},_,*),
and x'1 move ßtxy down by 1, so that ßi+x = ßthx = ßjXyx^y'1 < (1 + 1/i) + r —
1 — r = 1/i; except that if ßtx, ß,xy, ßtxyx~x, or ßjXyx^y'1 should happen to
coincide with one of the finitely many already specified points for which this is
possible, /3,jc is to be decreased slightly so that this does not happen.

As in the proof of Theorem 3, regardless of what further specifications we make,
the resulting action of F on the orbit ß = OF will be faithful. If A is a nonsingleton
o-block containing 0 and thus also points above 0, the fact that the powers of hx
move 1 down arbitrarily close to 0 will force A to contain 1, and the fact that
nx = n + 1 (n > 0) will then force A = ß. Hence (F, ß) will be o-primitive and thus
pathologically o-2-transitive. This will make the representing subgroup F0 a maximal
prime subgroup of F [3, Theorem 4.1.5]. We complete the specification of x and y via
an enumeration like that used in the proof of Theorem 3, and (*) holds. By Lemma
6, l(F0 n Gv) is a free /-group whose

rank p = group rank(F0 n Gv) = group rank(H) = w0.

For tj = 2 and u = w0, we have produced a single P (= F0) of the kind desired.
We need some more. We partition Z+ into three infinite sets A U B U C, with
1 g A. For n g A, we specify (a)-(d) exactly as before. For n g B U C, we specify
(a)-(d) as before with two exceptions. We specify

(c') in (c), for m = n — 1 only, that x'1 move n + nr — m = nr + 1 down by
1 + qn if n G B (but by 1 — q„ if n G C). Here q„ is a small positive rational
number, sufficiently small that this specification is consistent with all the finitely
many already existing x~^arrows with which it could conflict, and chosen so that
qn J, 0 to avoid creating new limit points for the set of specified points.

(d') y'1 move down by r each (n - m)r + qn, m = 0,...,n — 1. The proof is
completed as before. F0 n Gn is freely generated by the infinite set {hp\p g A}.
Moreover, P = F0 contains hp V e but not hp A e when p g B (and vice versa when
/>gC).

We have produced 2"° P 's of the desired kind, completing the proof for the case
tj = 2, p = u0.

All the other cases are similar for all tj and all p + 0. In the specifications beyond
those carried over from the proof of [7, Theorem 1], all generators except two should
be ignored until the enumeration, and the set A should have cardinality p.

i       ' i y *   1 ' i
I >      i I I
ß3 ß2     ßx 2+r 3+r

Figure 6
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For p = 0 (and any tj), Theorem 3 provides one P of the desired kind. Now we
make it provide 2"° of them. Partition (2,3,...} as B U C In the proof of Theorem
3, specify further that for n 3s 2

(f) nx = n + 1 ± |Cí2»-i + 1in), choosing " + " if n g B and " - " if n G C,
(e') ay = a - 1 for all a > 1 which differ by an integer from some point n + 1

± 2(<i2«-i + l2n)- Then for « g B, the stabilizer P = F0 contains y ~"xy"+1 A e but
noty~"xy" + 1 V e (and vice versa for n ^ C).

Lemma 9B. Let tj be regular (G.C.H.). For each 0 < p «S tj, F has precisely 2V
representing maximal prime subgroups P for which l(P C\ Gv) is free of rank p. For
each such P, the representation (Fv, F^/P) is pathologically o-2-transitive.

Proof. Again we modify the proof of Theorem 3. Partition x\{y}as/lUPU
C U D, with card(/l) = u and card(P) = card(C) = card(Z)) = tj. Use D as x was
used in the proof of Theorem 3 to map elements of A^ to elements of AD. Specify
that Ox = 0 when x € A, Ox > Q when x g B, and Ox < 0 when x g C. Complete
the proof as before. Then for P = F0, we have P n Gn freely generated by A, with
x A e G P but xVeif when x G P (and vice versa when x g C).

Lemma 10. For every nonempty finite or countable chain T, Fu has a transitive
representation in which the tower of covering pairs of convex congruences is o-isomor-
phic to T, and the point stabilizers are minimal prime subgroups.

Proof. We blend the proofs of [7, Theorem 17] and Theorem 3, with the goal of
making the stabilizer F0 n Gu = {e}, where F = F^ . We begin as in [7], and use
the notation developed there. Here A = Q, so ß is countable and dense in itself.

First consider the case in which T has no largest element. Enumerate the
nonidentity elements of F: wx,w2,_Pick an ascending cofinal sequence yx, y2,...
in T, indexed by Z+. Lay out in Q a diagram showing wn + e, with smallest point a
and largest point r (a and t independent of n), with 0 < a < t. Using these elements
of A(Q) for the o-primitive components xy 0, and taking all smaller o-primitive
components which are involved to be the identity, lay out in ß a diagram 3n showing
wn =£ e, with smallest point ay and largest point ry (cf. [7]).

Enumerate xx. Proceeding by induction on n, specify that
(a,) Ox = ay , where x is the first element of x (in the enumeration) which is not

involved in any of the diagrams 3x,...,3n_x, and which has not been used to send 0
to any previous a  .

Enumerate x2. Pick a sequence qni-cc of negative rational numbers, and
enumerate {(q„)y\n g Z+, y g Y). Proceeding by induction according to this enu-
meration, specify

(a2) (q„)yx = (l/q2„)y and Ox = (l/2q2n)y, where x is the first element of x2
which is not involved in any of the diagrams 3m with ym < y, and which has not
been used to send any previous (qn)y to (l/qn)y.

The specifications thus far involve no loops. Moreover, they preserve the convex
congruences of the wreath product, i.e., (px)'£y(vx) iff p,<ëyv and (px)1fy(vx) iff
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The proof is completed by an enumeration of the pairs (a, z) as in Theorem 3,
taking care to preserve the properties just mentioned. When specifying an x * narrow
with tail at a, there will necessarily be a largest ßL < a that is already the tail of an
x * '-arrow (ßL= -oo if there are no such tails), and dually for ßv. Pick that y for
which ßL<gya or c0Jßv, but neither ßf#ya nor a(eyßv. Within aVy, ßf$y is the
largest # -class containing a tail less than a of an x ±1-arrow (possibly ß$y = -oo,
now referring to the lower end of ac€yfêf), and dually. As the head of the
x * \ -arrow being defined, pick any previously unspecified point of ß strictly between
ßföy and ß'u(€y (ß'L being the head of the x ±1-arrow with tail ßL, and dually). Such
a point must exist because the previous specifications preserve the convex con-
gruences, and because the only limit point in ß of previously specified points is 0.

The case in which T has a largest element y is treated by a similar but easier
modification of the proof of [7, Theorem 17], which is left to the reader.

Proof of Theorem 4A. For each tj, the cardinalities are at most those indicated.
For Fn has at most 2U° prime subgroups, so there are at most 2W° minimal prime
subgroups and thus at most 2W° roots in 9s, so 0> has at most 2"° branches.

For any one 9>v, (2) is part of [7, Corollary 16]. Let P g 9>r By Lemma 1,S£(P) is
o-isomorphic to 0*, where u = group rank(P n Gf) < w0. Thus every branch 9t of 9
is o-isomorphic to some 9?^ (0 < p < w0)—just apply the previous sentence to the
largest element P of a?. Since every branch of 92n is á branch of 9>1f, this applies also
to the branches of 9¿r By Lemma 9A, each such 9> occurs 2"° times as a branch
even of 31 . Therefore both 9n and 31 ̂  have 2W° branches o-isomorphic to 9* , for
each 0 < p < w0, and no other branches. Since this is true of every finite tj > 1, we
have established that all these 9>fs and 9ifs are o-isomorphic to each other. Let 9*¡
denote this common root system. We have also established (1), (4), and (3) except for
the distinctness of 0*. and 9>01 . For that we anticipate part (4) of Theorem 4B and
contrast it with (2) of the present theorem.

Because of (2), the chain of covering pairs in any root of 9>f (which certainly has
cardinality at most that of F ) is as described in (5). Anticipating Theorem 4B again,
every nonempty finite or countable chain T occurs as the chain of covering pairs of
some root of 0> , and & occurs as a branch 3S of 0>f. Letting P be the largest
element of 36, the pair (P, F ) adds one more element at the top of T to form the
chain of covering pairs of a root of 0>f. This proves (5) except for singleton chains,
which are furnished by the singleton branches.

Proof of Theorems 4B and 4C. We prove 4C, taking for granted those parts that
duplicate the proof of 4A and pausing intermittently to prove those parts of 4B that
are not special cases of 4C. We get (3), (2)(a), and (1) as in 4A, for both 9>y[ and 31 .

In any transitive action of an /-group F on a chain ß, and for any a g ß, a
one-to-one order-preserving correspondence between the set of o-blocks A contain-
ing a and the set of prime subgroups P of F containing the stabilizer Fa is given by
A <-> FA, the stabilizer of the o-block A [3, Theorem 1.6.2]. Thus [7, Theorem 17] gives
(4) for 9s, and its proof gives (4) for 3t for chains T having no largest element
(because in that case each e + w g F moves o-blocks in arbitrarily large proper
convex congruences). If T has a largest element y and I" = T\ {y}, then we use
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(2)(a) to pick a representing maximal prime subgroup P of Fv such that ^C(P) is
o-isomorphic to 9av and we showed above that the larger root system 9>n has a root
in which the chain of covering pairs is o-isomorphic to V. Adjoining the pair (P, Ff)
at the top of this chain, we have (4) for 31 v.

Applying the proof of [7, Theorem 17] to a chain T of cofinality p produces a
representing subgroup P = F0 whose branch (in 0* or 9tf) has cofinality p. Unless r\
and T2 are cofinally o-isomorphic (have o-isomorphic upper rays), the branches
produced are nonisomorphic because in any one branch, the chains of covering pairs
in the various roots are all cofinally o-isomorphic. The following lemma proves (2)(b)
except for the size of each type.

Lemma 11. Let p <,r\be regular cardinals. Then there are 2V chains T of cofinality p
and cardinality tj, no two of which are cofinally o-isomorphic.

Proof of Lemma 11. First we treat the case /x = tj. In an a-set T' of cardinality
ua = tj, choose a cofinal subset T" o-isomorphic to the ordinal number tj. Form T
from I" by replacing each element of T" by an ordinal number less than tj, in
one-to-one fashion. This gives 2V F 's, any one of which is cofinally o-isomorphic to
only tj others.

For smaller p, let T' be an a-set of cardinality p, and T" a subset o-isomorphic to
p. Form T by replacing all elements of T" by the same one of the 2' chains
constructed above. This gives 2^ T 's.

When the above chain Y has cofinality tj, the proof of [7, Theorem 17] produces
branches of cardinality 2V. For if A is any nonsingleton o-block containing 0 and if
P = Fà, then P contains a subset of x2 of cardinality tj, so card(P n Gf) = tj. This
makes if (P) o-isomorphic to 0* by Lemma 7, so that the branch containing P has
cardinality 2V. Thus there exist the required number of branches of cofinality rj and
cardinality 21'; perhaps branches of smaller cardinality also occur.

If the cofinality of a branch 38 is less than tj, then card(3S) must be 2V. For pick a
cofinal tower (P,|/ g /} in SB of cardinality p. Then x = F,, n x = ( U,P,) n x =
U, (Pj n x), so card(P, n x) = tj for some /' since there are only p Pfs. As above,
card(^) = 2V. This concludes the proof of (2)(b).

We pause to show that in 4B, all branches 36 lacking largest elements have
cardinality 2"°. PickingP! < P2 < P3 G á?(á?has no largest element),if(P3) cannot
be o-isomorphic to 9>0 or 0>x and so by (3) must be o-isomorphic to 9>f or 9>lilg and
thus have cardinality 2W°, making card(á?) = 2"°.

Finally, we consider the number of occurrences among the branches (of 0,7) or 31 f)
of o-isomorphism types having no largest element. Let 38 be a branch of such a type,
and pick a minimal prime subgroup P g 38.

Suppose first that the cofinality of 38 and thus of the tower (?of covering pairs of
prime subgroups containing P has cofinality tj. By Lemma 8, P C\ Gv= {e}, so
P n x = D. Replacing some elements of x by their inverses, we may assume that
Px > P for all x g x according to the order in Fv/P of these cosets Px (ordering the
various x 's in any one coset in any way at all). Because of the cofinality assumption
on ê, which applies also to the tower of covering pairs of o-blocks A containing P in
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the action (F, Fn/P), and because tj is regular, some cofinal subset z of x is
o-isomorphic to the ordinal number tj. Deleting from z the limit ordinals, we may
assume that y = x \ z also has cardinality tj. Finally, replacing each y g y by its
inverse, we may assume that x is partitioned as x = y U z, with Py < P for y g y,
Pz > P for z g z, card(y) = tj, and z o-isomorphic to tj. Every z' c z of cardinality tj
is cofinal in z, i.e., [Pz'\z' g z'} is cofinal in F^/P, so the convex /-subgroup
generated by P U z' must be all of F.

Now suppose that cpx and <p2 are permutations of x with u = z<px n y<j>2 having
cardinality tj. Each m, induces an /-automorphism <p, of F. We claim that Pç^ and
P<p2 together generate F, and thus lie in different branches. For z' = utpî1 is a
subset of z of cardinality tj (and thus is cofinal), so that F^ is generated by P U z'
and thus by Pqpx U z'yx = Pcpx U u. For u G u, we have u G ztpj so that (Pcpx)u >
P<P[ and thus a A e e P^; and u g ytp2 so that u V e g P<p2. Therefore the convex
/-subgroup generated by Pç> x and Prp2 contains Pff x U u, and thus is Fv proving the
claim.

To get 271 9,'s such that card(z<p, n y<p,- ) = tj when /'j # ;2, and thus get 2V
branches o-isomorphic to 38, we use

Lemma 12 (The Pie Lemma). Let tj = w0, or (with G.C.H.) let tj be regular. Let IT
be a set of cardinality tj. Then Yl can be partitioned in 21 ways as IT = Ax■ U P,, a«6? so
that when i *j, card (A,C\ Aj) = card(yl, n P,.) = card(P, n Af) = card(P, n Py)
= V-

Proof of the Pie Lemma. First we give the proof for tj = w0. In a circular pie
with center at the origin, let II be the rational pie, i.e., the set of points whose polar
coordinates r (=£ 0) and 8 (0 < 6 < 2ir) are both rational. For each of the 2"°
numbers a (0 < a < tt) such that 9 and 6 + it are both irrational, partition IT by
cutting the pie along the diameter 6 = a.

For higher cardinalities, we rephrase this argument. Let II be an a-set of
cardinality tj, and let n be the disjoint union Ax U A2 of two copies of A. For
X e X/A, let

A-x = (X G A,|X >X} U{X g A2|X <X}
and Bx its complement in n. There are 2" such X's [3, p. 188].

Now suppose that the tower S above P has cofinality p < tj. Then as in the
argument about card(á?), some g G á? contains tj elements of x. Let y = x n g and
z = x \y. card(z) < card(y) = tj. Partition x into tj cells A¡, each having the same
cardinality as z. For each A¡, pick a permutation <p, of x such that ztp, = A¡ (and thus
yq>¡ = x\Af). For ix¥=i2, the convex /-subgroup generated by g^ and grf,
contains ycpf U y<p2 2 yrjPj U ztp, = xtpj and thus is all of F. Therefore grf, and
grf,s lie in different branches, so this must also be true of P<p¡ and P<p,v This
concludes the proof of Theorems 4B and 4C.

4. Right orderings of the free group Gv Now we apply the foregoing results to Gv
making use of the fact that in the right regular representation of Gn on any right
ordering (G , < ), the o-blocks containing e are precisely the convex subgroups.
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Corollary 13. Let 1 < tj < w0, or (with G.C.H.) let tj be regular. Then Gv has a
right ordering in which there are no proper convex subgroups.

Proof. Use the right ordering produced in Theorem 3 (see the discussion prior to
that theorem).

We remark that for tj < <o0, every such (G , <) must as a chain be o-isomorphic to
Q (being countable, and being dense in itself since otherwise there would be a
convex cyclic subgroup). For regular tj, the chain (Gv, <) can be chosen to be an
a-set.

In both cases, (Gv <) can be chosen to be extremely "stretchable" in the sense
that for all gx< g2< g3< g4, there exists g g G,, such that g2g < gl and g3g > g4.
This is automatic when (G , <) is a representing right ordering lacking proper
convex subgroups. For when the natural action of F on (Gr <) is faithful, it must
be o-2-transitive [7, Proposition 13]. So given gx < g2 < g3 < g4, there exists w g F
such that g2w < gx and g3w > g4. Then g4 < g3w = g3( V,Ayw,7) = max,minyg3iv,7
= min7g3w)/; for some /'. Now gx > g2w > minjg2wrj, so gx > min g2wrj, for some
w,r. Take g = w,r.

For the next pair of corollaries, similar remarks can be made about the covering
pairs of convex subgroups. For simplicity, we assume small rank tj in these results.

Corollary 14. Let 1 < tj < «0. Let n g Z+. Then Gv has right ordering in which
there are precisely n proper convex subgroups Kx c • • • c Kn. Moreover, p¡ =
rank(AT,) can be prescribed (1 < p¡ < w0, except that px = 1 is permitted), and the
conjugates of each K¡ in Ki+X  can be made to have trivial intersection (where

K„+i = Gv)-
Proof. By induction, there exists a right ordering (Gv, < ') having precisely n — 1

convex subgroups K2 c • • • c Kn, with rank(.K"(.) = p¡, and with the intersection of
the conjugates of K¡ in Ki+X trivial. (For n = 1, use Corollary 13.) We want to
produce a right ordering (K2, =s) having precisely one convex subgroup Kx (of rank
pf), and such that the intersection of the conjugates of Kx in K2 is trivial. Then an
application of Theorem 2 to the natural action of Fv on the induced right ordering
(Gv/K2, <'), with (K2, =¿) as the ordering of the stabilizer K2, will produce the
desired right ordering (Gv, <). (The convex subgroups above K2 will be the same for
(G,,<) as for ((?„,«')•)

To produce (K2, =£), or equivalently (G^, =«:), we apply Lemma 9A to F = F^
(since p2> 1) to obtain a representing maximal prime subgroup P such that
rank(P n G^ ) = jux (cf. Lemma 6). By Corollary 13, we choose a right ordering
(P n G^ , *¿') having no proper convex subgroups. We apply Theorem 2 to the
representation (F, F/P) and to (P n G^, *i'). Since (F, F/P) has no proper
o-blocks, the resulting right ordering (G^, =s ) has the desired properties.

Corollary 15. Let 1 < tj < w0. Let T be any nonempty finite or countable chain.
Then Gn has a right ordering in which the chain of covering pairs (Ky, Ky) of convex
subgroups is o-isomorphic to T.

Proof. Use part (4) of Theorem 4B.
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5. /-automorphisms of F,.

Lemma 16. A one-to-one correspondence between the set of minimal prime subgroups
of F and the set of right orderings (Gv, ^) is given by

P^ (gi<gi~Pgi <Pg2)-

The inverse correspondence is (Gv, <) -» Fe, where Fe is the stabilizer of e in the
natural action of F = F on (Gv, < ).

Proof. Let P be a minimal prime subgroup of Fr Then P n Gn = {e} by Lemma
8, so "gj < g2 iff Pgx < Pg2" is a right ordering (Gv, <). Since the natural action of
F on (G , <) coincides with its action on Fn/P by Lemma 5, Fe = Pr

Going the other way, consider a right ordering (Gn, <). In the natural action of Fv
on (G,,, < ), Fe n G,, = {e}. By Lemma 8, P = Fe is a minimal prime subgroup of F.
Clearly the right ordering associated with P is the given one (Gv, < ).

Theorem 17. Let P be a minimal prime subgroup of Fr F//e« ///e number of
l-automorphic images of P is

(l)w0(//l < tj < «„).
(2) 2" (ifvis infinite).

Proof. In each case, the number of /-automorphisms and thus of /-automorphic
images of P is at most as indicated. (Consider the effect of an /-automorphism on x.)

By Lemma 16, P is the stabilizer Fe in the natural action of F = F on some right
ordering (G , <). Let G* denote the positive cone. For an /-automorphism tp of F ,
P(p «-» (Gv ^v), the right ordering having G*y as its positive cone. We shall
produce the desired number of /-automorphisms <p yielding distinct images G^tp.

For infinite rj, the proof is reminiscent of the last part of the proof of Theorems
4B and 4C. By the minimality of P, P n Gv = {e}, so P n x = D. We may assume
that P < Px for all x G x. For each y ç x, let <py(x) = x"1 if x g y and (py(x) = x if
x g x \ y. Extend <py to an /-automorphism of F,. These 2n /-automorphisms do the
trick.

For finite tj, we have x = {xx,...,x^} and we select w0 sets z = { z,,... ,z } which
are free generating sets of the group G,, and thus also of the /-group F . The function
x, -» z, can be extended to an /-automorphism <pz of F . We select the z's carefully, so
that the images G*^:1 are distinct.

With no loss of generality, x = {x, y,...}, with e < x < y. Changing one element
of x by multiplying it by a different element of x yields another free generating set x'
for Gn [5]. Accordingly, we may take z„ = (znl, zn2,...} to be (y, xy",...}. Since
e < x < y, we have y" < xy" < y" + 1, i.e., znnX < z„2 < z^,+ 1. Thus zn2z~nf G G* but
z„2^ñí"+l) & G„+. Therefore (yx-")tpz g G* but (yx-("+1))(pz G G*, making the
images G*^'1 distinct.

Just "how unbounded" the supports of various elements are in a pathologically
o-2-transitive representation (F, ß) can vary. Of course, there cannot be both a
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nonidentity element with support bounded above and another with support bounded
below. However

Theorem 18. F (tj > 1) has pathologically o-2-transitive representations of each of
the following kinds:

(1) No nonidentity element has support bounded either way. (For 3 < tj < co0, or
(with G.C.H.) tj regular, it can be further arranged that no nonidentity group word fix
any point.)

(2) All elements have support bounded below (resp., above). (Valid for infinite tj, but
false for finite tj.)

(3) At least one free generator x g x has support bounded below (resp., above), and
at least one does not.

Proof. We modify the proof of [7, Theorem 1], for now with tj finite.
For (1), we lay out a diagram in each interval [2n, 2n + 1], but for all (not just

positive) n, arranging that for each e # w g F the set of diagrams for w be
coterminal in Q. We build bridges just as before, except for the bridge in [1,2].
There, we arrange that the free generator x, moving 1 and the free generator xr
moving 2 be distinct. (No x has been specified as fixing 2, for then the x-arrow from
2 to 2 would have formed a loop, whereas diagrams are loop-free. Thus x *1 may be
specified to move 2 down without violating consistency.) We specify as before that
lx * ' = 4/3, (5/3)x *: = 2, and (4/3)x *1 = 5/3. But we also specify that
(4/3 + l/(n + l^x*1 = 4/3 + 1/n for n > 3, and that all free generators except
x,() fix 4/3.

Again the (transitive) action of F on ß = OF,, is faithful. Moreover, this represen-
tation is o-primitive. For let A be a nonsingleton o-block containing 4/3. On account
of x,., A must contain 5/3, and then Ax = A for all free generators x, forcing A = ß.
Now [7, Proposition 13] guarantees that this representation is pathologically o-2-
transitive. (1) obtains by construction.

For tj > 3, we can sharpen the preceding argument by constructing the bridge in
[1,2] according to the proof of Theorem 3. Pick an irrational number r, 4/3 < r <
5/3, and a third free generator x (# x,, xr¡). Lay out in the interval (4/3, r) the
specifications (through (e)) made in the proof of Theorem 3 for (0, oo), with x*1
playing the role played before by y, and the present x playing the same role as the
previous x. Pick a rational ß, 4/3 < ß < r, and specify that (4/3)x*: = ß and
ßx*' = 2. Specify also that the free generators other than these three move 4/3 to
distinct "new" points between 4/3 and 2. Enumerate as in the proof of Theorem 3.

Figure 7
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As above, (Fv, ß) is pathologically o-2-transitive. Whether the restriction that tj # 2
is necessary is an open question.

(2) follows from [7, Lemma 14]. For (3), we simply arrange in the unmodified
proof of [7, Theorem 1] that support(xr ) be bounded below, whereas support(x')
not be.

For infinite tj, the appropriate modifications in the proof of [7, Theorem 1] should
now be obvious. (For (2), if all free generators have support bounded below, so do
all elements of F,.)

Remark. Since Fu can be represented in all three ways just described in (1) and
(2), pathologically o-2-transitive /-permutation groups of these three types cannot be
discriminated from one another in /-group language.

The various maximal prime subgroups of F which we have constructed do not all
"appear" in any one transitive representation of Ff.

Corollary 19. There is no transitive representation (F,, il) for which the stabilizers
( F )-, w g ß, include all representing maximal prime subgroups of'F .

Proof. Let F = F. First, no pathologically o-2-transitive representation (F, ß) of
type (3) can do this. For suppose one does. The stabilizers F- must be precisely the
representing maximal prime subgroups of F. Since stabilizers of distinct cuts w G ß
are distinct, every /-automorphism <p of F induces a permutation <p of ß (¿off = ä,
where F-tp = Fa). <p preserves order because cox < w2 iff there exists / g F (namely
an appropriate / whose support is bounded below—cf. (3)) such that/g F5 and
fh g Fs for every e < h g F. Hence for h g F, hep has support bounded below (i.e.,
hep g F- for all sufficiently small w) iff the same is true of h. But any free generator
of F can be sent to any other by some /-automorphism tp. For free generators of the
two kinds in (3), this gives a contradiction.

Now suppose some other transitive representation (F, ß) has the property in
question. Let P be the stabilizer of a point in some representation of type (3). The
property guarantees first that P = Fa for some üeß, and then that every represent-
ing maximal prime subgroup g = F- for some ä g ß. The latter condition makes
g ç FA, where A is the largest segment of ß containing ä and not meeting the orbit
wF (A = {«} if «G <5F). But FA is the stabilizer of a cut in ¿OF, and the
representation on wF is o-2-transitive, so FA is a representing subgroup of F The
maximality of g makes g = FA. This means that every representing maximal prime
subgroup g of Fis the stabilizer of a cut in (F, F/P), contradicting the first part of
the proof.

For various classes of transitive /-permutation groups (H, ß), the /-automorphisms
of H have been related to the stabilizers H~ (« g ß) roughly as in the proof of
Corollary 19, with the conclusion that every /-automorphism of H is induced by
conjugation by some element of A(ti). Specifically this has been shown for all
o-primitive /-permutation groups except those which are pathologically o-2-transitive
[3, Corollary 7E]. Attempts to counterexample conjectures of this kind founder on
the lack of other ways of producing /-automorphisms. But since in F  any free
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generator can be sent by an /-automorphism to any other, case (3) of Theorem 18
gives

Counterexample 20. F^ (tj > 1) has a pathologically o-2-transitive representation
(F, ß) for which there exist /-automorphisms of F not induced by conjugation by
elements of A(£l).
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