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1 Introduction

The axion experimental program is in a blooming phase, with several new experiments and
detection concepts promising the exploration of regions of parameter space thought to be
unreachable until a decade ago. Many of those experiments are simply prototypes, awaiting
the jump to become ‘big-experiments’, or, in the case of more consolidated techniques,
they are still far from saturating their full physics potential. Nonetheless, they sometimes
reach sensitivities which go well-beyond astrophysical limits, albeit often still far from the
customary QCD axion window.
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On the other hand, since axion couplings are inherently ultraviolet (UV) dependent,
such early stage experiments already provide valuable probes of the QCD axion parameter
space. Imagine for definiteness that ALPS II would detect a signal in 2021, would it
be possible to interpret that as an axion that solves the strong CP problem? Since the
strong CP problem is one of the strongest motivations for new physics, if an axion-like
particle (ALP) will be ever discovered, there or elsewhere, it would be compelling to explore
whether it had something to do with the strong CP problem. This work explores whether
wide regions in the ALP parameter space, well outside the traditional QCD axion band,
may correspond to solutions of the strong CP problem. This is a question of profound
theoretical and experimental relevance.

In axion solutions to the strong CP problem1 both the axion mass and the couplings
to ordinary matter scale as 1/fa, where fa is the axion decay constant, denoting the
scale of new physics. The precise relation between mass and decay constant depends on
the characteristics of the strong interacting sector of the theory. When QCD is the only
confining group to which the axion a couples, in which case we denote the axion mass as
mQCD

a , they are necessarily linked by the relation [3, 4]

mQCD
a =

√
χQCD

fa
≃ mπ fπ

√
mumd

mu +md

1

fa
, (1.1)

where χQCD,mπ, fπ,mu and md denote respectively the QCD topological susceptibility,
the pion mass, its decay constant, and the up and down quark masses. Equation (1.1) is
completely model-independent as far as QCD is the only source of the axion mass, and it
defines the “canonical QCD axion”, also often called “invisible axion”. For this axion the
aGµνG̃

µν coupling to the gluon strength Gµν is directly responsible for the axion mass,
since the only source of explicit breaking of the global axial Peccei-Quinn (PQ) symmetry
U(1)PQ is its QCD anomaly. The strength of other axion couplings to Standard Model (SM)
fields is instead model-dependent: it varies with the matter content of the UV complete
axion model.

In recent years there have been many attempts to enlarge the canonical QCD axion
window, by considering UV completions of the axion effective Lagrangian which departed
from the minimal DFSZ [5, 6] and KSVZ [7, 8] constructions. Most approaches actually
focussed on the possibility of modifying the Wilson coefficient of specific axion-SM effective
operators [9–15]. That is, the size of the coupling coefficients, at fixed fa, is modified.
This has for example allowed to populate new regions of the parameter space by moving
vertically the axion band in the axion mass versus coupling plane, see figure 1 left. The
results are then “channel specific”: different couplings c are modified differently.

The parameter space of solutions can be alternatively changed by varying the axion
mass at fixed fa. This corresponds to horizontal displacements of the canonical axion band
in the parameter space, see right panel in figure 1. It always requires that the magnitude
of the relation between the axion mass ma and 1/fa departs from that in eq. (1.1): the
confining sector of the SM must be enlarged beyond QCD. New instanton sources give then

1
That is, via a global chiral U(1) symmetry, exact although hidden (aka spontaneously broken) at the

classical level and explicitly broken by instanton effects at the quantum level [1, 2].
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Figure 1. Different approaches to enlarge the parameter space of axions that solve the strong CP
problem. The canonical QCD axion relation is represented by the lower black line in the {ma, c/fa}
parameter space, where c denotes a generic effective axion coupling. Vertical displacements, possible
within pure QCD axion models (i.e. ma = mQCD

a ), are depicted on the left. Horizontal displacements
(via enlarged strong gauge sectors) are illustrated on the right for the case of a lighter than usual
axion to be explored here.

additional contributions to the right-hand side of eq. (1.1). The practical consequence is
a universal modification of the parameter space of all axion couplings at a given ma, at
variance with the vertical displacement scenarios. This feature could a priori allow for the
two mechanisms in figure 1 to be distinguished.2

Examples of horizontal enlargement of the parameter space towards the right of the
canonical QCD axion band are heavy axion models that solve the strong CP problem
at low scales (e.g. fa ∼TeV) [18–34]. The present work explores instead left horizontal
shifts: true axions that solve the strong CP problem with ma ≪ mQCD

a . This avenue is
more challenging, since it requires a new source of PQ breaking aligned with QCD, whose
contribution to the axion mass needs to almost cancel that from QCD without relying on
fine-tunings.

A possible mechanism to achieve this lighter-than-usual true axion in a technically
natural way was recently put forth by Hook [35], in terms of a discrete ZN symmetry.
N mirror and degenerate worlds would coexist in Nature, linked by an axion field3 which
implements non-linearly the ZN symmetry. One of those worlds is our SM one. All
the confining sectors contribute now to the right-hand side of eq. (1.1), conspiring by
symmetry to suppress the axion mass without spoiling the solution to the strong CP
problem. The direct consequence is, for fixed fa, a N -dependent reduced axion mass in
spite of all confining scales being equal to ΛQCD. In other words, for a given value of

2
For instance, via the measurement of the axion coupling to the neutron electric dipole moment (nEDM)

operator at CASPER-electric [16, 17], in case the axion would also account for dark matter (DM). The

axion-to-nEDM coupling directly follows from the ma–fa relation and so it is unmodified in standard

approaches to axion coupling enhancements (left panel in figure 1) that still rely on eq. (1.1).
3
This setup for N = 2 had previously led instead to an enhancement of the axion mass [36], because the

axion field was assumed to be invariant under the Z2 transformation.
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ma it follows a universal enhancement of all axion interactions relative to those of the
canonical QCD axion. In this paper, we expand on the mathematical properties of the
implementation of the ZN symmetry and determine the analytic form of the exponential
suppression of the axion mass and its potential in the large N limit. The phenomenological
analysis of the number of possible mirror worlds N will be next carried out with present
and projected data.

The study will also explore the ZN axion potential at finite density, to confront present
constraints and prospects from very dense stellar objects and gravitational waves. It has
been recently pointed out in [37, 38] that a generic reduced-mass axion leads to strong
effects on those systems, raising the effective mass in the dense media. In the scenario
considered here, a stellar background made only of SM matter is by nature ZN -asymmetric:
we will show analytically how such an asymmetric background breaks the cancellations
which guaranteed an exponentially suppressed axion mass for the ZN symmetric vacuum
potential. Limits on the number of possible worlds will be obtained in turn.

The theoretical framework to be used throughout the work described above is that of
effective axion couplings. Nevertheless, two concrete UV completions of the ZN scenario
under consideration will be developed as well: a model à la KSVZ [7, 39], and a composite
model à la Choi-Kim [40, 41]. The status of the Peccei-Quinn (PQ) quality problem will
be also addressed.

An important remark is that we will consider in this paper experiments that can test
the solution to the strong CP problem without further assumptions. Indeed, it is most
relevant to get a clear panorama on the strong CP problem by itself, given its fundamental
character. In particular, we will not discuss axion or ALP experiments that do rely on the
assumption that the DM of the Universe may be constituted by axions. The cosmological
evolution of the axion field in the ZN scenario under discussion and its contribution to the
DM relic abundance departs drastically from the standard case, and it is discussed in a
companion paper [42].

The structure of the present paper can be easily inferred from the table of Contents.

2 Down-tuning the axion mass

In ref. [35] it was shown how to naturally down-tune the axion mass from its natural QCD
value in eq. (1.1), exploiting the analyticity structure of the QCD axion potential in the
presence of a ZN symmetry. For pedagogical purposes, before turning to the generic ZN
case we analyze the (unsuccessful) case of a Z2 symmetry: the SM plus one degenerate
mirror world linked by an axion which realizes the symmetry non-linearly.

2.1 The Z2 case

Consider the SM plus a complete copy SM′, related via a Z2 symmetry which exchanges
each SM field with its mirror counterpart, while the axion field is shifted by π:

Z2 : SM←→ SM′ (2.1)

a −→ a+ πfa . (2.2)

– 4 –
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The Lagrangian, including the anomalous effective couplings of the axion to SM fields, then
reads

L = LSM + LSM
′ +

αs

8π

(
a

fa
− θ

)
GG̃+

αs

8π

(
a

fa
− θ + π

)
G′G̃′ + . . . , (2.3)

where θ parametrizes the anomalous QCD coupling, αs is the QCD fine-structure constant,
the Lorentz indices of the field strength Gµν have been obviated, and the dots stand for
possible Z2-symmetric portals between the two mirror worlds (see section 2.2.1). Without
loss of generality, we can perform a uniform shift in a such that the θ term in eq. (2.3) is
set to zero. Therefore, the effective θ-parameter of the SM corresponds to θeff ≡ 〈a〉/fa,
where 〈a〉 denotes the vacuum expectation value (vev) of the axion field.

In the case of an exact Z2 symmetry, all couplings and masses of the mirror world
and the SM would coincide with the exception of the effective θ-parameter. It is this
difference (namely the π shift in the effective θ-parameters of the SM and its mirror) the
one responsible for displaced contributions to the total axion potential, with destructive
interference effects. Were the QCD axion potential to be a simple cosine, the total potential
would vanish because the two contributions (from QCD and mirror QCD) would have
exactly the same size but opposite sign, i.e. ∝ cos(a/fa) and ∝ cos(a/fa +π) = −cos(a/fa)

respectively. However, for the true chiral axion potential [43–45] the exact cancellation
disappears and a residual potential — and thus a non-zero axion mass — remains, which
at leading chiral order reads (keeping only two flavours)

V2(a) =− m2
πf

2
π

mu+md

{√
m2

u+m2
d+2mumd cos

(
a

fa

)
+

√
m2

u+m2
d−2mumd cos

(
a

fa

)}
.

(2.4)
This Z2-symmetric world would not solve the strong CP problem, though, because a/fa = 0

is a maximum of the axion potential, as illustrated in figure 2. Indeed, as already pointed
out in ref. [35], a/fa = 0 is a minimum of the potential only for odd values of N , while it
is a maximum for N . Thefore, the simplest viable axion model that solves the strong CP
problem with a reduced axion mass incorporates a Z3 symmetry.

2.2 ZN axion

We consider now N copies of the SM that are interchanged under a ZN symmetry which
is non-linearly realized by the axion field:

ZN : SMk −→ SMk+1 (mod N ) (2.5)

a −→ a+
2πk

N fa , (2.6)

with k = 0, . . . ,N − 1. One of those worlds will be our SM one. The most general
Lagrangian implementing this symmetry describes N mirror worlds whose couplings take
exactly the same values as in the SM, with the exception of the effective θ-parameter: for
each copy the effective θ value is shifted by 2π/N with respect to that in the neighbour
k sector,

L =
N −1∑

k=0

[
LSMk

+
αs

8π

(
θa +

2πk

N

)
GkG̃k

]
+ . . . (2.7)

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
4

−6 −4 −2 0 2 4 6

a/fa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
(a
/f

a
)/
m

2 π
f
2 π

VSM(a/fa)

VSM ′(a/fa)
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Figure 2. Z2 axion potential. The mirror contribution to the axion potential V
SM

′(a/fa) (in green)
partially cancels that of the SM, VSM(a/fa) (in blue), leading to a total shallower potential V2(a/fa)

(in orange). The total potential has a maximum in a/fa = 0 and thus this Z2 axion does not solve
the SM strong CP problem.

where LSMk
denotes exact copies of the SM total Lagrangian excluding the strong anoma-

lous coupling, and the dots stand for ZN -symmetric portal couplings that may connect
those different sectors (to be discussed in section 2.2.1). In this equation θa ≡ a/fa is the
angular axion field defined in the interval [−π, π), and a universal (equal for all k sectors)
bare theta parameter has been set to zero via an overall shift of the axion field. The SM is
identified from now on with the k = 0 sector: to ease the notation, the label k = 0 on SM
quantities will be often dropped below. Each QCDk sector contributes to the θa potential,
which in the 2-flavour leading order chiral expansion reads

VN (θa) = −A
N −1∑

k=0

√

1 + z2 + 2z cos

(
θa +

2πk

N

)
, (2.8)

where
z ≡ mu/md ≈ 0.48 , A ≡ Σ0md ≈ χ0(1 + z)/z , (2.9)

and
Σ0 ≡ −〈uu〉 = −

〈
dd
〉

= m2
πf

2
π/(mu +md) (2.10)

denotes the chiral condensate [44], while χ0 ≈ (75 MeV)4 is the zero temperature QCD
topological susceptibility [45, 46]. Alternatively, the total ZN axion potential can be writ-
ten as

VN (θa) = −m2
πf

2
π

N −1∑

k=0

√

1− β sin2
(
θa

2
+
πk

N

)
, (2.11)

where β ≡ 4mumd/(mu +md)2 = 4z/(1 + z)2.
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a
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m
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2 π

VN=3(θa)

Vk=0(θa)

Vk=1(θa)

Vk=2(θa)

Figure 3. Z3 axion potential. The contributions from the N = 3 worlds partially cancel each
other, leading to an exponentially small total potential VN =3(θa) (in blue) that exhibits a minimum
in θa = 0.

For any N , θa = 0 is an extrema of the axion potential. Indeed, using the property
sin(2π(N − k)/N ) = − sin (2πk/N ) it is straightforward to see that

∂VN (θa)

∂θa

∣∣∣∣
θa=0

=
m2

πf
2
π

fa

β

4

N −1∑

k=0

sin
(

2πk
N
)

√
1− β sin2

(
πk
N
) = 0 . (2.12)

The same holds for any θa = 2πn/N with n ∈ Z, because of the periodicity of the potential.
For N odd the potential V (θa) has N minima located at

θa = {±2πℓ/N} for ℓ = 0, 1, . . . ,
N − 1

2
, (2.13)

which includes the origin θa = 0, while for N even the origin becomes a maximum. This
result — valid for any N — can be shown for instance using the exact Fourier series
expansion of the potential in eqs. (2.8)–(2.11) (see final part of appendix C). It follows
that N odd is required in order to solve the SM strong CP problem (albeit with a 1/N
tuning in the cosmological evolution [35, 42]). The k 6= 0 worlds have instead non-zero
effective θ-parameters: θk ≡ 2πk/N for 〈θa〉 = 0, see eq. (2.7). A typical shape of the
axion potential for N = 3 is illustrated in figure 3.

The different effective θk values translate into slightly different masses for the pion
mass in each mirror world, mπ(θk). At quadratic order in mπ a reduction factor of up
to ∼

√
3 results [45],

m2
π(θk) = m2

π

√
1− 4mumd

(mu +md)2 sin2
(
πk

N

)
. (2.14)
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Interestingly, nuclear physics would be drastically different in the different mirror copies.
In particular, a new scalar pion (πk) to nucleon (Nk) coupling is generated in all worlds
but the SM one (see e.g. refs. [47, 48]):

LχPT ⊃ c+

N −1∑

k=0

mumd sin θk

[m2
u +m2

d + 2mumd cos θk]1/2

πa
k

fπ
Nkτ

aNk , (2.15)

where c+ is an O(1) low-energy constant of the baryon chiral Lagrangian. Its impact on
the cosmological histories of the mirror worlds is discussed in ref. [42] for the ZN scenario
under discussion.

Overall, for our world to be that with vanishing effective θ, the ∼ 10 orders of magni-
tude tuning required by the SM strong CP problem has been traded by a 1/N adjustment,
while N could a priori be as low as N = 3.4

2.2.1 Renormalizable portals to the SM

Renormalizable portals between the SM and its mirror copies (left implicit in eq. (2.7))
are allowed by the ZN symmetry. In the following, we classify for completeness the portal
operators connecting the different k sectors.

Higgs portals. The most general ZN symmetric scalar potential for the Higgs doublets
Hk of the different mirror worlds includes terms of the form

V(Hk) ⊃
(N −1)/2∑

i=1

κi

N −1∑

k=0

(
|Hk|2 −

v2

2

)(
|Hk+i|2 −

v2

2

) ∣∣∣
(mod N )

, (2.16)

where v denotes the Higgs vev and κi are dimensionless parameters. Note that the
ZN -symmetric mixings between different worlds may include next-neighbour, next-to-next
neighbour etc. interactions. All κi≥1 terms provide renormalizable portals between the
mirror Higgs copies (Hk 6=0) and the SM Higgs (Hk=0).

Kinetic mixing. Terms mixing the U(1)k
Y hypercharge field strengths of mirror worlds

are a priori also allowed by the ZN symmetry,

L ⊃
(N −1)/2∑

i=1

ǫi

N −1∑

k=0

Fµν
k Fµν, k+i

∣∣
(mod N )

, (2.17)

where Fµν
k denote here the k-hypercharge field strenghts and ǫi are free dimensionless

parameters.
The above renormalizable portals are subject to strong cosmological constraints, as

discussed in ref. [42]. This can suggest a ‘naturalness’ issue for the Higgs and the kinetic
portal couplings, as they cannot be forbidden in terms of internal symmetries. Neverthe-
less, such small couplings may be technically natural because of an enhanced Poincaré

4
Although we work in the exact ZN limit, cosmological considerations require the temperature of the

SM thermal bath to be higher than that of the other k 6= 0 sectors [49–51]. Mechanisms to achieve these

different temperatures will be discussed in ref. [42].
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symmetry [52, 53]: in the limit where non-renormalizable interactions are neglected, the
κi6=0 and ǫi6=0 → 0 limit corresponds to an enhanced PN symmetry (namely an independent
space-time Poincaré transformation P in each sector). Those couplings are then protected
from receiving radiative corrections other than those induced by the explicit PN breaking
due to gravitational and axion-mediated interactions, which are presumably small. In addi-
tion, other terms in the scalar potential which depend on the details of the UV completion
of the ZN axion scenario may be present and strongly constrained; an example is given
below in section 3.1.

2.3 Axion potential in the large N limit

It is non-trivial to sum the series which defines the axion potential, eq. (2.11). However,
the presence of the ZN symmetry allows for the application of powerful mathematical tools
related to its Fourier decomposition and holomorphicity properties, that lead to simplified
expressions in the large N limit.

2.3.1 Holomorphicity bounds and convergence of Riemannian sums

As first noticed in ref. [35], the fact that the potential in eq. (2.11) corresponds to a
Riemann sum allows one to express it as an integral plus subleading terms,

VN (θa) =
N −1∑

k=0

V

(
θa +

2πk

N

)
=
N
2π

∫ 2π

0
V (x)dx+O(N 0) , (2.18)

where the definition of each single-world potential, V
(
θa + 2πk

N
)
, can be read off eq. (2.8).

Most importantly, the integral does not depend on the field θa and the amplitude of the
axion potential is thus solely contained in the subleading terms. The latter are nothing
but the error E committed in approximating the Riemann sum by an integral,

EN (V ) =

∫ 2π

0
V (x)dx− 2π

N
N −1∑

k=0

V

(
θa +

2πk

N

)
. (2.19)

Powerful theorems exist that describe the fast convergence of this approximation. It can
be shown, applying complex analysis, that if some conditions are satisfied the convergence
of the rectangular rule is exponential (see e.g. section 3 in ref. [54]). More precisely, if
V (θa) is a 2π-periodic function and it can be extended to a holomorphic function V (w)

in a rectangle from 0 to 2π and from −ib to +ib, then the error of the rectangular rule is
constrained as

|EN (V )| ≤ 4πM

eN b − 1
, (2.20)

where M is an upper limit on V (w) in the rectangular region defined above. As a conse-
quence, the axion mass will be exponentially suppressed for large N . More in detail, let us
apply the theorem to the second derivative of the potential,

V ′′(θa) = −m
2
πf

2
π

2

z

1 + z

2
(
1 + z2

)
cos (θa) + z [3 + cos (θa/2)]

[
1 + z2 + 2z cos (θa)

]3/2
, (2.21)
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which can be extended in the complex plane to a holomorphic function until the expression
under the square root vanishes. Indeed, this function has branch points in5

wcut = π ± i log z . (2.22)

Naively, it is tempting to apply the theorem assuming b = log z in eq. (2.20). This is
not possible though, since V ′′(w) is not bounded in the rectangular region, due to a di-
vergence in the branch point. As we show in appendix A, it is possible to optimize the
bound obtained above on the axion mass (V ′′(θa)/f2

a ) by allowing a departure from log z,
b = log z + ∆b, which leads to

∆b =
3

2

1

N , (2.23)

where the factor 3/2 stems from the order of the divergence of eq. (2.21) in the branch
point wcut. Implementing this result in eq. (2.20), it follows that

m2
af

2
a ≤

∣∣∣EN (V ′′)
∣∣∣ ≤ πm2

πf
2
π

√
1− z
1 + z

(
2

3

)3/2

N 3/2 1

e−3/2z−N − 1
. (2.24)

In figure 4 we compare this analytical bound with the numerical result: our analytical
bound captures the correct dependence on N of the ZN axion mass,

m2
af

2
a ∝ m2

πf
2
π

√
1− z
1 + z

N 3/2 zN , (2.25)

although it misses the overall constant factor. The overall factor will be analytically de-
termined in the following. Nevertheless, the discussion above has the two-fold interest of
determining the correct exponential suppression and of being very general, as it only relies
on the holomorphicity structure of the potential, and not on the specific form it takes. As a
consequence, the exponential suppression of the axion mass is not spoiled when considering

the subleading chiral corrections to eq. (2.11).

2.3.2 Fourier expansion: axion mass from hypergeometric functions

It is possible to gain further physical insight on the origin of the cancellations in the
potential by constructing its Fourier series expansion. As shown in appendix B, the Fourier
series of any scalar potential respecting the ZN shift symmetry only receives contributions
from modes that are multiples of N . Moreover, if the potential can be written as a sum of
shifted contributions, as it is the case for the ZN axion under discussion — see eq. (2.18) —
then the Fourier series of the total potential VN (θa) can be easily obtained in terms of the
Fourier series of a single V (θa) term, leading to

VN (θa) = 2N
∞∑

t=1

V̂ (tN ) cos(tN θa) , (2.26)

5
This result coincides with that in ref. [35], which defines a = log(c +

√
c

2
− 1), for c =

(m
u

+m
d)2

2m
u

m
d

− 1.

Note that the variable a can be simplified as a = log(md/mu) = − log z.
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where V̂ (n) denotes the coefficient of the Fourier series for the single-world potential V (θa),

V̂ (n) = −m
2
πf

2
π

1 + z

∫ 2π

0
cos(nt)

√
1 + z2 + 2z cos (t)dt . (2.27)

It is convenient to express this integral in terms of the Gauss hypergeometric function (see
appendix C and ref. [55] for conventions and relevant properties),

V̂ (n) = (−1)n+1m
2
πf

2
π

1 + z
zn Γ(n− 1/2)

Γ(−1/2)n! 2F1

(
−1/2, n− 1/2

n+ 1

∣∣∣∣z
2

)
. (2.28)

As shown in appendix C, in the large N limit this expression further simplifies to

V̂ (n) ≃ (−1)n m
2
πf

2
π

2
√
π

√
1− z
1 + z

n−3/2 zn , (2.29)

leading to the following expression for the total potential

VN (θa) ≃ m2
πf

2
π√
π

√
1− z
1 + z

N−1/2
∞∑

t=1

(−1)t N t−3/2 zt N cos(tN θa)

≃ m2
πf

2
π√
π

√
1− z
1 + z

N−1/2 (−1)N zN cos(N θa) , (2.30)

where in the second line we have kept only the first mode in the expansion, as the higher
modes are exponentially suppressed with respect to it. The total potential is thus safely

approximated by a single cosine. It trivially follows from eq. (2.30) that θa = 0 is a minimum
of the total potential for N odd, and a maximum for N even. Here and all through this
work purely constant terms in the potential are obviated, as they have no impact on the
axion mass.

Eq. (2.30) can be rewritten as

VN (θa) ≃ −m
2
af

2
a

N 2 cos(N θa) , (2.31)

where the ZN axion mass ma in the large N limit is finally given by a compact and
analytical formula,

m2
a f

2
a ≃

m2
πf

2
π√
π

√
1− z
1 + z

N 3/2 zN . (2.32)

The overall coefficient is thus determined, in addition to exhibiting the zN exponential
suppression of the potential and the specific N dependence previously argued in eq. (2.25)
from holomorphicity arguments. In summary, in the large N limit the axion mass is reduced
with respect to that of the QCD axion by a factor

(
ma

mQCD
a

)2

≃ 1√
π

√
1− z2(1 + z)N 3/2zN −1 , (2.33)
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Figure 4. Comparison between different evaluations of the axion mass as a function of N . Our
large-N analytical result in eq. (2.33) (green curve) provides a remarkably good approximation to
the numerical evaluation (dots).

where mQCD
a denotes the mass of the canonical QCD axion as given in eq. (1.1).6 This

ratio is illustrated in figure 4, which compares the numerical behaviour with: a) the ana-
lytical dependence previously proposed in ref. [35]; b) that from the holomorphicity bound
in eq. (2.24); c) the full analytical result in eq. (2.33). Our analytical results improve
on previous ones by Hook on a number of aspects: i) the explicit determination of the
exponential behavior controlled by zN ∼ 2−N ; ii) the improved N dependence from the

factor N 3/2; iii) the z-dependence of the axion mass in
√

1−z
1+z ; iv) the determination of the

prefactor 1/
√
π.

In practice, the large N results in eqs. (2.30)–(2.33) turn out to be an excellent ap-
proximation already for N = 3.

3 UV completions and alternative scenarios

Up to this point, the analysis has been largely independent from the precise UV completion
of the ZN axion scenario. For the sake of illustration, in this section we provide two UV
completions of the axion effective Lagrangian in eq. (2.7). We also briefly discuss an
alternative implementation of the ZN symmetry in which the resulting axion is heavier
than usual (rather than lighter).

6
Note that, although N = 1 denotes the SM world, m

QCD
a does not correspond to N = 1 in eq. (2.32),

because the latter is only valid in the large N limit.
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3.1 KSVZ ZN axion

Consider N copies of vector-like Dirac fermions Qk (k = 0, . . . ,N − 1) transforming in the
fundamental representation of QCDk, together with a gauge singlet complex scalar S. The
action of the ZN symmetry on these fields is postulated to be

ZN : Qk → Qk+1 (mod N ) , (3.1)

S → e2πi/NS , (3.2)

while the SM Lagrangian and its copies obey eq. (2.5) under ZN . The most general
Lagrangian containing the new degrees of freedom then reads

LUV = |∂µS|2 +
N −1∑

k=0

[
Qki /DQk + ye2πik/NSQkPRQk + h.c.

]
− V(S,Hk) , (3.3)

where PR ≡ (1 + γ5)/2. It exhibits an accidental U(1)PQ symmetry

U(1)PQ : Qk → e−iγ5
α
2Qk , (3.4)

S → eiαS , (3.5)

that is spontaneously broken by the vev of S, vS , via a proper ‘mexican-hat’ potential
V(S,Hk), whose structure is discussed below. Decomposing the S field in a polar basis,

S =
1√
2

(vS + ρ)e
i a

v
S , (3.6)

in terms of canonically normalized radial (ρ) and axion modes, the latter can be rotated
away from the Yukawa term in eq. (3.3) via an axion-dependent axial transformation

Qk → e
−iγ5

(
a

2v
S

+ πk
N

)

Qk . (3.7)

The heavy quarks, with real mass7 mQk
= ySvS√

2
, can next be integrated out in order to

obtain the low-energy axion effective field theory. Because the transformation in eq. (3.7)
is QCDk anomalous, with anomaly factor 2Nk = 1, the resulting axion effective Lagrangian
is given by

δLUV =
N −1∑

k=0

αs

8π

(
a

vS
+

2πk

N

)
GkG̃k , (3.8)

which yields precisely eq. (2.7), after the identification vS = fa.
Furthermore, the presence of the singlet scalar S introduces new scalar portals between

the SM and its mirror worlds, in addition to the generic ones in eq. (2.16). The scalar
potential in the latter equation should thus be enlarged by

V(Hk) −→ V(S,Hk) = V(Hk) + δV , (3.9)

7
Note that we crucially removed also the k-dependent phases from the Yukawas, in order to properly

integrate out the heavy Qk fields.
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with

δV = λS

(
|S|2 − f2

a

2

)2

+ κS

(
|S|2 − f2

a

2

)N −1∑

k=0

(
|Hk|2 −

v2

2

)
. (3.10)

Note that, because the Higgs vev v is the same in all k sectors due to the unbroken ZN
symmetry, the required hierarchy of scales is obtained with a single fine-tuning between v

and fa, as for elementary canonical QCD axions.
It is also possible to choose the representations of the Qk fields to transform non-

trivially under the electroweakk gauge groups, so that they could e.g. mix with SMk quarks
in a ZN invariant way and decay efficiently in the early Universe, thus avoiding possible
issues with colored/charged stable relics in the SM sector [9, 11]. Depending on the Qk

quantum numbers, this would change in turn the value of the electromagnetic-to-QCD
anomaly ratio of the PQ current, usually denoted as E/N , which enters the axion-photon
coupling.

3.1.1 Peccei-Quinn quality

The threat posed on traditional QCD axion models by quantum non-perturbative gravita-
tional corrections [56–65] may also affect the models discussed here, as fa is not very far
from the Planck scale. These contributions are usually parametrized via effective operators,
suppressed by powers of the Planck mass, that could explicitly violate the PQ symmetry
and thus spoil the solution to the strong CP problem [56–59].8

In the context of the KSVZ ZN axion model above, the exponentially small axion mass
could seem to worsen this threat, increasing the sensitivity to explicit PQ-breaking effective
operators. Interestingly, promoting the in built ZN symmetry to a gauge symmetry leads
to an accidental U(1)PQ invariance, that for large N is efficiently protected from those
extra sources of explicit breaking. Indeed, the lowest-dimensional PQ-violating operator
in the scalar potential compatible with the ZN symmetry is SN , leading to an explicitly
PQ-breaking contribution to the potential of the form

VPQ−break. = c
SN

MN −4
Pl

+ h.c. ⊃ |c|
2N /2−1

fN
a

MN −4
Pl

cos (N θa + δ) , (3.11)

where MPl = 1.22 × 1019 GeV is the Planck mass and c is a dimensionless coefficient
with phase δ ≡ Arg c. Considering now VN (θa) + VPQ−break., expanding for small θa the
axion potential VN (θa) ≈ VN (0)+ 1

2m
2
af

2
aθ

2
a, and solving the tadpole equation, the induced

effective θ parameter in the SM sector reads

〈θa〉 ≃
|c| N fN

a M4
Pl sin δ

2N /2−1m2
af

2
aM

N
Pl − |c| N 2fN

a M4
Pl cos δ

≃ 2
√
π |c| sin δ

√
1 + z

1− z
M4

Pl

m2
πf

2
π

1√
N

(
fa√

2zMPl

)N
, (3.12)

8
UV sources of PQ breaking can be avoided in some invisible axion constructions within a variety of

extra assumptions or frameworks [66–78], or be arguably negligible under certain conditions [79].
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Figure 5. Parameter space in the {N , fa} plane that is free from the PQ quality problem, within
the KSVZ-like UV completion of the reduced-mass ZN axion, for the PQ-breaking parameter values
indicated in the text. The PQ protected region has a sizable overlap with the regions of parameter
space where the ZN axion can account for the total DM relic density, see ref. [42].

where m2
a from eq. (2.32) has been used, and in the last step we neglected the second

term in the denominator in the first line of eq. (3.12): this is always justified in the
〈θa〉 . 10−10 regime.

In summary, unlike the customary ad-hoc ZN protection mechanism for the standard
KSVZ axion, in the ZN axion scenario under discussion the discrete symmetry is already
present by construction. Note that the scaling with N is slightly different as compared
to the standard KSVZ axion, due to the enhancement factor 1/zN . But eventually the
(fa/MPl)

N suppression dominates and provides an efficient protection mechanism, even
though the axion mass is exponentially suppressed. For the sake of an estimate, figure 5
shows the regions in the {N , fa} plane that saturate the nEDM bound for |c| = 1 and
sin δ = 1.

3.2 Composite ZN axion

It is also possible to construct a UV completion of the ZN scenario which corresponds to a
dynamical (composite) axion à la Kim-Choi [40, 41], without extending its exotic fermionic
content. In the original version of that model, the SM fields are not charged under the PQ
symmetry while two exotic massless quarks, ψ and χ, transform under an extra confining
“axi-color” group SU(Ñ)a and one of them, ψ, is also a triplet of QCD. Upon confinement
of the axi-color group at a large scale Λa ∼ fa ≫ ΛQCD, pseudo-Goldstone bosons composed
of the exotic quarks emerge. All but one of them are coloured under QCD and become
safely heavy. The light remaining one is the composite axion, whose mass obeys the usual
formula for QCD axions eq. (1.1).

We implement the Kim-Choi idea in the framework of our ZN framework without
increasing the number of massless exotic fermions representations. The fermion ψ is simply
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SU(Ñ)a SU(3)c, 0 . . . SU(3)c, k . . . SU(3)c, N

ψ � 3 . . . 3 . . . 3

χ � 1 . . . 1 . . . 1

Table 1. Exotic fermionic sector of the ZN composite axion model.

extended to be now a triplet under all QCDk mirror sectors, see table 1. The axion field
will thus be unique and will couple to all anomalous terms.

Upon SU(Ñ)a confinement at the large scale of order fa, the QCDk couplings αk
s can

be neglected, and therefore a large global flavor symmetry arises in the exotic fermionic
sector: SU(3N + 1)L × SU(3N + 1)R × U(1)V .9 This symmetry is spontaneously broken
down to SU(3N + 1)L+R ×U(1)V by the exotic fermion condensates. Among the resulting
Goldstone bosons, the QCDk singlet corresponds to the composite axion. Its associated
PQ current reads (with fPQ ≡ Ñfa)

jµ
PQ = ψγµγ5ψ − 3Nχγµγ5χ ≡ fPQ∂

µa , (3.13)

which corresponds to the only element of the Cartan sub-algebra of SU(3N + 1) that has
a vanishing anomaly coefficient with respect to SU(Ñ)a, but a non-vanishing one with
respect to all the QCDk gauge groups.

Without further elements the model would be viable, but all mirror worlds would have
the same θ-parameter: a heavier than usual axion would result. A simple ZN implementa-
tion which leads instead to relatively shifted potentials, and thus to a reduced axion mass,
is to have a relative phase between the argument of the determinant of the quark mass
matrix of the mirror worlds,

arg (det (Yu Yd))k+1 = arg (det (Yu Yd))k +
2π

N , (3.14)

where Yu and Yd denote the Yukawa matrices for the up and down quark sectors, respec-
tively. One of the many possible ZN charge assignments for the quarks that yield eq. (3.14)
is that in which only the right-handed up quarks would transform as10

ZN : Uk
R → ei2π/(3N )Uk+1

R , (3.15)

corresponding to a Yukawa quark Lagrangian of the form

LY = −
N −1∑

k=0

{
ei2πk/(3N )QLYuH̃UR +QLYdHDR

}
k

+ h.c. . (3.16)

The resulting low-energy axion effective field theory is then the desired one as in eq. (2.7).
In this ZN composite axion model only the exotic fermions are charged under the PQ

symmetry, while the ZN charges are carried solely by SM quarks. This means that the ZN
9
The U(1)A of the exotic sector is explicitly broken by the SU(Ña) anomaly.

10
Note that a factor of 1/3 in the phase takes into account that there are 3 fermion families.
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and PQ symmetries are not directly linked. As a consequence, gauging the in-built ZN
symmetry would not soften the PQ quality problem, contrary to the case of the KSVZ ZN
axion model discussed earlier above. Our ZN composite axion model is then subject to the
usual PQ quality threat. Standard softening solutions often applied to composite axion
models could be explored, e.g. those based on a chiral gauging of the global symmetry of
the coset space or on introducing a moose structure [66, 69, 73, 80].

3.3 Ultra-light QCD axions

The term ultra-light axions usually refers to the mass range ma ∈
[
10−33, 10−10

]
eV (with

the extrema of the interval corresponding respectively to an axion Compton wavelength of
the size of the Hubble horizon and to the Schwarzschild radius of a stellar mass black hole).
As a theoretical motivation for ultra-light axions, the so-called string Axiverse [81] is often
invoked, according to which a plenitude of ultra-light axions populating mass regions down
to the Hubble scale 10−33 eV is a generic prediction of String Theory, although without a
direct reference to the solution of the strong CP problem.11 On the other hand, according
to the usual QCD mass vs. fa relation, eq. (1.1), axion masses below the peV correspond to
axion decay constants larger than the Planck mass, and hence they are never entertained
within canonical QCD axion models. The ZN axion framework discussed in the present
work allows in contrast to populate the sub-peV axion mass region while keeping sub-
Planckian axion decay constants, with the advantage of providing as well a direct solution
to the strong CP problem. As shown in section 4.2, the tantalizing prospects for testing
the ZN scenario, through observational data on very dense stellar objects and gravitational
waves, can sweep through the discovery region of the ultra-light axion range.

3.4 A heavier-than-QCD axion

A remark is in order regarding the ZN charge of the axion in the different sectors. If
the implementation of the ZN symmetry would be such that the N world replicas are
degenerate but the axion field is exactly the same in all of them, that is, if eqs. (2.5)–(2.6)
were replaced by

ZN : SMk −→ SMk+1 (mod N ) (3.17)

a −→ a , (3.18)

the potentials of the different mirror worlds would not be relatively shifted but exactly
superpose. The axion would then be a factor

√
N heavier than the usual QCD axion in

eq. (1.1). This scenario was proposed in ref. [36] for a Z2 symmetry with just one mirror
world degenerate with the SM, but its generalization to N copies is trivial. Such a heavier-

than-QCD axion solution is viable, and it would transform the ALP arena to the right of
the canonical QCD axion band into solutions to the SM strong CP problem. The axion ZN
charge assignment explored throughout this work, eq. (2.6), results instead in lighter-than-

QCD axions, that is, solutions located to the left of the QCD axion band. Note that this
11

See e.g. ref. [82] for an ultra-light scalar field whose mass is protected by a discrete ZN symmetry but

does not solve the strong CP problem.

– 17 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
4

option induces a comparatively much larger impact: a natural exponential suppression of
the axion mass ∝ zN as the byproduct of the cancellations between the mirror potentials,
eq. (2.32), instead of the mild

√
N enhancement just discussed.

All in all, to explore the right-hand side region of the QCD axion band for solutions
to the strong CP problem, other heavy axion scenarios proposed in the literature seem
more efficient and appealing (e.g. those with mirror worlds much heavier than the SM, or
scenarios with novel confining scales much larger than ΛQCD, as mentioned in section 1).

4 Experimental probes of down-tuned axions

The ZN axion with reduced mass can provide a solution to the SM strong CP problem,
independently of whether it accounts or not for the DM content of the Universe. It is
hence interesting to get a perspective on the experimental panorama that does not rely on
the supplementary assumption that the axion may be the DM particle: all experimental
bounds and prospects below will be independent of that hypothesis. On the other hand,
ref. [42] will focus on experimental probes that do rely on it.

4.1 Axion coupling to photons

From an experimental point of view, a highly relevant axion coupling is that to photons,
defined via the Lagrangian term δL = 1

4gaγaF F̃ as [45, 103]

gaγ =
α

2πfa
(E/N − 1.92(4)) , (4.1)

where E and N denote model-dependent anomalous electromagnetic and strong contribu-
tions, respectively. Figure 6 shows the parameter space of the reference ZN axion model
(with E/N = 0) in the coupling vs. mass plane. Predictions for the axion photon cou-
pling are obtained by rescaling the ZN axion mass in eq. (2.32) for different values of
N . Present axion limits and projected sensitivities are displayed as filled and transparent
areas, respectively.

The yellow band depicts the canonical QCD axion solution, which obeys the well-known
relation in eq. (1.1). The oblique lines indicate instead the ZN lighter axion solutions to
the strong CP problem, as a function of the number of mirror worlds N , see eq. (2.32).
Note that the overall effect of a reduced mass axion is simply a shift towards the left of

the parameter space: each of those oblique lines can be considered to be the center of a
displaced yellow band. It is particularly enticing that experiments set a priori to only hunt
for ALPs may in fact be targeting solutions to the strong CP problem.

4.2 Finite density constraints on fa

This subsection summarizes the model-independent constraints on fa for the ZN scenario
under discussion. The result of the analysis is illustrated in figure 8. Interestingly, apart
from the usual constraints stemming from the SN1987A [104] and black hole superradiance
measurements [105–107] (depicted in purple), novel bounds apply to the exceptionally
light ZN axion due to finite density effects. Indeed, it has been recently pointed out in
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Figure 6. Limits on the axion-photon coupling as a function of the axion mass. Laboratory
constrains [83–90] and astrophysical bounds [91–101] are shown in blue and green, respectively.
Projected sensitivities appear in translucent colors delimited by dashed lines. The orange oblique
lines represent the theoretical prediction for the ZN axion photon couplings assuming E/N = 0

for different (odd) number of worlds N . These lines are solid for the regions of the parameter
space in which the KSVZ UV completion of the ZN axion is free from PQ quality problem and
dashed otherwise. The secondary vertical axis shows the corresponding axion decay constant fa if
E/N = 0 is assumed. Supplementary constraints in case the axion is assumed to account for DM
can be found in ref. [42]. Axion limits adapted from ref. [102].

refs. [37, 38] that finite density media may have a strong impact on the physics of very
light axions or ALPs. In those media, the minimum of the total potential may be shifted to
π. This has a number of phenomenological consequences that span from the modification
of the nuclear processes in stellar objects due to θ ∼ O(1), to modifications in the orbital
decay of binary systems (and subsequently in the emitted gravitational waves).

For the scenario considered here, the important point is that a background made
only of ordinary matter breaks the ZN symmetry. This hampers the symmetry-induced
cancellations in the potential which led to a reduced-mass axion in vacuum: the effective
axion mass will be larger within a dense medium.
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We will first elaborate on the ZN axion potential in a nuclear medium. Following
refs. [37, 108], one can compute the finite density effects on the axion potential by con-
sidering the quark condensates in a medium made of non-relativistic neutrons and pro-
tons [109, 110]. Applying the Hellmann-Feynman theorem, the quark condensate at a
finite density nN of a given nucleon N can be expressed as

〈qq〉nN
= 〈qq〉0

(
1− σNnN

m2
πf

2
π

)
, (4.2)

where 〈qq〉0 = 1
2

(
〈uu〉+

〈
dd
〉)
≡ −Σ0 is the quark condensate in vacuum — see eq. (2.10)

— and σN is defined by

σN ≡ mq
∂MN

∂mq
, (4.3)

where mq ≡ 1
2(mu +md) and MN is the mass of the nucleon N . Because the ZN potential

is proportional to the quark condensate, see eq. (2.8), we can simply obtain the potential
within a SM nuclear medium V f.d.

N (θa, nN ) by weighting the SM (i.e. k = 0) contribution
in the vacuum potential by the factor in eq. (4.2), that is,

V f.d.
N (θa, nN ) ≃

(
1− σNnN

m2
πf

2
π

)
V (θa) +

N −1∑

k=1

V (θa + 2πk/N ) (4.4)

= −σNnN

m2
πf

2
π

V (θa) +
N −1∑

k=0

V (θa + 2πk/N )
N ≫1−−−−→ −σNnN

m2
πf

2
π

V (θa) .

In the last step of these expressions the large N limit has been taken, which allowed us
to neglect the term corresponding to the exponentially reduced axion potential in vacuum
(see eq. (2.30)). This shows that, if the nucleon density is large enough, the ZN asymmetric
background spoils the cancellations among the mirror world contributions to the potential,
in such a way that the total potential in matter is proportional to minus the SM one
in vacuum V (θa). Therefore, the minimum of the potential is located at θa = π. More
precisely,

V f.d.
N (θa, nN )

N ≫1−−−−→ m2
πf

2
π

1 + z

[
σNnN

m2
πf

2
π

√
1 + z2 + 2z cos (θa) − N

−1/2zN
√
π

√
1− z2 cos (N θa)

]
,

(4.5)

which requires
σNnN

m2
πf

2
π

≫ zN (4.6)

for the minimum to sit at θa = π. This is illustrated in figure 7.
A large value of the θ parameter inside dense stellar objects is rich in physical conse-

quences, which translates into strong constraints for the ZN scenario. As it was pointed out
in ref. [37], θ ∼ O(1) inside the solar core is excluded due to the increased proton-neutron
mass difference (which would prohibit the neutrino line corresponding to the Be7-Li7 mass
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Figure 7. Example of the in-medium potential dependence as a function of the nuclear density for
N = 5. For large densities (light green) the total potential develops a minimum in θa ∼ π.

difference observed by Borexino [111]). Similarly, for θ ∼ π in nearby neutron stars (NS),
Co56 would be lighter than Fe56 [47, 48] and therefore Fe56 could have been depleted due
to its β-decay to Co56. The presence of iron in the surface of neutron stars and its im-
plications in terms of the allowed θ values could be explored through dedicated X-ray
measurements [112]. The corresponding current and projected constraints that were de-
rived in ref. [37] (within the simplifying assumption z = 1) are translated here to the ZN
scenario and further generalized for any z.

A conservative criterion consistent with θ = π inside the medium is to impose that the
axion mass at θa = 0 becomes tachyonic, i.e. −m2

T > 0 where m2
T is defined by

−m2
T ≡

d2V f.d.
N

d2a

∣∣∣∣∣
θa=0

=
m2

πf
2
π

f2
a

[
1√
π

√
1− z
1 + z

N 3/2 zN − σNnN

m2
πf

2
π

z

(1 + z)2

]
. (4.7)

Requiring this quantity to be positive, it directly follows a limit on the number of worlds
allowed by the stellar bounds above:

N . 47 , (4.8)

where the most recent estimation of σN has been used.12 This bound does not apply for the
whole range of fa, though, because the argument only makes physical sense as long as the
reduced Compton wavelength of the axion is smaller than the stellar object, rcore & 1/mf.d.

a ,

12
We employ here σN ≃ 59 MeV which is in agreement with recent determinations based on Roy-Steiner

equations σN = 59.1(3.5) MeV [113] and ChPT estimates σN = 59(7) MeV [114].
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Figure 8. Model-independent constraints on the axion scale fa versus axion mass, from astro-
physical data. Regions presently excluded are depicted in solid colors, while the translucent regions
circumscribed by dotted lines are projections. The orange oblique lines indicate the theoretical pre-
diction of the reduced-mass ZN QCD axion scenario, as a function of N : they are solid where the
KSVZ ZN axion is free from the PQ quality problem, and dashed otherwise. Additional constraints
which apply if the axion is assumed to account as well for DM are discussed in ref. [42].

where mf.d.
a ∼ 1/fa is the effective axion mass in the medium,

(
mf.d.

a

)2
=
d2V f.d.

N
d2a

∣∣∣∣∣
θa=π

=
m2

πf
2
π

f2
a

[
σNnN

m2
πf

2
π

z

1− z2 −
1√
π

√
1− z
1 + z

N 3/2 zN
]
. (4.9)

For the case of the sun, rcore ∼ 139.000 km implies fa . 2.4×1015 GeV for the observational
constraints to apply. Finally, the area in parameter space excluded is depicted in dark
blue in figure 8. Analogously, the future sensitivity prospects from neutron star data are
depicted in shaded blue.13

Even stronger bounds may be established by relaxing the requirement stemming from
eq. (4.7). Indeed, as it can be seen in figure 8, long before the mass in θa = 0 becomes
tachyonic, the absolute minimum of the potential corresponds to θ ∼ O(1). Therefore

13
Our results are analogous to those in eq. (1.7) of ref. [37], with their generic parameter ǫ identified as

ǫ = m
2
a/m

2
a(N = 1) ≃ π

−1/2
√

1 − z
2
(1 + z) N

3/2
z

N −1
. Note that the location of the QCD axion line, as

well as our projected exclusion regions for neutron stars and gravitational waves, are shifted towards the

left by a factor of five with respect to those in refs. [37, 38].
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one could constrain larger masses or smaller N values in the ZN scenario than those
obtained above. This would require, however, a dedicated analysis to ensure that the
axion field would fall into the absolute minimum, so as to overcome the potential barrier;
this development lies beyond the scope of the present work.

The fact that the position of the minimum of the axion potential depends on the
nuclear density of the medium not only modifies the effective θ-parameter inside stellar
objects but may also source a long-range force between them. This has been studied in
refs. [37, 38]. This new long-range force sourced by the axion can be constrained by the
measurement of double pulsar or neutron star (NS) - pulsar binaries [115–117]. Moreover,
the existence of these axionic long-range forces would modify the gravitational wave signal
emitted by NS-NS mergers or black hole-NS mergers which will be probed in the future by
LIGO/VIRGO and Advanced LIGO [38, 118]. The projected constraints from ref. [38] are
show in green in figure 8. It is striking that the whole ultra-light DM region, included the
so-called “fuzzy dark matter” region (ma ∼ 10−22 eV) [119], will be within observational
reach in the next decades, for a wide range of N values.

5 Conclusions

An axion which solves the strong CP problem may be much lighter than the canonical QCD
axion, down to the range of ultra-light axions, provided Nature has a ZN symmetry imple-
mented via N degenerate world copies, one of which is our SM. The axion field realizes the
symmetry non-linearly, which leads to exponential cancellations among the contributions
from each mirror copy to the total axion potential. For large N , we have shown that the
total axion potential is given by a single cosine and we determined analytically the —
exponentially suppressed — dependence of the axion mass on the number of mirror worlds,
using the properties of hypergeometric functions and the Fourier expansion. In practice,
the formula in eq. (2.32) gives an excellent approximation even down to N = 3. We have
also improved the holomorphicity bounds previously obtained.

We compared next the predictions of the theory with present and future data from
experiments which do not rely on the additional assumption that an axion abundance may
explain the DM content of the Universe. It is particularly enticing that experiments set a

priori to hunt only for ALPs may in fact be targeting solutions to the strong CP problem.
For instance, ALPS II is shown to be able to probe the ZN scenario here discussed down
to N ∼ 25 for a large enough axion-photon coupling, while IAXO and BabyIAXO may
test the whole N landscape for values of that coupling even smaller, see figure 6. In turn,
Fermi SN data can only reach N & 43 but are sensitive to smaller values of the coupling.

Highly dense stellar bodies allow one to set even stronger bounds in wide regions of the
parameter space. These exciting limits have an added value: they avoid model-dependent
assumptions about the axion couplings to SM particles, because they rely exclusively on
the anomalous axion-gluon interaction needed to solve to the strong CP problem. A dense
medium of ordinary matter is a background that breaks the ZN symmetry. This hampers
the symmetry-induced cancellations in the total axion potential: the axion becomes heavier
inside dense media and the minimum of the potential is located at θa = π. From present
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solar data we obtain the bound N . 47 provided fa . 2.4 × 1015 GeV, while larger N
values are allowed for smaller fa. Furthermore, we showed that projected neutron star and
pulsar data should allow to test the scenario down to N ∼ 9 — and possibly even below —
for the whole range of fa, see figure 8. Furthermore, gravitational wave data from NS-NS
and BH-NS mergers by LIGO/VIRGO and Advanced LIGO will allow to probe all values
of N for the remaining fa range, up to the Planck scale and including the ultra-light axion
mass range.

These analytical and phenomenological results have been derived within the model-
independent framework of effective couplings. Nevertheless, for the sake of illustration,
we have developed two examples of UV completed models. One is a ZN KSVZ model,
which is shown to enjoy an improved PQ quality behaviour: its ZN and PQ symmetries
are linked and in consequence gauging ZN alleviates much the PQ quality problem. The
other UV completion considered in this paper is a ZN version of the composite axion à la

Kim-Choi. While this model is viable, its PQ quality is not improved with respect to the
usual situation, because its ZN and PQ symmetries are independent.

This work is intended to be a proof-of-concept that a much-lighter-than usual axion
is a viable solution to the strong CP problem, with spectacular prospects of being tested
in near future data. It also pinpoints that experiments searching for generic ALPs have in
fact discovery potential to solve the strong CP problem.

The down-tuned axion considered here could also explain the DM content of the Uni-
verse in certain regions of the parameter space. The impact of such a light axion on the
cosmological history is significant and it will be discussed in a separate paper [42].
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Figure 9. Representation of the complex functions V (w) (left) and V ′′(w) (right). Colors represent
the phase of the corresponding complex function and the brightness represents the modulus. The
singularities can be clearly spotted: branch cuts starting from wcut = π ± i log z in both functions
and divergences in those same points for V ′′(w).

A Holomorphicity properties of ZN axion potential

In order to determine the parameter b in eq. (2.20), which controls the exponential sup-
pression of the axion mass, it is necessary to study the region in the complex plane where
the extension of the potential V (w) is holomorphic. As the plots in figure 9 illustrate,
both the potential and its second derivative have branch cuts starting in wcut = π± i log z.
However, the second derivative V ′′(w) diverges at the branch point and thus b cannot be
extended all the way to log z. In order to optimize the bound on the axion mass we allow
b to depart from log z, b = | log z + ∆b |. Taking into account that V ′′(w) for small ∆b can
be approximated by

V ′′(π + i(log z + ∆b)
) ≃ −m2

πf
2
π

√
1− z
1 + z

[
1

4

1

(∆b)3/2
+O(∆b−1/2)

]
, (A.1)

the procedure amounts to minimize the function B(∆b) that determines the bound
|EN (V )|≤B(∆b) (see eq. (2.20)),

B(∆b) ≡ 4πM(∆b)

eN | log z+∆b | − 1
= πm2

πf
2
π

√
1− z
1 + z

1

(∆b)3/2

1

eN | log z−∆b | − 1
. (A.2)

The requirement dB(∆b)
d(∆b) = 0 shows that the bound is optimized for

∆b =
3

2

1

N , (A.3)

where the factor 3/2 comes form the order of the divergence in eq. (A.1).

B Fourier series of the ZN axion potential

We show here that the coefficients of the Fourier series of any ZN symmetric potential,
such as the ZN axion potential in eq. (2.8), vanish unless the corresponding Fourier mode
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is a multiple of N . Moreover it will be shown that, when the potential is expressed as

VN (θa) =
N −1∑

k=0

V

(
θa +

2πk

N

)
, (B.1)

the non-vanishing coefficients of the Fourier series can be expressed in terms of the Fourier
transformation of a single term in the sum eq. (B.1).

Let us denote by V̂N (n) the coefficients of the Fourier series of the total potential,

VN (θa) ≡
∞∑

n=−∞
einθa V̂N (n) , (B.2)

and by V̂2πk/N (n) the coefficients of the Fourier series of each of the terms in the sum in
eq. (B.1),

V

(
θa +

2πk

N

)
≡

∞∑

n=−∞
V̂2πk/N (n)einθa . (B.3)

We will stick to the notation that omits the subindex for the first world (k = 0),
V̂0(n) ≡ V̂ (n),

V (θa) =
∞∑

n=−∞
V̂ (n)einθa with V̂ (n) =

1

2π

∫ 2π

0
V (x)e−inxdx . (B.4)

Each term in the sum in eq. (B.1) and eq. (B.3) corresponds to the function in the first
term but with its argument shifted by 2πk

N . The shift property of the Fourier series relates
the Fourier coefficients of the shifted functions V̂2πk/N (n) to that of the original function,

V̂2πk/N (n) = ein 2πk
N V̂ (n) . (B.5)

Substituting this expression in eq. (B.3), and inserting the latter in eq. (B.1), it follows
that the total potential can be written as

VN (θa) =
N −1∑

k=0

∞∑

n=−∞
V̂2πk/N (n)einθa =

∞∑

n=−∞
V̂ (n)einθa

N −1∑

k=0

ein 2πk
N . (B.6)

Comparing this expression with eq. (B.2), it follows that the coefficients of the Fourier
series for the total potential are given by

V̂N (n) = V̂ (n)
N −1∑

k=0

ein 2πk
N . (B.7)

Interestingly, these coefficients vanish unless n is a multiple of N

If n (modN ) 6= 0 =⇒
N −1∑

k=0

ein 2πk
N = 0 =⇒ V̂N (n) = 0 , (B.8)

If n (modN ) = 0 =⇒
N −1∑

k=0

ein 2πk
N = N =⇒ V̂N (n) = N V̂ (n) . (B.9)

– 26 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
4

To sum up, the Fourier series of the total potential VN (θ) can be easily obtained in terms
of the Fourier series of a single term V (θ) and it only receives contributions from the
modes that are multiples of N . In our case of interest the potential is real and even, this
translates into

VN (θa) = 2N
∞∑

t=1

V̂ (tN ) cos(tN θa) , (B.10)

where the factor of two comes from the negative modes and the constant term (i.e.
θa-independent) has been obviated.

C Analytical axion mass dependence from hypergeometric functions

We show here that the Fourier series coefficients of the single world axion potential in
eq. (2.27),

V̂ (n) = −m
2
πf

2
π

1 + z

∫ 2π

0
cos(nt)

√
1 + z2 + 2z cos (t)dt , (C.1)

can be written for large Fourier modes, n ≫ 1, as a simple analytical formula that expo-
nentially decays with n. Moreover, by applying the result in appendix B, it will be shown
that the potential for the ZN axion approaches a single cosine and a simple formula for
the ZN axion mass follows.

Let us start by relating the Fourier series decomposition of the single world potential in
eq. (C.1) with the Gauss hypergeometric functions (see for example eq. (9.112) in ref. [55]),

2F1

(
p, n+ p

n+ 1

∣∣∣∣w
2

)
=
w−n

2π

Γ(p)n!

Γ(p+ n)

∫ 2π

0

cos(nt) dt(
1− 2w cos t+ w2

)p . (C.2)

Via the identification w = −z and p = −1/2, V̂ (n) can be written as

V̂ (n) = (−1)n+1m
2
πf

2
π

1 + z
zn Γ(n− 1/2)

Γ(−1/2)n! 2F1

(
−1/2, n− 1/2

n+ 1

∣∣∣∣z
2

)
. (C.3)

For convenience, the hypergeometric function can be also expressed as (see eq. (9.131) from
ref. [55])

2F1

(
α, β

γ

∣∣∣∣w
)

= (1− w)−α
2F1

(
α, γ − β

γ

∣∣∣∣
w

w − 1

)
, (C.4)

so that

2F1

(
−1/2, n− 1/2

n+ 1

∣∣∣∣ z
2

)
=
(
1− z2

)1/2

2F1

(
−1/2, 3/2

n+ 1

∣∣∣∣
z2

z2 − 1

)
. (C.5)

The relation in eq. (C.3) is exact. However, only the modes n which are multiples
of N contribute to the potential (see appendix B), and therefore it is pertinent to focus
on the large n limit. While the limit of the Gauss hypergeometric function when one or
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more of its parameters become large is difficult to compute in general, some asymptotic
expansions of the hypergeometric function are known in the literature. In particular,
following refs. [120, 121],

lim
γ→∞ 2F1

(
α, β

γ

∣∣∣∣w
)

= 1 +
αβ

γ
w +O

(
(w/γ)2

)
. (C.6)

In turn, the prefactor in eq. (C.3) simplifies in the large n limit to

lim
n→∞

Γ(n− 1/2)

Γ(−1/2)n!
= − 1

2
√
π
n−3/2 . (C.7)

Putting all this together, it follows that, in the large n limit, the coefficient of the Fourier
series for a single world is given by

V̂ (n) = (−1)n m
2
πf

2
π

2
√
π

√
1− z
1 + z

n−3/2 zn , (C.8)

which in turn implies in this limit that the total ZN potential in eq. (B.10) can be written as

VN (θa) = N
∞∑

t=1

(−1)t N m2
πf

2
π

2
√
π

√
1− z
1 + z

(tN )−3/2 zt N cos(tN θa) . (C.9)

This expression allows us to understand several properties of the total potential. Firstly, it
can be shown now that the total potential approaches a single cosine in the large N , since
all the other modes are then exponentially suppressed with respect to the first one,

lim
N →∞

∣∣∣∣
V̂N (tN )

V̂N (N )

∣∣∣∣ = lim
N →∞

∣∣∣∣
V̂ (tN )

V̂ (N )

∣∣∣∣ = t−3/2z(t−1)N −→ 0 , (C.10)

and thus the potential reads

VN (θa)
N ≫1−−−−→ m2

πf
2
π√
π

√
1− z
1 + z

N−1/2 . (−1)N zN cos(N θa) , (C.11)

Secondly, we can also obtain an analytical expression for the axion mass that confirms the
dependence obtained from the holomorphicity arguments in section 2.3.1, and completes
the expresion with the correct prefactor,

m2
af

2
a ≃

m2
πf

2
π√
π

√
1− z
1 + z

N 3/2 zN . (C.12)

Finally, it is now trivial to show that the potential in the large N limit has N minima
(maxima) located at θa = {±2πℓ/N} for ℓ = 0, 1, . . . , N −1

2 , for odd (even) N .
The results above assumed the large N limit. However, note that the conclusion about

the location of the extrema is true for any N . This can be easily seeing after obtaining the
exact Fourier expansion of the ZN axion potential in eq. (2.8), which reads,

VN (θa) =−m2
πf

2
πN

∞∑

t=1

(−1)tN +1
∞∑

ℓ=tN

(2ℓ)!(2ℓ)!

24ℓ−1(2ℓ−1)(ℓ!)2(ℓ−tN )!(ℓ+tN )!
βℓ cos(tN θa) .

(C.13)
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For even N , it trivially follows that θa = 0 is a maximum, as all factors in this expression
are positive except for the factor (1 − 2ℓ) < 0. For odd N instead the (−1)t N factor
fluctuates in sign, but the first term (t = 1) is positive and dominates the expansion (e.g. it
is exponentially larger in magnitude than the t = 2 term which is negative). The periodicity
of the potential extends these conclusions to the location of all extrema.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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